Less is enough: extending ACDM with representation learning

Davide Piras (and many others)

• Title was not convincing

Less is enough:

extending ACDM with representation learning

• Title was not convincing

Less is enough:

extending ACDM with representation learning

arXiv:2303.17059

Astrophysics > Instrumentation and Methods for Astrophysics

[Submitted on 29 Mar 2023]

As a matter of colon: I am NOT digging cheeky titles (no, but actually yes :>)

Joanne Tan, Tie Sien Suk

• Title was not convincing

extending ACDM with representation learning

Léss'is enough:

Title was not convincing

extending ACDM with representation learning

• So I did what any AI researcher would do...

• Title was not convincing

extending ACDM with representation learning

• So I did what any AI researcher would do...

• ... I asked ChatGPT

extending cosmological models with representation learning

• Yes, I also tried the newer versions

• Yes, I also tried the newer versions

• Gave me the same answer...

• Yes, I also tried the newer versions

• Gave me the same answer...

• ... just faster

Less is enough: extending ACDM with representation learning

Less is enough: extending ACDM with representation learning

ACDM is good

ACDM is good

Λ : cosmological constant CDM: cold dark matter

[insert standard cosmological image here]

• ACDM is good... but not the entire story

• ACDM is good... but not the entire story

\circ Tensions (H₀, S₈)

• ACDM is good... but not the entire story

Tensions (H₀, S₈) What is dark matter?

• ACDM is good... but not the entire story

Tensions (H₀, S₈)
What is dark matter?
And dark energy?

• ACDM is good... but not the entire story

Tensions (H₀, S₈)
What is dark matter?
And dark energy?

0 ...

• ACDM is good... but not the entire story

• Beyond-ACDM models add extra parameters

• ACDM is good... but not the entire story

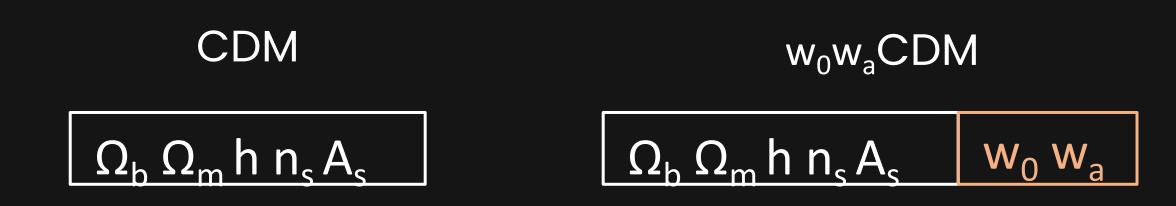
• Beyond-ACDM models add extra parameters

CDM

$$\Omega_b \Omega_m h n_s A_s$$

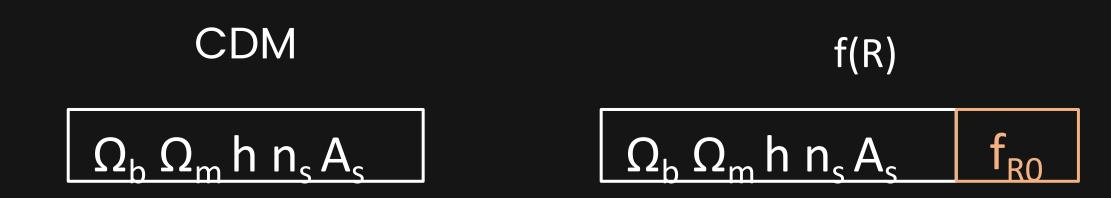
• ACDM is good... but not the entire story

• Beyond-ACDM models add extra parameters



• ACDM is good... but not the entire story

• Beyond-ACDM models add extra parameters



• ACDM is good... but not the entire story

• Beyond-ACDM models add extra parameters

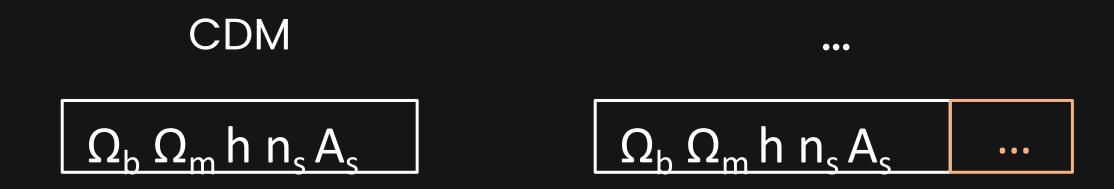
CDM Dvali-Gabadadze-Porrati

$$\Omega_b \Omega_m h n_s A_s$$

$$\Omega_b \Omega_m h n_s A_s \qquad \Omega_{rc}$$

• ACDM is good... but not the entire story

• Beyond-ACDM models add extra parameters



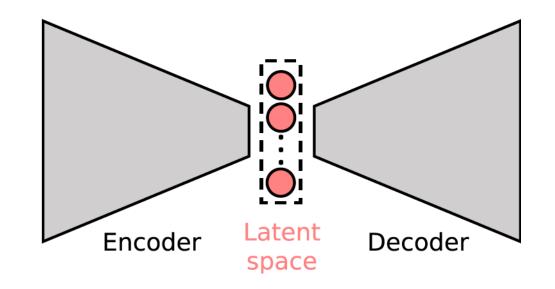
• ACDM is good... but not the entire story

