Scalable Bayesian uncertainty quantification with learned convex regularisers for radio interferometric imaging

Tobías I. Liaudat IRFU, CEA Paris-Saclay

In collabortaion with Jason D. McEwen, Marcelo Pereyra and Marta Betcke

Statistical Challenges in 21st Century Cosmology, Chania

22nd May 2024

Motivation: SKA's radio interferometer

Radio interferometric imaging

Linear observational model

 $\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{n}$

 $\mathbf{y} \in \mathbb{C}^M$: Observed Fourier coefficients

 $\mathbf{n} \in \mathbb{C}^M$: Observational noise (White and Gaussian)

 $\mathbf{x} \in \mathbb{R}^N$: Sky intensity image

 $\mathbf{\Phi} \in \mathbb{C}^{M imes N}$: Linear measurement operator

FFT and Fourier mask

Due to \mathbf{n} and $\mathbf{\Phi}$ the inverse problem is ill-posed

We need to estimate $\hat{\boldsymbol{x}}$ from \boldsymbol{y}

0.0 --0.5 --1.0 --1.5 -2.0

Image reconstruction: $\hat{\mathbf{x}}$

Several reasons to develop uncertainty quantification (UQ) techniques for the reconstruction

Usual UQ techniques from the Bayesian framework rely on interrogating the posterior exploiting Bayes' theorem:

Represent the posterior through samples drawn from $\sim p(\mathbf{x}|\mathbf{y})$ obtained through a Markov chain Monte Carlo (MCMC) alg.

For example, Cai et al. (2018a) applies this for radio imaging

Is this blob *physical*? \rightarrow Is it a reconstruction artefact \rightarrow Is it backed by the data?

1 -0.5 -1.0 -1.5 -2.0

Image reconstruction: $\hat{\mathbf{x}}$

Is this blob physical?

- $\rightarrow~$ Is it a reconstruction artefact?
- $\rightarrow~$ Is it backed by the data?

Several reasons to develop uncertainty quantification (UQ) techniques for the reconstruction

Usual UQ techniques from the Bayesian framework rely on interrogating the posterior exploiting Bayes' theorem:

sterior Likelihood Prio

Represent the posterior through samples drawn from $\sim p(\mathbf{x}|\mathbf{y})$ obtained through a Markov chain Monte Carlo (MCMC) alg.

For example, Cai et al. (2018a) applies this for radio imaging

Image reconstruction: $\hat{\mathbf{x}}$

Several reasons to develop uncertainty quantification (UQ) techniques for the reconstruction

Usual UQ techniques from the Bayesian framework rely on interrogating the posterior exploiting Bayes' theorem:

Likelihood Prior Posterior

Represent the posterior through samples drawn from $\sim p(\mathbf{x}|\mathbf{y})$ obtained through a Markov chain Monte Carlo (MCMC) alg.

For example, Cai et al. (2018a) applies this for radio imaging

Is this blob physical?

- $\rightarrow~$ Is it a reconstruction artefact?
- $\rightarrow~$ Is it backed by the data?

Cai et al. (2018a) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

 \rightarrow The Gaussian likelihood $f(\mathbf{x}, \mathbf{y})$ is known: $\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 / 2\sigma^2$

- 2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$
 - → Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger} x\|_{1}$ → CLEAN example: the prior $g_{CL}(\mathbf{x})$ is $\lambda \|x\|_{0}$
- 3. Choose a point estimate

Use the Maximum-a-posteriori (MAP) estimation: $\hat{\mathbf{x}}_{\text{MAP}} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\operatorname{arg\,max}} p(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \overbrace{\lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}}^{\text{CLEAN: } \lambda \|\mathbf{x}\|_{0}},$

 $\rightarrow\,$ Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{i=1}^{K}, \ \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$

 \rightarrow Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018a) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

- 2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$
 - → Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger} x\|_{1}$ → CLEAN example: the prior $g_{CL}(\mathbf{x})$ is $\lambda \|x\|_{0}$
- 3. Choose a point estimate

Use the Maximum-a-posteriori (MAP) estimation: $\hat{\mathbf{x}}_{\mathsf{MAP}} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\operatorname{arg\,max}} p(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2} / 2\sigma^{2} + \overbrace{\lambda \| \mathbf{\Psi}^{\dagger} x \|_{1}}^{\mathsf{CLEAN:}} ,$

 $\rightarrow\,$ Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{i=1}^{K}, \ \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$

 \rightarrow Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018a) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$

