# Less is enough: extending ^CDM with representation learning 

Davide Piras (and many others)



But first... let me apologise

## But first... let me apologise

## - Title was not convincing

## But first... let me apologise

## - Title was not convincing

Less is enough:
extending ^CDM with representation learning
aIXiV > astro-ph > arXiv:2303.17059
Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 29 Mar 2023]
As a matter of colon: I am NOT digging cheeky titles (no, but actually yes :>)

## But first... let me apologise

- Title was not convincing

Less is enough:
extending $\wedge$ CDM with representation learning

## But first... let me apologise

- Title was not convincing
- So I did what any AI researcher would do...


## But first... let me apologise

- So I did what any AI researcher would do...


## But first... let me apologise

- Yes, I also tried the newer versions


## But first... let me apologise

- Yes, I also tried the newer versions
- Gave me the same answer...


## But first... let me apologise

- Yes, I also tried the newer versions
- Gave me the same answer...
- ... just faster



## Less is enough: extending $\wedge$ CDM with representation learning

## Less is enough: <br> extending ^CDM with representation learning

## ^CDM extensions

## $\wedge$ CDM is good

## ^CDM extensions

$\wedge$ CDM is good

## ^: cosmological constant CDM: cold dark matter

[insert standard cosmological image here]

## ^CDM extensions

## - $\quad$ CDM is good... but not the entire story

## $\wedge C D M$ extensions

- $\wedge$ CDM is good... but not the entire story
- Tensions $\left(\mathrm{H}_{0}, \mathrm{~S}_{8}\right)$


## ^CDM extensions

- $\wedge$ CDM is good... but not the entire story
- Tensions $\left(H_{0}, S_{8}\right)$
- What is dark matter?


## ^CDM extensions

- $\quad$ CDM is good... but not the entire story
- Tensions $\left(\mathrm{H}_{0}, \mathrm{~S}_{8}\right)$
- What is dark matter?
- And dark energy?


## ^CDM extensions

## - $\quad$ CDM is good... but not the entire story

```
o Tensions ( }\mp@subsup{H}{0}{},\mp@subsup{S}{8}{}
o What is dark matter?
- And dark energy?
O ...
```


## ^CDM extensions

## $\wedge C D M$ is good... but not the entire story

Beyond-^CDM models add extra parameters

## ^CDM extensions

## $\Lambda C D M$ is good... but not the entire story

Beyond-^CDM models add extra parameters
CDM
$\Omega_{b} \Omega_{m} h n_{s} A_{s}$

## ^CDM extensions

## $\Lambda C D M$ is good... but not the entire story

Beyond-^CDM models add extra parameters

CDM
$\Omega_{b} \Omega_{m} h n_{s} A_{s}$
$\Omega_{b} \Omega_{m} h n_{s} A_{s} \quad W_{0} W_{a}$

## ^CDM extensions

## $\Lambda C D M$ is good... but not the entire story

Beyond-^CDM models add extra parameters

CDM
$\Omega_{b} \Omega_{m} h n_{s} A_{s}$

## ^CDM extensions

## $\Lambda$ CDM is good... but not the entire story

Beyond-^CDM models add extra parameters

CDM
Dvali-Gabadadze-Porrati
$\Omega_{b} \Omega_{m} h n_{s} A_{s}$

## ^CDM extensions

## $\Lambda C D M$ is good... but not the entire story

Beyond-^CDM models add extra parameters
CDM
$\Omega_{b} \Omega_{m} h n_{s} A_{s}$
$\Omega_{h} \Omega_{m} h n_{s} A_{s} \quad \ldots$

## ^CDM extensions

## $\wedge C D M$ is good... but not the entire story

## Beyond-^CDM models add extra parameters

Find common parameterisation of all these models?

## Less is enough: extending $\wedge$ CDM with representation learning

## Less is enough: extending $\wedge C D M$ with representation learning

## Representation learning



## Representation learning



## Representation learning



## Representation learning



## Representation learning



Power spectrum boost $=\frac{\text { Power spectrum in extended model }}{\text { Power spectrum in } \Lambda \text { CDM model }}$

## Representation learning

Piras \& Lombriser, arXiv 2310.10717


Power spectrum boost $=\frac{\text { Power spectrum in extended model }}{\text { Power spectrum in } \Lambda \text { CDM model }}$

## Less is enough: extending $\wedge$ CDM with representation learning

 extending $\wedge$ CDM with representation learning

## An application to dark energy

Apply our framework to single extension: $w_{0} w_{a} C D M$

## An application to dark energy

## Apply our framework to single extension: $w_{0} w_{a} C D M$

Two extra parameters: $\mathrm{w}_{0}$ and $\mathrm{w}_{\mathrm{a}}$

$$
w(a)=w_{0}+(1-a) w_{a}
$$

## An application to dark energy

## Apply our framework to single extension: wCDM

## Two extra parameters: $W_{0}$ and $W_{a}$

Expect two latent variables are needed...?