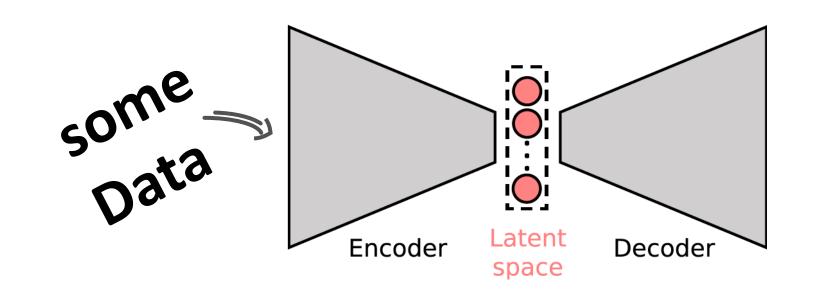
• Beyond-ACDM models add extra parameters

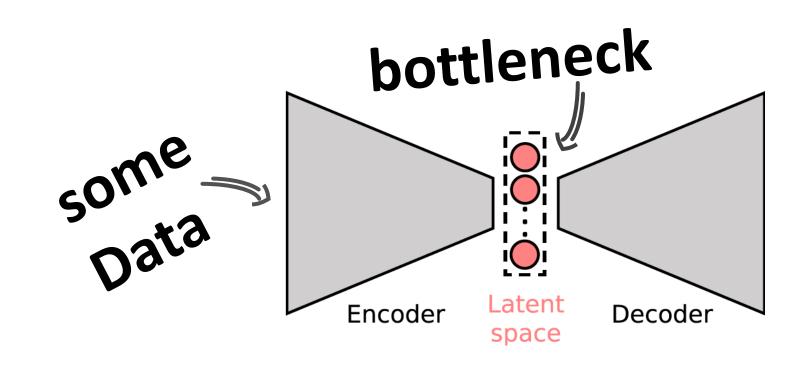
• Find common parameterisation of all these models?

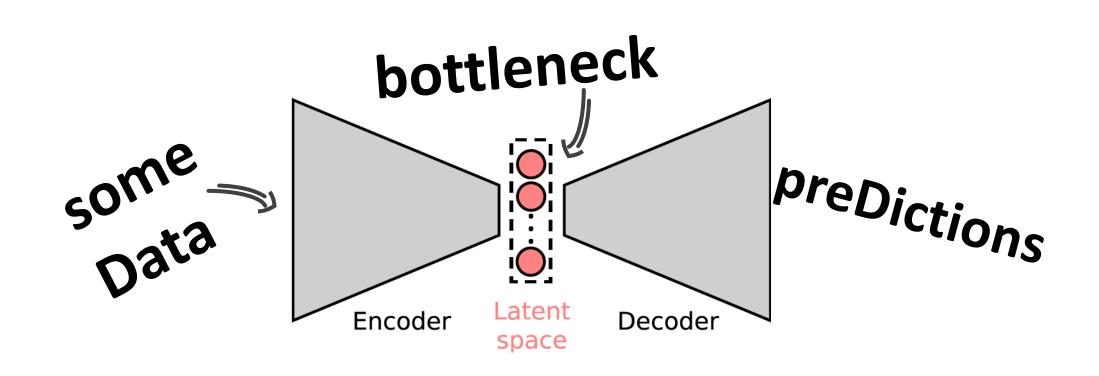
Less is enough: extending ACDM with representation learning

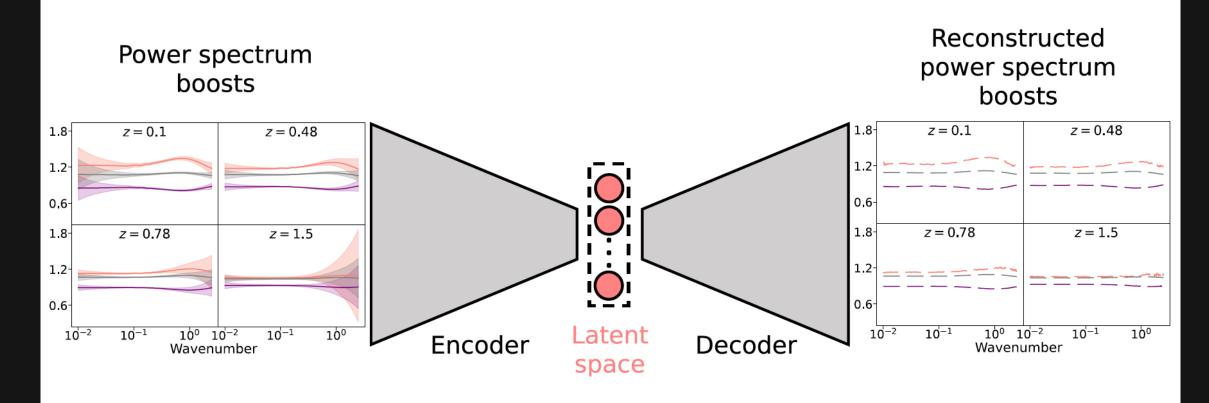
Less is enough: extending ACDM with representation learning









