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• Yes, I also tried the newer versions
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• ΛCDM is good

   Λ  : cosmological constant
CDM: cold dark matter

ΛCDM extensions

[insert standard cosmological image here]
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• ΛCDM is good… but not the entire story

• Beyond-ΛCDM models add extra parameters
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• ΛCDM is good… but not the entire story

• Beyond-ΛCDM models add extra parameters

• Find common parameterisation of all these models?

ΛCDM extensions
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Representation learning

Power spectrum boost =
Power spectrum in extended model

Power spectrum in ΛCDM model
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Representation learning

Power spectrum boost =
Power spectrum in extended model

Power spectrum in ΛCDM model

Piras & Lombriser, arXiv 2310.10717 
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An application to dark energy
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Results are pretty similar with one and two latents

Vertical axis: error in the prediction of the power spectra (lower is better)
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• Measures dependence between random variables 
(more general than Pearson, which measures correlation)

• Well-established in information theory

• Hard to estimate!

What is mutual information?
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• No available estimator returns uncertainty on MI

Estimating mutual information (MI)
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• No available estimator returns uncertainty on MI

• Solution: density estimate with Gaussian mixture model

Estimating mutual information (MI)
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Piras et al. (including Hiranya Peiris, Andrew Pontzen, Luisa Lucie-Smith, Lillian Guo, Brian Nord), MLST

GMM-MI validation
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• Calculate MI between latent variables (are they disentangled?)

• Calculate MI between a latent variable and model parameters

How we use mutual information (MI)

Latent A Latent B

Latent A w0 , wa
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Mutual information in latent space

Latent variable has significant MI with w0 and wa

latent 

variable
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Latent variable has significant MI with w0 and wa

Little changes with two latent variables

Mutual information in latent space
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Latent variable has significant MI with w0 and wa

Little changes with two latent variables

Third latent variable is unused

Mutual information in latent space
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• Mutual information

• Symbolic regression

How to analyse the latent space?
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What is symbolic regression?
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• Link latent variable with w0 and wa

• Less accurate, but more interpretable (?)

Symbolic regression in latent space
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• Link latent variable with w0 and wa

• Less accurate, but more interpretable (?)

• Analogous to S8 = σ8(Ωm/0.3)0.5
 …?

Symbolic regression in latent space
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DAVIDE PIRAS
davide.piras@unige.ch

Nested sampling
CAMB 
48 cores, ~4 months 
Hamiltonian Monte 
Carlo
CosmoPower-JAX
3 GPUs, ~1 day

ALESSIO 
SPURIO MANCINI

Cosmological parameters

Intrinsic alignment

Redshift shift

Multiplication bias

LIKELIHOOD CALL TOO SLOW?  •  TOO MANY PARAMETERS TO SAMPLE?  •  RUNNING OUT OF EXCUSES WITH  YOUR SUPERVISOR?

“Speedy Inference For You!”WATCH 
MORE!

>1000x SPEED-UP WITH NEURAL EMULATORS  •  SCALES TO >100 PARAMETERS 
CODE  
HERE!





• Only need one variable to describe w0waCDM nonlinear matter power spectra

• Can use mutual information and symbolic regression to interpret latent space

•Will apply our framework to multiple extensions and different summaries

Conclusions
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Symbolic regression results



• Measures dependence between random variables 
(more general than Pearson, which measures correlation)

• Well-established in information theory

• Defined by :

What is mutual information?

if and only if      and     are independent



Results

YONOV: You Only Need One Variable

One latent variable Two latent variables
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• Cross-validation and multiple initialisations to optimise fit

• Works with continuous and discrete variables

• GMM-MI returns uncertainty on MI through bootstrapping

GMM-MI: a robust estimator of mutual information
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• GMM-MI is 
unbiased

• GMM-MI 
respects MI 
invariance

• GMM-MI 
errors 
scale as 
expected

Piras et al., MLST

GMM-MI validation
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• Finds analytic equation linking variables

• Less accurate, but more interpretable (?)

• Many implementations available

What is symbolic regression?


