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But first... let me apologise

 Yes, | also tried the newer versions

« Gave me the same answer... |

« .. Just faster
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ACDM extensions

ACDM is good



ACDM extensions

ACDM is good

A : cosmologicadl constant
CDM: cold dark matter

linsert standard cosmological image here]
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ACDM extensions

ACDM is good... but not the entire story

o What is dark matter?



ACDM extensions

ACDM is good... but not the entire story

o And dark energy?
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ACDM is good... but not the entire story
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ACDM extensions

Beyond-ACDM models add extra parameters

CDM

Q, Q. hnA,

f(R)

Q, Q. hnA,




ACDM extensions

Beyond-ACDM models add extra parameters

CDM Dvali-Gabadadze-Porrati

Q. Q hnA. Q. Q _hn.A. Q




ACDM extensions

Beyond-ACDM models add extra parameters

CDM

0, Q. hnA. 0, Q. hnA.




ACDM extensions

Find common parameterisation of all these models?
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Representation learning

Reconstructed

Power spectrum power spectrum

boosts

10! 10° 1072

y—1 A0 y—2 —1
Wavenumber Encoder Wavenumber

Power spectrum in extended model
Power spectrum boost =

Power spectrum in ACDM model



Representation learning

Piras & Lombriser, arXiv 2310.10717

Reconstructed

Power spectrum power spectrum

boosts

10! 10° 1072

y—1 A0 y—2 —1
Wavenumber Encoder Wavenumber

Power spectrum in extended model

Power spectrum boost =

Power spectrum in ACDM model
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An application to dark energy

« Apply our framework to single extension: wyw,CDM



An application to dark energy

« Two extra parameters: Woand W,



An application to dark energy

« Expect two latent variables are needed...?
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An application to dark energy

CDM HAS TWO
EXTRA PARAMETERS
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One latent variable Two latent variables

k [Mpc/h]



Results

One latent variable Two latent variables

k [Mpc/h]

Results are pretty similar with one and two latents



Results

One latent variable Two latent variables

k [Mpc/h]

Vertical axis: error in the prediction of the power spectra (lower is better)



Results

One latent variable Two latent variables

k [Mpc/h]

One variable
Is enough for wyw,CDM!



How to analyse the latent space?
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How to analyse the latent space?

Mutual information

10



What is mutual information?

Measures dependence between random variables
(more general than Pearson, which measures correlation)
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What is mutual information?

Well-established in information theory
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What is mutual information?

Hard to estimate!
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Estimating mutual information (M)

No available estimator returns uncertainty on Ml
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Estimating mutual information (M)

Solution: density estimate with Gaussian mixture model

“limmie”
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GMM-MI validation

Piras et al. (including Hiranya Peiris, Andrew Pontzen, Luisa Lucie-Smith, Lillian Guo, Brian Nord), MLST
No transformation Logarithmic transformation
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How we use mutual information (M)

Calculate Ml between latent variables (are they disentangled?)

Latent A = Latent B

14



How we use mutual information (M)

Calculate Ml between latent variables (are they disentangled?)

Latent A ) Latent B

Calculate MI between a latent variable and model parameters

Latent A TS Wy W

14



Mutual information in latent space

Wo Wa
| |

Latent variable has significant Ml with Wy and w,  [atEste CE e s




Mutual information in latent space

Aj->-0.38 0.35

‘ ° : By-,- 0.17 0.18
Little changes with two latent variables .




Mutual information in latent space

Ay_s- 0.36 0.31

B,_3- 0.18 0.17

Third latent variable is unused
Cy_3- O 0




How to analyse the latent space?

Symbolic regression

16



What is symbolic regression?

N Bl 1 ‘

In a nutshell: find analytic equation between variables

17



Symbolic regression in latent space

Link latent variable with Wy and w,
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Symbolic regression in latent space
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Symbolic regression in latent space

62u)(,J—I—cz()S(u)())

Adzl(wg, wa) — w% -+

Wy

Analogous to Sg= 04(Q,,/0.3)%>..7
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Conclusions

* Only need one variable to describe wyw,CDM nonlinear matter power spectra
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Conclusions

- Can use mutual information and symbolic regression to interpret latent space
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Conclusions

 Will apply our framework to multiple extensions and different summaries
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Conclusions

* Only need one variable to describe wyw,CDM nonlinear matter power spectra

- Can use mutual information and symbolic regression to interpret latent space

 Will apply our framework to multiple extensions and different summaries



Extra slides
(and memes)



Results

One latent variable Two latent variables
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Symbolic regression results




What is mutual information?

p(z,y)
| p(x)p(y)
|—>MI(X, Y) = 0if and only if X and Y are independent

Defined by : MI(X,Y) = /p(az,y) log dzdy




Results

One latent variable Two latent variables

k [Mpc/h]
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[Submitted on 8 Jun 2015 (v1), last revised 9 May 2016 (this version, v5)]

You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi




An opplicotion to dark energy

DM HAS TWO

« Expect two latent variables are needed...?



An opplicotion to dark energy

« Expect two latent variables are needed...?
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GMM-MI: a robust estimator of mutual information

« Cross-validation and multiple initialisations to optimise fit




GMM-MI: a robust estimator of mutual information

« Works with continuous and discrete variables




GMM-MI: a robust estimator of mutual information

«  GMM-MI returns uncertainty on Ml through bootstrapping




GMM-MI at work

(gmm _mi) davide@crash:$



GMM-MI at work

(gmm_mi) davide@crash:$ pip install gmm-mi



GMM-MI at work

(gmm_mi) davide@crash:$ pip install gmm-mi

EstimateMI



GMM-MI at work

(gmm_mi) davide@crash:$ pip install gmm-mi

|

EstimateMI

P # create bivariate Gaussian data
mean = np.array([@, 9])
cov = np.array([[1, I, [9.6, 111)
rng = np.random.default rng(o)
X = rng.multivariate _normal(mean, cov,



GMM-MI validation

. Piras et al., MLST
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GMM-MI validation

Piras et al., MLST
No transformation Logarithmic transformation
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What is symbolic regression?

Finds analytic equation linking variables



What is symbolic regression?

Less accurate, but more interpretable (?)



What is symbolic regression?

Many implementations available