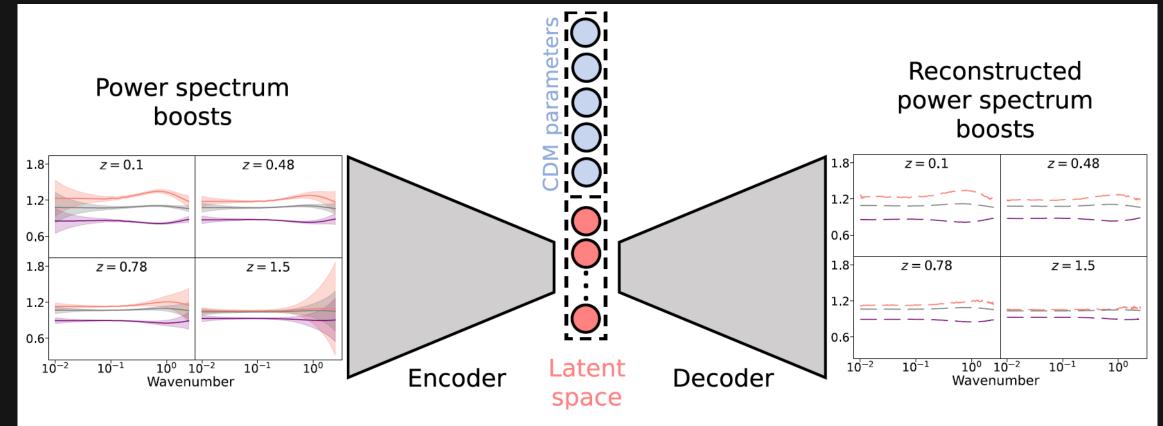


Power spectrum in extended model

Power spectrum boost =

Power spectrum in ACDM model

Piras & Lombriser, arXiv 2310.10717



Power spectrum in extended model

Power spectrum boost =

Power spectrum in ACDM model

Less is enough: extending ACDM with representation learning

Less is enough: extending ACDM with representation learning

• Apply our framework to single extension: w₀w_aCDM

• Apply our framework to single extension: w_ow_aCDM

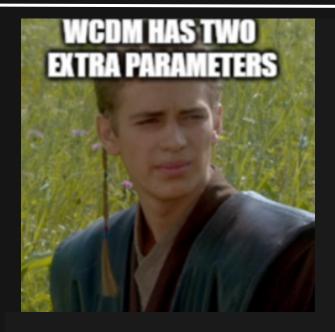
• Two extra parameters: W_0 and W_a

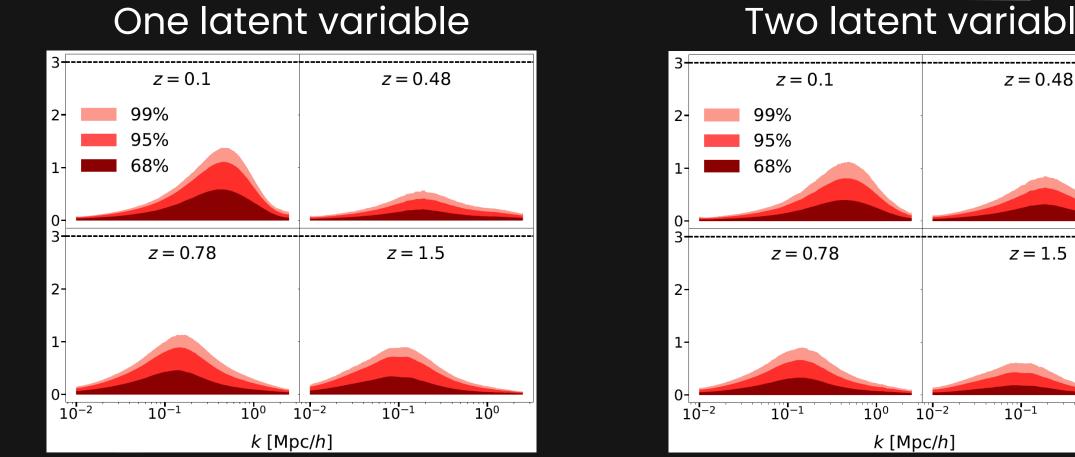
$$w(a) = w_0 + (1 - a)w_a$$

• Apply our framework to single extension: wCDM

• Two extra parameters: W_0 and W_a

• Expect two latent variables are needed...?

