

Ludovic Alvado, Nicolas Arveuf, Edouard Bechetoille, Christophe Beigbeder, Dominique Breton, Baptiste Joly, Laurent Leterrier, Samuel Manen, Hervé Mathez, Christophe Sylvia, Philippe Vallerand, Richard Vandaele

AG GDR DI2I

Orsay – June 24th 2024

Introduction

- In the detector R&D community, instrumentation based on fast waveform sampling is widely used
 - This permits extracting all the possible information from the signal, thus learning as much as possible about the detector
- Among all existing solutions, modules based on analog memories like DRS4, SAMLONG (WaveCatcher) and SAMPIC offer a few ps rms of time resolution.
 - SAMLONG and SAMPIC are both originating from IJCLab/IRFU
 - Both act as circular buffers => asynchronous triggering
 - SAMLONG works like an oscilloscope with many channels (like the DRS4)
 - Long sampling depth (up to 1024 samples)
 - Limited counting rate (130 µs conversion dead-time at full depth)
 - SAMPIC works like a TDC which also gives the waveform
 - Short sampling depth (64 samples)
 - Much higher counting rate (1,5 µs maximum conversion dead-time)
 - Fine for many applications but still not sufficient for environments with channel rates >> 1 MHz

Why evoking ps at the LHC?

- With the increase in luminosity, the average number of collisions per event is continuously rising
 - Event reconstruction is becoming harder and harder due to pile-up in the detectors
- One smart way to get rid of pile-up is to precisely tag the signals in time in order to sort them
 - Due to the length of the bunches, the collision time spreads over ~2ns
 - There can be more than 100 events superimposed over this period
 - Tagging the signals with a time resolution better than 30 ps rms would permit getting back to a few simultaneous events, thus making their reconstruction much easier

The Ecal of LHcb

- For the phase 2 upgrade, the central part of the detector will be equipped with SPACAL modules to deal with radiation (up to 1MGy).
- Shashlik will remain in the outer part (< 40kGy).
- In order to limit the occupancy, the size of the modules will be reduced thus their number increased
 - \Rightarrow from 6,000 to ~ 15,000 channels
- Introduction of longitudinal segmentation and double sided readout => ~ 30,000 channels (baseline option)

Technologies for PicoCal R&D

s bundle (1 c

June 24th 2024

Readout chain for PicoCal

Time channel

- Requirements
 - Time resolution target 15 ps for E_T = [1-5 GeV] to distinguish multiple interactions
 - Rise time between 1.5 ns and 4 ns
 - Time measurement in range E_T = [50 MeV 5 GeV]
 - Max occupancy up to 50% per channel (20 MHz time average rate)

• Time ASIC: Waveform TDC

- Associates a DLL-based TDC and a Waveform digitizer based on analog memories
 - TDC -> coarse time
 - Samples -> interpolation (digital CFD) => few ps resolution
- Channels are self-triggered
- The discriminator is used for triggering (not for timing)

• Time resolution limit

- Detector conversion statistics ($\sim E_T^{-1/2}$)
- Noise contribution ($\sim E_T^{-1}$) => constraint on SNR and rise time
- Conversion on 10 bits and noise < 0.5mV rms

A separate time ASIC permits using it for other detectors or experiments ...

Time channel requirements

- Noise contribution to time resolution
 - Becomes dominant at low amplitude
 - Requires to be minimized (rise time / SNR)

https://indico.cern.ch/event/1392958/contributions/5864189/attachments/2819894/49 24126/24-03-14 Martinazzoli ElectronicsFollowup.pptx.pdf

Waveform TDC

Principle of Waveform TDC: adding an analog memory in parallel with the delay line of a TDC

Interpolation of Waveform samples gives the ps resolution

Wilkinson ADC: massively parallel conversion But conversion time limits instantaneous rate

- Reference : SAMPIC digitizer based on circular analog memory
- After sampling is completed, A/D conversion time (~ 1 μ s) induces dead time
- => Limits count rate to ~1 Mevts/s at best
- Need for a specific architecture to sustain higher count rates

How does SPIDER work ...