An application to dark energy
WEDMHASTWO

## (2ibaparamanis

An application to dark energy
WGOMHASTWO
SOYOUNIED


An application to dark energy
WGDMHASTWO Emaparamatis \% IWOLIIEIS

An application to dark energy


## Results

## Results

## One latent variable



Two latent variables


## Results

## One latent variable



Two latent variables


Results are pretty similar with one and two latents

## Results

## One latent variable




Results are pretty similar with one and two latents
Vertical axis: error in the prediction of the power spectra (lower is better)

## Results

## One latent variable



Two latent variables


One variable is enough for $w_{0} w_{a} C D M!$

How to analyse the latent space?

## How to analyse the latent space?

Mutual information

## What is mutual information?

Measures dependence between random variables (more general than Pearson, which measures correlation)

## What is mutual information?

## Measures dependence between random variables (more general than Pearson, which measures correlation)

Well-established in information theory

## What is mutual information?

Measures dependence between random variables (more general than Pearson, which measures correlation)

## Well-established in information theory

- Hard to estimate!


## Estimating mutual information (MI)

- No available estimator returns uncertainty on MI


## Estimating mutual information (MI)

## No available estimator returns uncertainty on MI

Solution: density estimate with Gaussian mixture model


## GMM-MI validation

Piras et al. (including Hiranya Peiris, Andrew Pontzen, Luisa Lucie-Smith, Lillian Guo, Brian Nord), MLST

## Code




## How we use mutual information (MI)

- Calculate MI between latent variables (are they disentangled?)

Latent A Latent B

## How we use mutual information (MI)

Calculate MI between latent variables (are they disentangled?)

Latent A Latent B

Calculate MI between a latent variable and model parameters

Latent A

$$
\longmapsto \quad \mathrm{w}_{0}, \mathrm{w}_{\mathrm{a}}
$$

## Mutual information in latent space

Latent variable has significant MI with $\mathrm{w}_{0}$ and $\mathrm{w}_{\mathrm{a}}$


## Mutual information in latent space

Latent variable has significant MI with $\mathrm{W}_{0}$ and $\mathrm{W}_{\mathrm{a}}$

Little changes with two latent variables


## Mutual information in latent space

Latent variable has significant MI with $\mathrm{W}_{0}$ and $\mathrm{W}_{\mathrm{a}}$

Little changes with two latent variables

Third latent variable is unused

|  | $w_{0}$ | $W_{\text {a }}$ | >0.5 |
| :---: | :---: | :---: | :---: |
|  |  |  | -0.4 |
|  |  |  | -0.3 3 |
| $\mathrm{A}_{d=3}-$ | 0.36 | 0.31 | $-0.2 \stackrel{\stackrel{\rightharpoonup}{\square}}{\sim}$ |
| $\mathrm{B}_{d=3}-$ | 0.18 | 0.17 | - |
| $\mathrm{C}_{d=3}-$ | 0 | 0 |  |
|  |  |  | -0 |

## How to analyse the latent space?

## Mutual information

Symbolic regression

## What is symbolic regression?



In a nutshell: find analytic equation between variables

## Symbolic regression in latent space

Link latent variable with $\mathrm{W}_{0}$ and $\mathrm{w}_{\mathrm{a}}$

## Symbolic regression in latent space

## Link latent variable with $\mathrm{W}_{0}$ and $\mathrm{W}_{\mathrm{a}}$



## Symbolic regression in latent space

## Link latent variable with $\mathrm{W}_{0}$ and $\mathrm{W}_{\mathrm{a}}$

$$
\mathrm{A}_{d=1}\left(w_{0}, w_{a}\right)=w_{0}^{2}+\frac{e^{w_{a}+\cos \left(w_{0}\right)}}{w_{0}}
$$