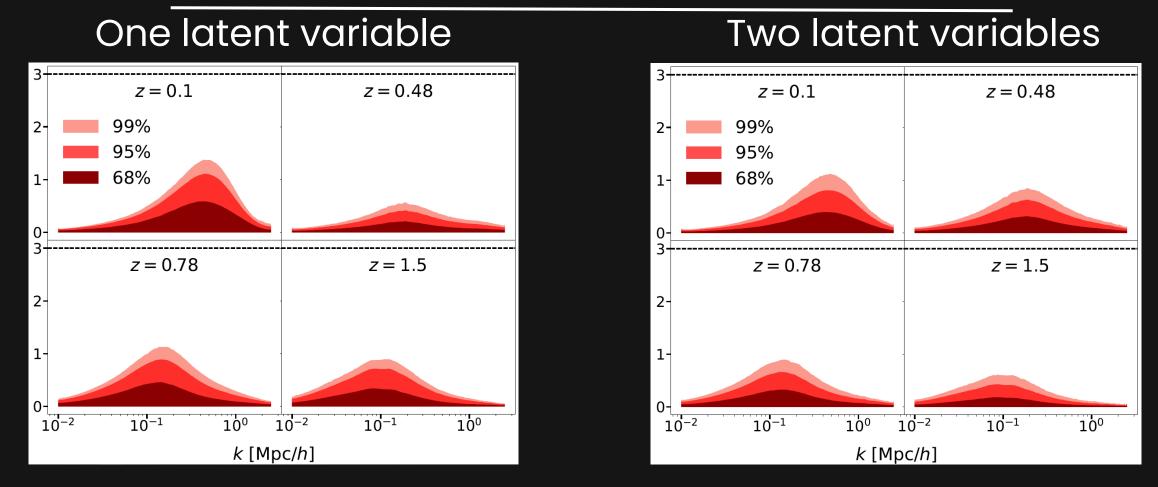




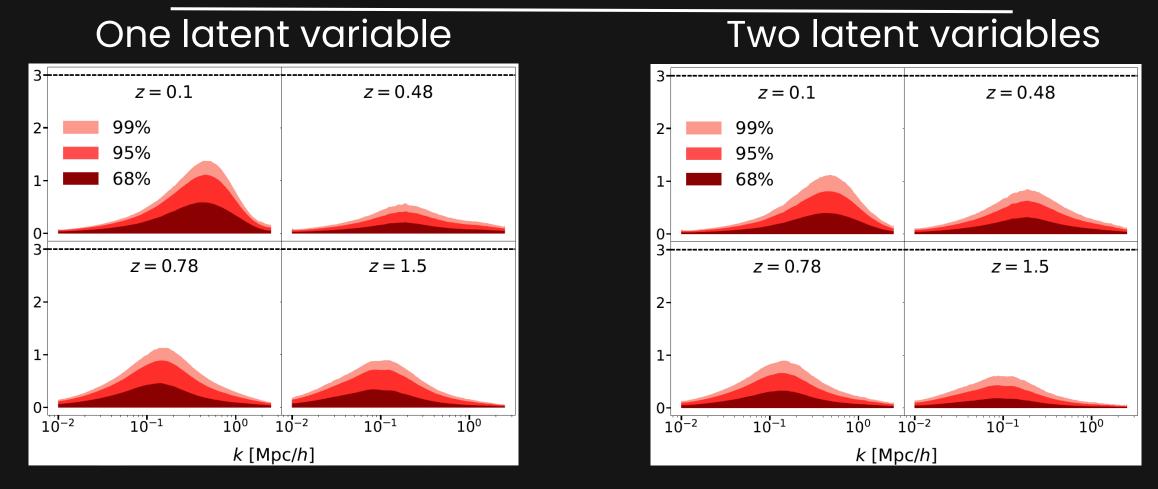
Two latent variables

z = 1.5

10⁰

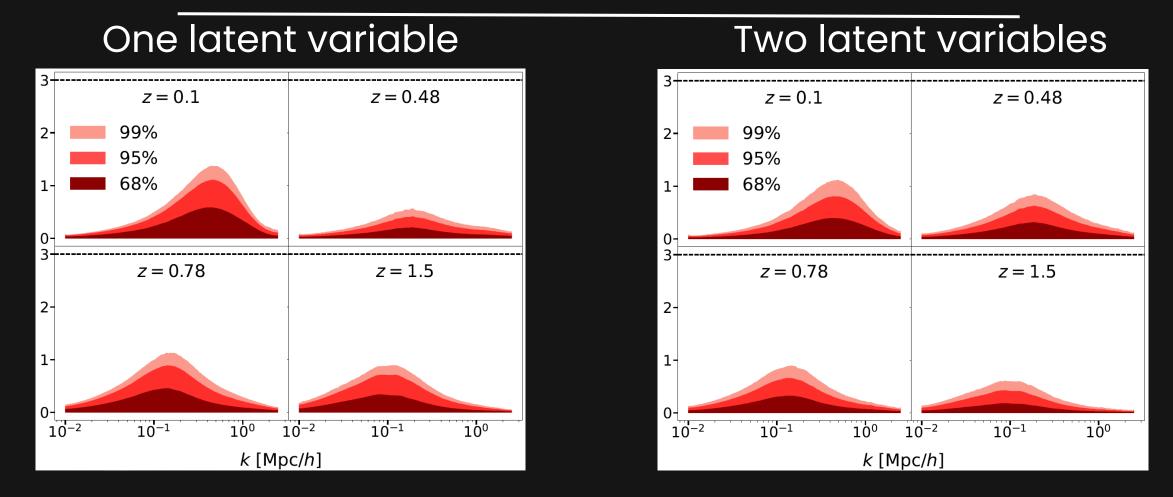


Results are pretty similar with one and two latents



Results are pretty similar with one and two latents

Vertical axis: error in the prediction of the power spectra (lower is better)



One variable is enough for w₀w_aCDM!