Instead of being a circular memory, SPIDER finely records the signal during a programmable time slice after each beam crossing

- It takes benefit of the given Time Of Flight between the vertex and each detector cell
- Strong decrease of the number of samples wrt circular memory
- Idea of the "samples of interest"
- Adjustable phases wrt LHC clock:
 - sampling window
 - Trigger enable window

SPIDER specifications

Functional specifications – version "1" (reference with 8 channels)

- Analog sampling of 8 input signals in configurable time window w.r.t. LHC clock
 - Adjustable phase, by steps of 200ps
 - Analog bandwidth compatible with minimal rise time ~250ps => BW >> 1 GHz
 - Sampling period adjustable around : 50ps, 100ps, 200ps, 400ps, 600ps
 - Sampling region of 32 samples
 - Duration: 1.6ns to 19.2ns
 - Individual channel adjustment
- Self-triggered digitization on 10 bits, voltage range 0-800mV
 - Compatible with time resolution <15ps over 160mV-800mV range
- Noise < 0.5mV rms
- Readout can be restricted to a few samples (typ. 8)
 - Built-in "peak finder" locates the analog cell with max value
 - Cells to be read are relative to the peak (smart read)
- On-chip calibration generators

SPIDER main principles

SPIDER : "Swift Pipeline Digitizer"

- SPIDER is a sampler/digitizer working as Waveform TDC optimised for synchronous signals in high rate conditions
 - Signals have predictable phase *w.r.t* to clock
 - Count rate capability limited by A/D conversion and readout phases => both must be optimized

Main elements:

- **1.** Reduce conversion dead time to increase instantaneous count rate: **8-bank memory**
 - Possible to write new events in next banks during conversion of previous banks
 - Pipelined operation (write, convert, read)

2. Limit the **total number** of memory cells (physical constraint) : sampling restricted to the region of interest => **32 cells**

3. Average count rate still limited by sequential readout time => only read 8 samples (full rising edge) for dCFD algorithm in FPGA

Simultaneous operation

- Write 1 bank
- Convert n banks
- Read 1 bank

digital

SPIDER architecture

Architecture specifications – version 1 (8 channels)

SPIDER first prototype

Architecture specifications – version 0 (2 channels)

- TSMC 65nm, VDD 1.2V
- 2 self-triggering channels
- Clock distribution & DLLs
- Memory cell
 - Sample & hold, Wilkinson ADC
 - Noise < 0.5 mV
- Multi-bank system
 - Derandomization buffer
 - 8 banks of 32 cells, sequencing logic
- ADC 10-bit Wilkinson @5 GHz
 - Fast counter to limit conversion time (max 200 ns for 10 bits i-e 8 LHC periods, for 800 mV signals)
- PLL and DAC + buffer for calibrations
- parallel readout interface
 - Simplified logic
 - FPGA-driven ("pull" mode)

Specifications are complete for v0 and v1 at system level

Some features could be added to next versions (slide 14)

SPIDER collaboration

- "Projet R&T" @IN2P3 2021-2023 to be extended to 2029 (RS: P. Robbe & RT: C. Beigbeder)
- Co-coordinators for SPIDER ASIC design : B. Joly & P. Vallerand
- Organisation in 7 WPs
- Project submitted in 2021 for 3 years
- Regular meetings
- Prototype 0 to be submitted in November 2024 for ~50 k€, tests in 2025

- C. Beigbeder
- D. Breton
- R. De Neeff
- J. Maalmi
- P. Robbe
- C. Sylvia
- P. Vallerand

- N. Arveuf
 - G. Blanchard _
- B. Joly
- F. Jouve
- S. Manen
- V. Tisserand
- R. Vandaële

- L. Alvado E. Béchetoille
- L. Leterrier H. Mathez

Development status

- Prototype v0 in layout and verification phases
- Manpower:
 - Design ~6 FTE
 - Test (hardware + firmware + software + analysis) ~4 FTE from 2025
- Design status
 - Design
 - Analog part : 90%
 - Digital part : 90%
 - System simulations (mixed and transistor-level) : 60%
 - Layout
 - Manual : 50%
 - Digital flow : 90%
- Test benches
 - 2 test benches foreseen for 2025, design started @ IJCLab and LPCA

