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• J-PAS is a narrow-band optical survey conducted from a 2.5m telescope in Spain — www.j-pas.org

• It is now (!) taking images in 56 filters of widths ~100  : ~300 deg  already observed (  ~800 deg /year)

• First public data release by the end of 2024

Å 2 → 2

(my) Motivation: the J-PAS and WEAVE-QSO surveys

  

The J-PAS filter system

Extremely accurate photo-z 
(target precision of  0.3%)

- 54 NB filters 
(FWHM~145Å; �⇥~10nm)
From 3785Å to 9100Å

- 1 Blue MB filter
(FWHM~260Å; ⇥c~3600Å)

- 1 Red BB filter
(FWHM~620Å; ⇥c~9500Å)

Pseudo-spectrum (R~60) 
for every pixel of the sky 

     MPA Institute Seminar – 18 July 2022miniJPAS: a preview of the Universe in 56 colors

Bonoli+ 2022



• ~  objects/  with low-resolution spectra (pseudo-spectra)

•  galaxies/deg  with photo-zs 1%  +  galaxy properties      superb multi-tracer optical survey

• ~ 200 QSOs/  , of which ~75 at z>2.2

• J-PAS high-z QSOs will be observed by WEAVE (Ly-  forest w/ ~30% denser sampling comp. w/ DESI)

5 × 104 deg2

104 2 σz < ⇒

deg2

α

A&A proofs: manuscript no. mini_jpas

Fig. 18: The J-spectra of di↵erent classes of stars, galaxies and quasars in the miniJPAS field (coloured symbols) compared with the
SDSS spectra (gray lines). The miniJPAS object ID, r magnitude, and classification are listed in the legend. Extragalactic sources
are ordered by increasing redshift, and both spectroscopic (SDSS) and photometric (miniJPAS) redshift are provided in the legend.
The multi-color inset images are centred on the object and are 30 arcsec across. The ellipses visible for extended sources are the
<auto ellipse> (inner ellipses) and the <petro ellipse> (outer ellipses).

The classes and spectral types listed in each panel were retrieved
from the SDSS spectroscopic pipeline database. The inset color
images have 30 arcsec across and are centred on the stars. It is
possible to see that the miniJPAS photometry is capable of suc-

cessfully capturing the continuum shape for these stellar sources
and also the main spectral absorption features used to determine
spectral types, atmospheric parameters, and selected chemical
abundances (e.g., carbon, ↵-elements). For the warmer stars (first
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 J-PAS sources: ML Classification109
N. Rodrigues, C. Queiroz

J-PAS & WEAVE-QSO 
Quasar ID team

Real data (Science Verification) Simulate data (with errors)

• We use ML to find those “needles in the haystack” (high-z QSOs are ~0.01% of our sources) 

• For the training set, we forward-simulated our data, from LF and SDSS spectra down to J-PAS data-based flux/
magnitudes with real uncertainties (Queiroz+ 2022)  CNNs & other ML methods (Rodrigues+ 2023, Pérez-
Ràfols+ 2023)

→
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From halos to galaxies using ML

• LSS relies heavily on numerical simulations in order to capture physical mechanisms on a wide range of scales

+ Bia Tucci, Celeste Artale

• N-body DM sims are complex enough, but actual tracers are even more so (baryonic physics, environments etc.)

• However… N-body + hydro sims are very expensive

• The precise relationships between halos and galaxies can be quite intricated (SAMs, SHAMs)

• Machine learning can predict with high accuracy how central galaxies form inside halos, depending on their 
properties and environment. We study these relations with the help of the IllustrisTNG 300 hydro simulation.