How to analyse the latent space?

How to analyse the latent space?

• Mutual information

What is mutual information?

 Measures dependence between random variables (more general than Pearson, which measures correlation)

What is mutual information?

 Measures dependence between random variables (more general than Pearson, which measures correlation)

• Well-established in information theory

What is mutual information?

 Measures dependence between random variables (more general than Pearson, which measures correlation)

• Well-established in information theory

• Hard to estimate!

Estimating mutual information (MI)

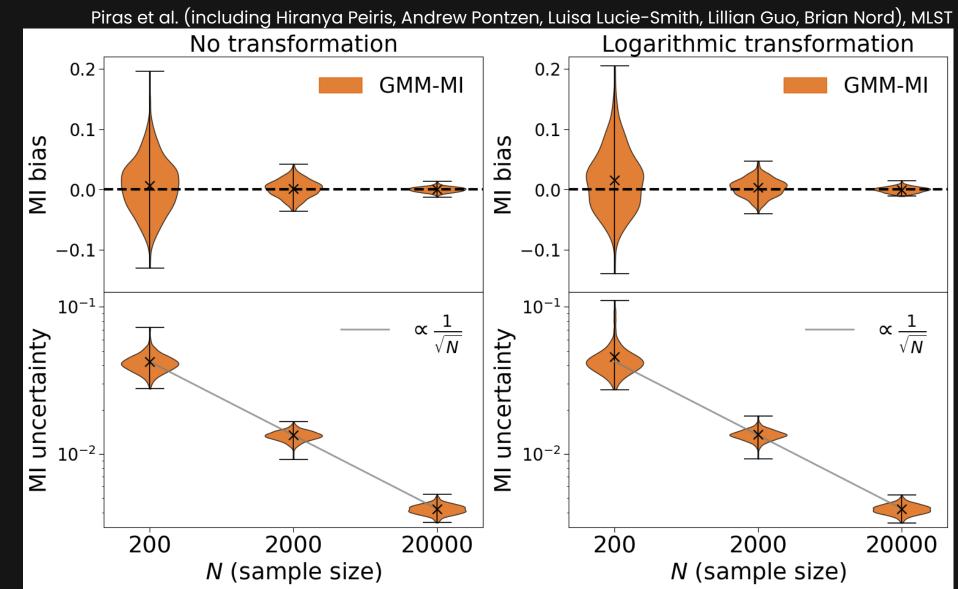
• No available estimator returns uncertainty on MI

Estimating mutual information (MI)

• No available estimator returns uncertainty on MI

• Solution: density estimate with Gaussian mixture model

GMM-MI validation



How we use mutual information (MI)

• Calculate MI between latent variables (are they disentangled?)

How we use mutual information (MI)

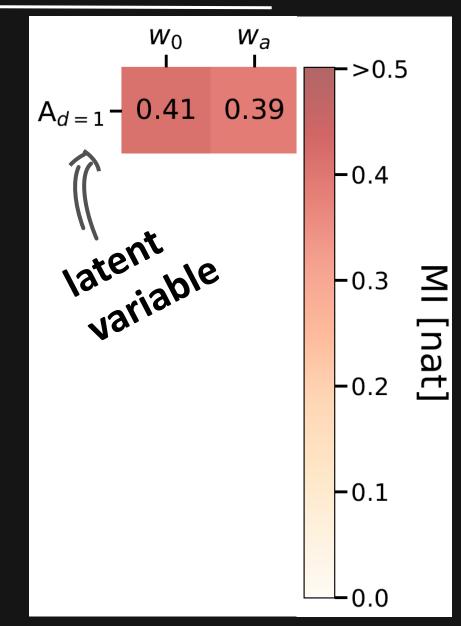
• Calculate MI between latent variables (are they disentangled?)