Analogous to $S_{8}=\sigma_{8}\left(\Omega_{m} / 0.3\right)^{0.5} \ldots ?$

## Conclusions

- Only need one variable to describe $w_{0} w_{2} C D M$ nonlinear matter power spectra


## Conclusions

- Only need one variable to describe $w_{0} w_{a} C D M$ nonlinear matter power spectra
- Can use mutual information and symbolic regression to interpret latent space


## Conclusions

- Only need one variable to describe $w_{0} w_{2}$ CDM nonlinear matter power spectra
- Can use mutual information and symbolic regression to interpret latent space
- Will apply our framework to multiple extensions and different summaries


THE FUTURE OF COSMOLOGICAL LIKELIHOOD-BASED INFERENCE:

## ACCELERATED HIGH-DIMENSIONAL PARAMETER ESTIMATION AND MODEL COMPARISON

Davide Piras ${ }^{\star \dagger 1,2}$, Alicja Polanska ${ }^{\dagger 3}$, Alessio Spurio Mancini ${ }^{4,3}$, Matthew A. Price ${ }^{3}$, Jason D. McEwen ${ }^{3,5}$

## Conclusions

- Only need one variable to describe $\mathrm{w}_{0} \mathrm{w}_{2}$ CDM nonlinear matter power spectra
- Can use mutual information and symbolic regression to interpret latent space
- Will apply our framework to multiple extensions and different summaries


## Extra slides (and memes)

## Results

## One latent variable



## Two latent variables



$$
\sigma(k, z)=\sqrt{\frac{4 \pi^{2}}{k^{2} \Delta k V(z)}\left(P_{\delta \delta}(k, z)+\frac{1}{\bar{n}(z)}\right)^{2}+\sigma_{\text {sys }}^{2}}
$$

## Symbolic regression results



## What is mutual information?

Measures dependence between random variables (more general than Pearson, which measures correlation)

## Well-established in information theory

- Defined by:

$$
\operatorname{MI}(X, Y)=\int p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \mathrm{d} x \mathrm{~d} y
$$

$\longrightarrow \mathrm{Mi}(X, Y)=0$ if and only if $X$ and $Y$ are independent

## Results

## One latent variable



arXiV > cs > arxiv:1506. 02640
Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Jun 2015 (v)), last revised 9 May 2016 (this version, 55 )]
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi
YONOV: You Only Need One Variable

An application to dark energy


Expect two latent variables are needed...?

An application to dark energy


Expect two latent variables are needed...?

$\underset{\text { Unmute }}{1 / 2,}$

## GMM-MI: a robust estimator of mutual information

Cross-validation and multiple initialisations to optimise fit

## Cross-validation and multiple initialisations to optimise fit

- Works with continuous and discrete variables

$$
\because \because \text { GMM-MI }
$$

## GMM-MI: a robust estimator of mutual information

## Cross-validation and multiple initialisations to optimise fit

## Works with continuous and discrete variables

- GMM-MI returns uncertainty on Ml through bootstrapping

$$
\because \because \text { GMM-MI }
$$

## GMM-MI at work

## (gmm_mi) davide@crash:~\$

## GMM-MI at work

## (gmm_mi) davide@crash:~\$ pip install gmm-mi

## GMM-MI at work

## (gmm_mi) davide@crash:~\$ pip install gmm-mi

In [1]: import numpy as np
...: from gmm_mi.mi import EstimateMI
$\operatorname{In}[2]:$ -

## GMM-MI at work

```
(gmm_mi) davide@crash: $ pip install gmm-mi
In [1]: import numpy as np
...: from gmm_mi.mi import EstimateMI
...:
In [2]: # create bivariate Gaussian data
...: mean = np.array([0, 0])
...: cov = np.array([[1, 0.6], [0.6, 1]])
...: rng = np.random.default_rng(0)
...: X = rng.multivariate_normal(mean, cov, 200)
```


## GMM-MI validation

- GMM-MI is unbiased


## GMM-MI validation

## GMM-MI is unbiased

> GMM-MI respects MI invariance


## GMM-MI validation

- GMM-MI is unbiased

GMM-MI respects MI invariance



## What is symbolic regression?

Finds analytic equation linking variables

## What is symbolic regression?

## Finds analytic equation linking variables

- Less accurate, but more interpretable (?)


## What is symbolic regression?

## Finds analytic equation linking variables

## Less accurate, but more interpretable (?)

Many implementations available