Image credit: Ralf Kaehler/SLAC

IllustrisTNG: Springel+2018 ; Pillepich+2018 ; color bimodality: Nelson+2018 ; comp. w/. HSC galaxies Eisert+2023; 



From halos to galaxies using ML: regression
• The detailed relations between tracers and halos are key to model tracer bias with high accuracy: e.g., assembly 

bias/secondary bias parameters (e.g., Lin+2016; Zehavi+ 2018; Montero-Dorta+ 2020; Wu+ 2024)

• Simple ML methods (e.g., NNs) can be trained to infer non-parametric relations between continuous variables in 
some input space (halo properties), and continuous variables in the output space (galaxy properties)

• In de Santi+ 2022 we used IllustrisTNG 300 to predict central galaxy properties from their host halo properties 
(can also be done with merger trees — Chuang+ 2024)

IN OUT

• In order to capture common as well as rare instances (e.g., high mass halos and galaxies) we used a data 
augmentation technique tailored for imbalanced regression problems  (SMOGN - Synthetic Minority Over-
Sampling technique for regression with Gaussian Noise — Branco 2017 ; github.com/nickkunz/smogn)

+ Bia Tucci, Celeste Artale



From halos to galaxies using ML: regression

• The ML regression was able to reproduce the overall distribution of galaxy properties, but… there were some snags:

‣ Peaks of the distribution were being over-predicted — and the tails, under-predicted

‣ Each galaxy property was trained independently from the others

‣ Method is deterministic

• Predictions for galaxy properties from halo properties at  (de Santi+ 2022)z = 0

 & R vs. M* Mh,vir sSFR & (g-i) vs. M*

+ Bia Tucci, Celeste Artale



• Galaxy properties are correlated — and, to some level, stochastic

• In Rodrigues et al. 2023 we predicted the joint distributions of central galaxy properties (see also Alsing+2024)

• We initially achieved this by splitting the N-dimensional parameter space of galaxy properties into discrete classes 
(“cells”), and then applying an NN classifier which, given a halo, assign a score (~probability) to each class.

N. Rodrigues et al., MNRAS 2023

True distribution Univariate (1D) predictions Multivariate (2D) predictions

From halos to galaxies using ML: classification

color ( ) vs. sSFRg − i



• We can now split galaxies into several different populations of tracers, each one with very well-defined 
biases — reproducing with high accuracy the clustering of those galaxies.

• Joint estimation is critical to correctly reproduce tracer bias

univariate pred.
univariate 
+ SMOGN 

From halos to galaxies using ML: classification

N. Rodrigues et al., MNRAS 2023



• However…

‣ regular tiling/grids are highly inefficient in higher dimensions

‣ tails of the distribution still not ideally represented

‣ some metrics are still… “meh”…

• So, let’s try a couple of different approaches:

‣ Hierarchical Voronoi algorithm to define classes in high-dimensional spaces 
(for interpretability)

‣ Targets are treated as samples from Gaussian distributions, with 
expectations and variances predicted by the NN (PyTorch GaussianNLLLoss)

‣ Normalizing flows — for sampling, conditioning and density evaluations. 
Our flows were learned using conditional spline autoregressive; a single flow 
was sufficient for our 5 halo + 5 galaxy parameters.

N. Rodrigues, N. de Santi, RA, A. Montero-Dorta, 2024 (to appear)

The halo-galaxy joint distribution

Image credit: Guandao Yang/PointFlow

Hierarchical Voronoir Allocation scheme
(HiVAl)

NF



• Some results: stellar mass vs. color (all halo masses)

g
−

i

Normalizing flows NN + HiVAl classif. NNGauss

The halo-galaxy joint distribution

N. Rodrigues, N. de Santi, RA, A. Montero-Dorta, 2024 (to appear)



• Overall distributions vs. predictability  
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The halo-galaxy joint distribution

 vs. color (all masses)M*

N. Rodrigues, N. de Santi, RA, A. Montero-Dorta, 2024 (to appear)



• Some results: 2D distributions (all halo masses)

 vs. colorM* color vs. sSFR vs. sSFRM*  vs. radiusM*

The halo-galaxy joint distribution

4D 
coverage

test

N. Rodrigues, N. de Santi, RA, A. Montero-Dorta, 2024 (to appear)



• Some results: stellar mass vs. color for different halo masses

log Mh /M⊙ > 12.05 11.95 < log Mh /M⊙ < 12.05 log Mh /M⊙ < 11.25

The halo-galaxy joint distribution

N. Rodrigues, N. de Santi, RA, A. Montero-Dorta, 2024 (to appear)



• Conditional distributions: not only halo  galaxy , but can do also  galaxy  halo→ →