• Calculate MI between a latent variable and model parameters

Latent A
$$(\longrightarrow) W_0, W_a$$

Mutual information in latent space

Latent variable has significant MI with W_0 and W_a

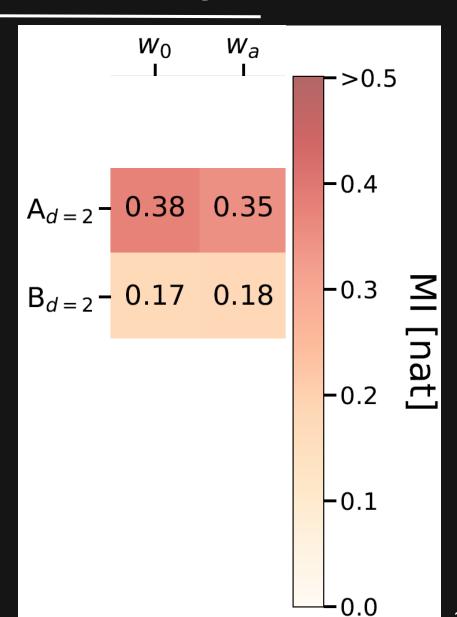


15

Mutual information in latent space

Latent variable has significant MI with W_0 and W_a

Little changes with two latent variables

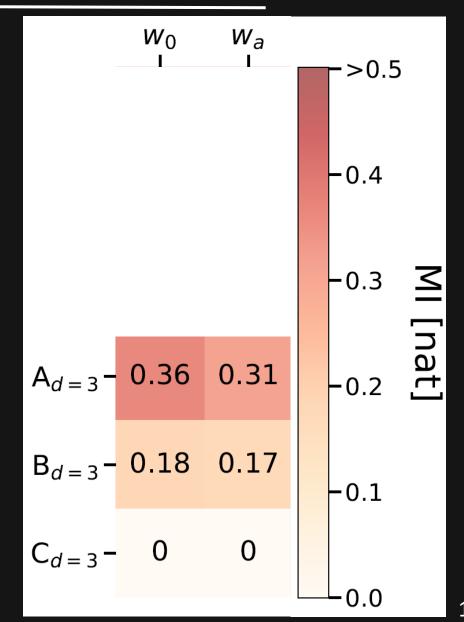


Mutual information in latent space

Latent variable has significant MI with W_0 and W_a

Little changes with two latent variables

Third latent variable is unused



How to analyse the latent space?

Mutual information

• Symbolic regression

What is symbolic regression?

In a nutshell: find analytic equation between variables

Symbolic regression in latent space

Link latent variable with W₀ and W_a

Symbolic regression in latent space

Link latent variable with W₀ and W_a

$$A_{d=1}(w_0, w_a) = w_0^2 + \frac{e^{w_a + \cos(w_0)}}{w_0}$$

Symbolic regression in latent space

Link latent variable with W₀ and W_a

$$A_{d=1}(w_0, w_a) = w_0^2 + \frac{e^{w_a + \cos(w_0)}}{w_0}$$

• Analogous to $S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5} ...?$

• Only need one variable to describe w₀w_aCDM nonlinear matter power spectra

• Only need one variable to describe w₀w_aCDM nonlinear matter power spectra

• Can use mutual information and symbolic regression to interpret latent space

• Only need one variable to describe wowaCDM nonlinear matter power spectra

• Can use mutual information and symbolic regression to interpret latent space

• Will apply our framework to multiple extensions and different summaries

LIKELIHOOD CALL TOO SLOW? • TOO MANY PARAMETERS TO SAMPLE? • RUNNING OUT OF EXCUSES WITH YOUR SUPERVISOR?

"Speedy Inference For You!"

>1000x SPEED-UP WITH NEURAL EMULATORS • SCALES TO >100 PARAMETERS

THE FUTURE OF COSMOLOGICAL LIKELIHOOD-BASED INFERENCE: ACCELERATED HIGH-DIMENSIONAL PARAMETER ESTIMATION AND MODEL COMPARISON

DAVIDE PIRAS^{*†1,2}, ALICJA POLANSKA^{†3}, ALESSIO SPURIO MANCINI^{4,3}, MATTHEW A. PRICE³, JASON D. MCEWEN^{3,5}

• Only need one variable to describe w₀w_aCDM nonlinear matter power spectra

• Can use mutual information and symbolic regression to interpret latent space

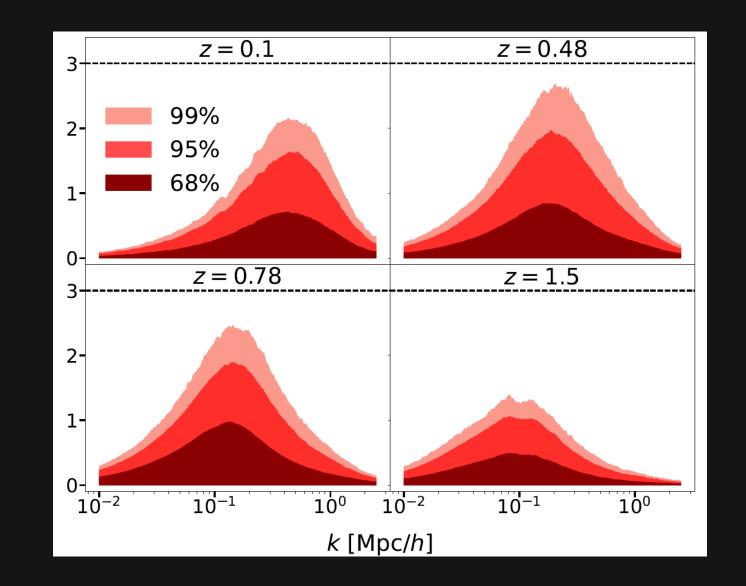
• Will apply our framework to multiple extensions and different summaries

Extra slides (and memes)

Results



Symbolic regression results



What is mutual information?