Design & verification methodology

- Complex design => high risk of critical fault
- Analog on top methodology chosen for v0 (top cell is schematic as well as a large part of the design)
- Thorough verification strategy required at cell level and system level with simplifications
- Test bench (TB) per design cell
 - schematic or digital
 - Post-layout
- Digital TBs per subsystem (slow control, readout...)
- Mixed TBs for sampling subsystem
 - Sampling cell, bank, full array of 8 banks => schematic or post-layout
 - Behavioral models for environment (DLL, Wilkinson counter...)
- Full system verification
 - UVM (Universal Verification Methodology), digital-oriented, in SystemVerilog, with "Real Number Models" (discrete time, continuous values) for analog parts
 - schematic, mixed TB for "channel" (achieved) and for top view (next step) with behavioral models for some cells (Verilog-A, Verilog-AMS) or functional models (Verilog, SystemVerilog)

simulation	Device under test		
	hierarchy	top view	sub-cells
analog	cell	schematic, post-layout	
digital	cell	verilog, SystemVerilog	
analog / mixed	subsystem	schematic, post-layout	
digital	subsystem	verilog, SystemVerilog	
analog/mixed	channel / top cell	schematic	schematic, Verilog-A(MS), Verilog, SystemVerilog
digital	top cell	SystemVerilog	Verilog, SystemVerilog

Channel test bench

- **Behavioral** models designed for some blocks (internal and environment)
- Check multi-bank operation (write, convert, read)
- Schematic-level verification of sampling array
- Signal amplitude and time with random distributions.
- Checker cell for automatic comparison of expected data vs. digital output => match
- Validates the functionality of sampling, conversion, readout in full mode and "smart read" mode (8 samples) with peak finder

Ð

Layout design & post-layout simulation

- 1 channel => 32*8 = 256 sampling cells
- Length 2.8 mm
- Channel layout designed in bottom-up order, many hierarchical levels
- Post-layout simulations required (signal integrity, timing, couplings)
 - Ex : Gray counter bus (10 bits) => skew between bits must be << 200 ps
- Ongoing : optimizations to reduce power consumption, current transients on VDD

Development schedule

Basis: ~1 engineering run per year 2024-2029

- 2 x 2-channel and 3 x 8-channel prototypes
- SPIDER V0 (2 channels prototype), design 2023-24, test 2025
- V1 if required (2 channels prototype with corrections) design 2025, test 2026
- V2 (8 channels + radiation tolerance),
- V3 (8 channels + radiation tolerance + optimisations),
- V4 (+ target « yield »),
- 2028: V4 validation ; preproduction design,
- 2029: preproduction characterisation,
- 2030: SPIDER production (30k channels), Front-end card production
- 2031-2032: Card production and test
- 2033: installation
- 2034: commissioning

Path for future developments

- Increasing the counting rate
 - Reducing conversion time (or go to 16 banks)
 - Reducing frame size (64 bits per event @ 40 MHz => 2,56 Gb/s per channel)
 - On-chip dCFD => on-chip INL calibration
 - Data compression
 - ...
- Evaluating differential input: potential gain (x2) on input voltage range but less on SNR => design of a differential memory cell
- Using the 32 samples for simultaneous time and energy estimation => ultimate resolution to be evaluated
- SPIDER will be usable with any kind of fast detector on a 40 MHz collider.
 - We target the best possible time resolution
 - The latter will directly depend on the signal rise time

Thank you for your attention

Backup slides

Digital CFD vs fixed threshold + TDC

Time jitter vs signal amplitude for large dynamics (100)

- **Example** : rise time (10-90%) = 1 ns ; σ_{noise} = 0.5 mV RMS
- Voltage range : 10 mV to 1 V
- **dCFD**: σ_{time} < 15 ps over large dynamic range
 - Quantization error on low signals
- Even with ideal time walk correction, leading edge discriminator is affected on large signals by non-optimal threshold (constrained by smallest signals)

Peak finder

Recent improvements: peak finder

- Input signals from collisions have a fluctuating phase wrt LHC clock due to TOF
- Problem: need for limiting to 8 samples to reduce data throughput
- => need to optimally cover the rising edge for dCFD
- The "peak finder" determines the address of peak sample
 - Reference for the 8 useful samples address

Dealing with saturation (1)

Recent improvements: saturated cells

- Digital CFD not directly valid for saturated signals
 - Timing threshold becomes constant
- Energy can be used to correct for time walk of saturating signals
- Nb of saturated cells can be used to correct for time error
- Logics implemented to extract saturated cell addresses (min-max)

Dealing with saturation (2)

Recent improvements: saturated cells

Walk error reduced to ~20 ps after compensation (2nd order polynom based on nb of saturating cells) Walk error ~500 ps for true amplitude 0.8V to 1.6 V