The halo-galaxy joint distribution

halo population correctly reproduced individual halo predictions

prelim
inary

preliminary

N. Rodrigues, N. de Santi, RA, A. Montero-Dorta, 2024 (to appear)



• Computing power has increased dramatically, such that we are now able to run thousands of hydro 
simulations (dark matter + baryons + radiative transfer/feedback), over huge volumes.

• We are also able to explore different initial conditions, as well as the differences between codes and 
between models of SN and AGN feedback — see, e.g., CAMELS  (Cosmology and Astrophysics with 
MachinE Learning Simulations, Villaescusa-Navarro et al. 2021).

• If the simulations are anything like the “real thing”, then we can use ML to help find patterns and to 
reproduce mechanisms which may be too complex to tackle in a parametric way (e.g., SAM/SHAM)

Extra stuff:
Cosmology directly from galaxy groups/clusters N. de Santi, F. Villaescusa-Navarro 

& CAMELs team



• In Natalí de Santi+ 2023 we showed how, just on the basis of galaxies and their immediate environments (scales <~ 
3 Mpc), it is possible to infer the matter density  (see also Wu, Jespersen & Wechsler 2024)

• This was achieved by means of GNNs (Graph Neural Networks — see, e.g., https://distill.pub/2021/gnn-intro/)

Ωm

N. de Santi et al., ApJ 2023

Extra stuff:
Cosmology directly from galaxy groups/clusters

https://distill.pub/2021/gnn-intro/


• Natalí used galaxies with  , and an 

• The properties of the graphs are mainly: 

‣ the number of galaxies (global feature of the graph — a few to several dozen)

‣ the positions  and the velocities  of the individual galaxies (vertex properties) 

‣ the distances between all pairs (edge properties)

M⋆ ≳ 1.3 × 108 M⊙ rlink = 1.25 h−1 Mpc

{x, y, z} {vx, vy, vz}

Extra stuff:
Cosmology directly from galaxy groups/clusters



• Natalí trained the GNNs in one set of simulations (e.g., Illustris) and tested it in another set (e.g., Astrid), in order to 
see if the method was able to generalize its results.

• We find that the models are robust with respect to changes in (i) the astrophysics (feedback models),  (ii) the subgrid 
physics, and (iii) the subhalo/galaxy finder (de Santi+ 2023).

• Natalí tested those models on thousands of simulations that cover a vast region in parameter space – variations in 5 
cosmological as well as many astrophysical parameters.

• We were finally able to recover  across different simulations with a ~10% uncertainty!Ωm

Extra stuff:
Cosmology directly from galaxy groups/clusters



• In de Santi+ 2023b we showed that these results 
are robust to real-life features such as:

‣ Redshift-space effects: only  input positions 
 and radial/peculiar velocity 

‣ Masks & color cuts

‣ Errors in the positions and velocities/redshifts 

• We are still able to recover  across different 
simulations with a ~15% uncertainty

⊥
{x, y} vz

{x, y, z ; vx, vy, vz}

Ωm

Extra stuff:
Cosmology directly from galaxy groups/clusters



What’s next?

➡ Centrals  + satellites & sub-halos
➡ Robustness across different sims/sub-grid models (Illustris/SIMBA/Astrid)
➡ Stochasticity
➡ Extension to mocks
➡ From galaxies back to halos

Let us know what you think…
raulabramo@usp.br

Thanks!

→

mailto:raulabramo@usp.br


• Contribution of stochasticity in galaxy properties to variance in clustering (Rodrigues+ 2023)

Extra slides



• Permutation feature importance (of halo properties)

Extra slides