 Measures dependence between random variables (more general than Pearson, which measures correlation)

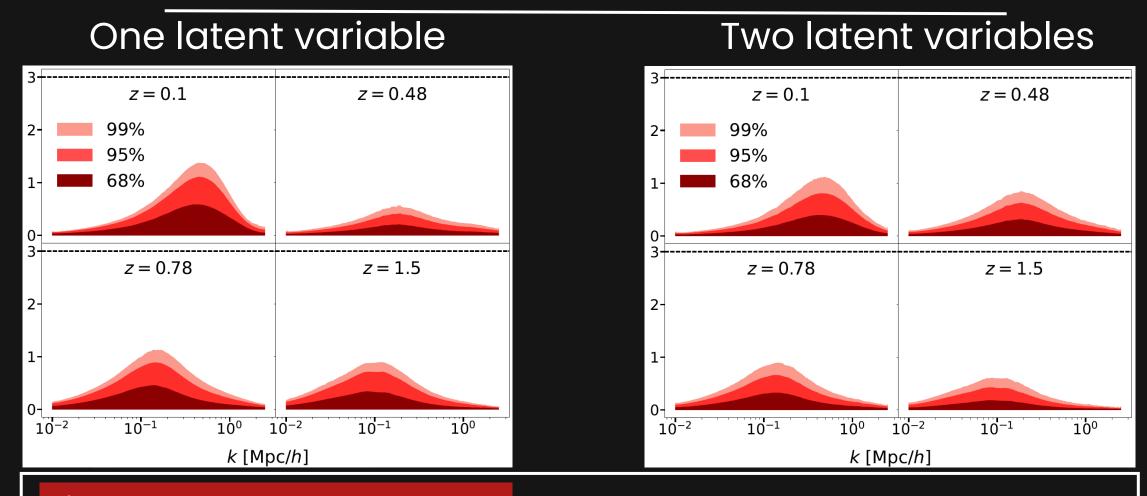
• Well-established in information theory

• Defined by :

$$MI(X,Y) = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy$$

 \rightarrow MI(X, Y) = 0 if and only if X and Y are independent

Results



arXiv > cs > arXiv:1506.02640

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 8 Jun 2015 (v1), last revised 9 May 2016 (this version, v5)]

You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi

YONOV: You Only Need One Variable

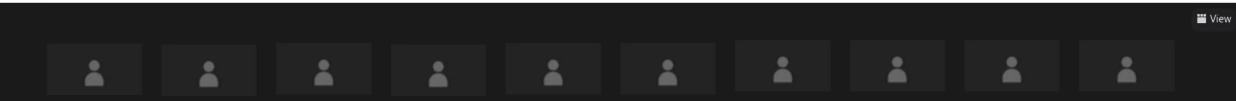
An application to dark energy

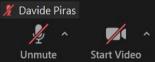
• Expect two latent variables are needed...?

An application to dark energy

• Expect two latent variables are needed...?

0





•

Security

******1 ^

Participants

ılı

Polls

Chat

1

Share Screen

CC

 \bigcirc

GMM-MI: a robust estimator of mutual information

• Cross-validation and multiple initialisations to optimise fit

GMM-MI: a robust estimator of mutual information

Cross-validation and multiple initialisations to optimise fit

• Works with continuous and discrete variables

GMM-MI: a robust estimator of mutual information

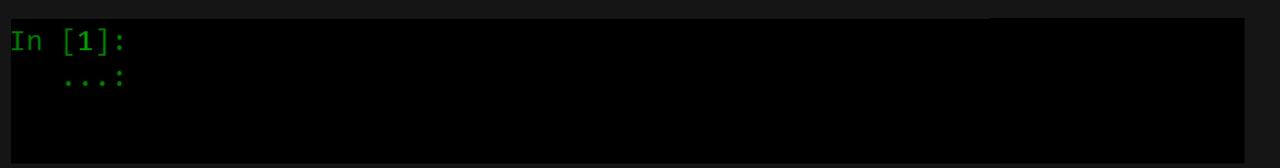
Cross-validation and multiple initialisations to optimise fit

• Works with continuous and discrete variables

• GMM-MI returns **uncertainty** on MI through bootstrapping

(gmm_mi) davide@crash:~\$

(gmm_mi) davide@crash:~\$ pip install gmm-mi



(gmm_mi) davide@crash:~\$ pip install gmm-mi

```
In [1]: import numpy as np
...: from gmm_mi.mi import EstimateMI
...:
In [2]:
....
....
....
....
....
```

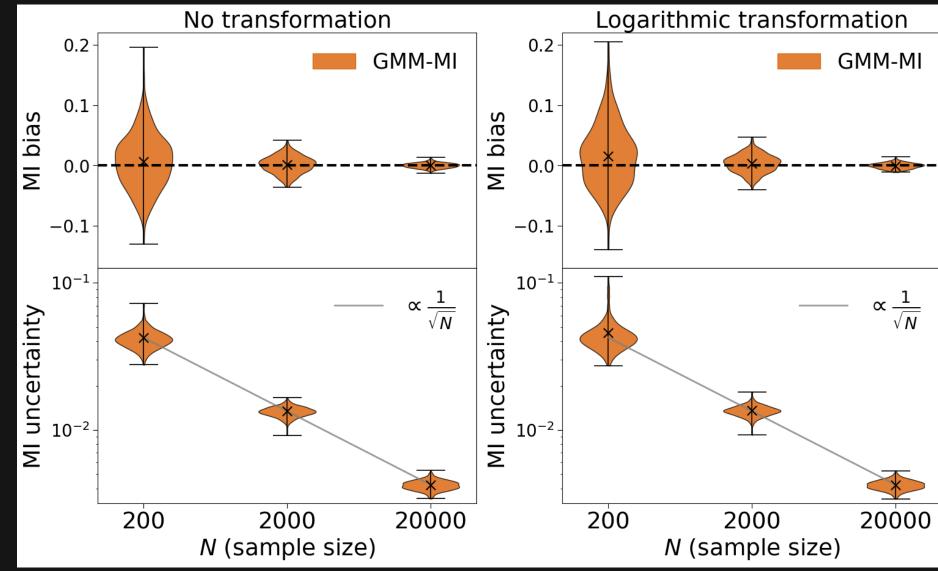
(gmm_mi) davide@crash:~\$ pip install gmm-mi

```
In [1]: import numpy as np
   ...: from gmm_mi.mi import EstimateMI
In [2]: # create bivariate Gaussian data
   ...: mean = np.array([0, 0])
   ...: cov = np.array([[1, 0.6], [0.6, 1]])
   ...: rng = np.random.default_rng(0)
   ...: X = rng.multivariate normal(mean, cov, 200)
In [3]:
```

GMM-MI validation

Piras et al., MLST

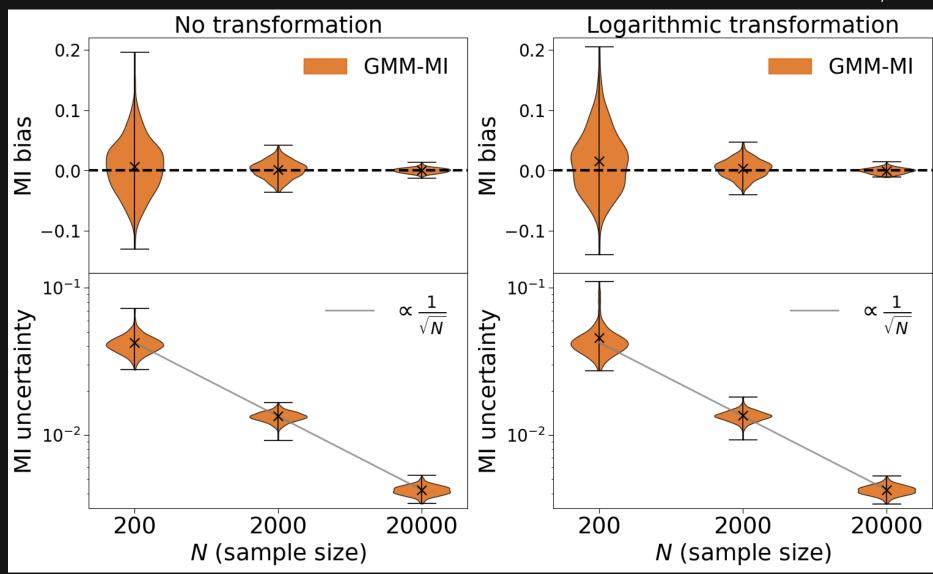
 GMM-MI is unbiased



GMM-MI validation

Piras et al., MLST

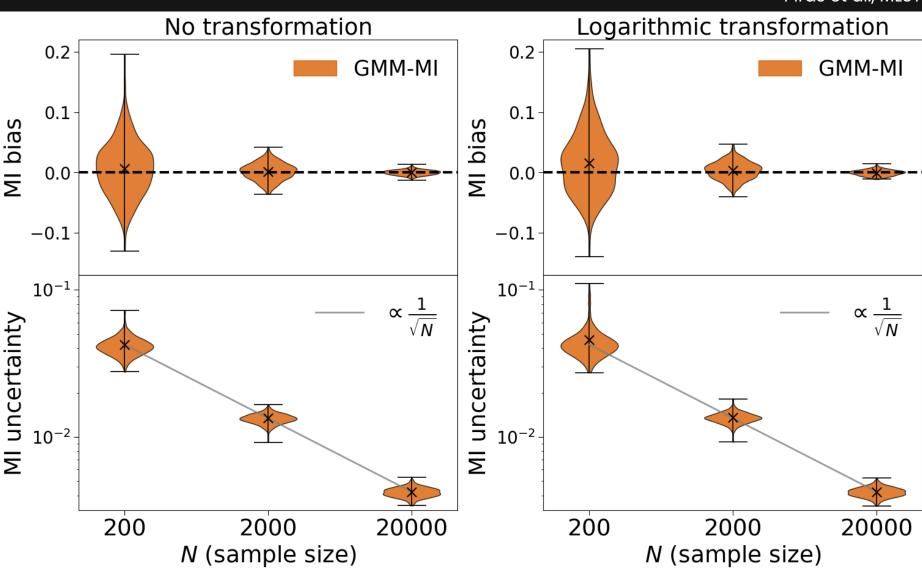
- GMM-MI is unbiased
- GMM-MI respects MI invariance



GMM-MI validation

Piras et al., MLST

- GMM-MI is unbiased
- GMM-MI respects MI invariance
- GMM-MI errors scale as expected



What is symbolic regression?

• Finds analytic equation linking variables

What is symbolic regression?

Finds analytic equation linking variables

• Less accurate, but more interpretable (?)

What is symbolic regression?

• Finds analytic equation linking variables

• Less accurate, but more interpretable (?)

• Many implementations available