 \rightarrow Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger} x\|_{1}$ \rightarrow CLEAN example: the prior $g_{CL}(\mathbf{x})$ is $\lambda \|x\|_{0}$

3. Choose a point estimate

Use the Maximum-a-posteriori (MAP) estimation: $\hat{\mathbf{x}}_{MAP} = \arg \max p(\mathbf{x}|\mathbf{y}) = \arg \min \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 / 2\sigma^2 + \overbrace{\lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_1}^{CLEAN: \lambda \|\mathbf{x}\|_0}$

 $\rightarrow\,$ Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{i=1}^{K}, \ \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$

 \rightarrow Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018a) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$

 \rightarrow Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger} x\|_{1}$ \rightarrow CLEAN example: the prior $g_{CL}(\mathbf{x})$ is $\lambda \|x\|_{0}$

3. Choose a point estimate

→ Use the Maximum-a-posteriori (MAP) estimation: $\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \max p(\mathbf{x}|\mathbf{y})} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2}} + \overbrace{\lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}}^{CLEAN: \lambda \|\mathbf{x}\|_{0}},$ $\rightarrow \text{ Estimate } \hat{\mathbf{x}}_{MAP} \text{ through convex optimisation using a proximal algorithm}$ 4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{j=1}^{K}, \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$ $\rightarrow \text{ Proximal MCMC algorithm}$ (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018a) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$

 \rightarrow Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger} x\|_{1}$ \rightarrow CLEAN example: the prior $g_{CL}(\mathbf{x})$ is $\lambda \|x\|_{0}$

3. Choose a point estimate

 $\begin{array}{l} \rightarrow \mbox{ Use the Maximum-a-posteriori (MAP) estimation: } & \mbox{CLEAN: } \lambda \|x\|_0 \\ \hat{\mathbf{x}}_{\mathsf{MAP}} = \mathop{\arg\max}_{\mathbf{x} \in \mathbb{R}^N} p(\mathbf{x}|\mathbf{y}) = \mathop{\arg\min}_{\mathbf{x} \in \mathbb{R}^N} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 / 2\sigma^2 + \overbrace{\lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_1}^{\mathsf{CLEAN: } \lambda \|\mathbf{x}\|_1}, \end{array}$

 $\rightarrow~$ Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

- 4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{i=1}^{K}, \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$
 - \rightarrow Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018a) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$

 \rightarrow Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger} x\|_{1}$ \rightarrow CLEAN example: the prior $g_{CL}(\mathbf{x})$ is $\lambda \|x\|_{0}$

3. Choose a point estimate

 $\begin{array}{l} \rightarrow \text{ Use the Maximum-a-posteriori (MAP) estimation:} \\ \hat{\mathbf{x}}_{\mathsf{MAP}} = \mathop{\arg\max}_{\mathbf{x} \in \mathbb{R}^N} p(\mathbf{x}|\mathbf{y}) = \mathop{\arg\min}_{\mathbf{x} \in \mathbb{R}^N} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 / 2\sigma^2 + \overbrace{\lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_1}^{\mathsf{CLEAN:}} , \end{array}$

 $\rightarrow~$ Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

- 4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{i=1}^{K}, \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$
 - \rightarrow Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow A concentration phenomenom (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying $\mathbf{\Phi}$ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow A concentration phenomenom (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow **A concentration phenomenom** (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow **A concentration phenomenom** (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow **A concentration phenomenom** (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow A concentration phenomenom (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Highest posterior density region

Posterior credible region:

$$\rho(\mathbf{x} \in C_{\alpha} | \mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} \rho(\mathbf{x} | \mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha,$$

We consider the highest posterior density (HPD) region

$$C^*_{\alpha} = \big\{ \mathbf{x} : \underbrace{f(\mathbf{x}) + g(\mathbf{x})}_{\text{potential}} \leq \gamma_{\alpha} \big\}, \quad \text{with } \gamma_{\alpha} \in \mathbb{R}, \quad \text{and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds},$$

Theorem 3.1 (Pereyra, 2017

Suppose the posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4 \exp[(-N/3)], 1)$, the HPD region C^*_{α} is contained by

$$\hat{\mathcal{C}}_lpha = \left\{ \mathbf{x} : f(\mathbf{x}) + g(\mathbf{x}) \leq \hat{\gamma}_lpha = f(\hat{\mathbf{x}}_{\mathsf{MAP}}) + g(\hat{\mathbf{x}}_{\mathsf{MAP}}) + \sqrt{N} au_lpha + N
ight\},$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

We only need to evaluate f + g on the MAP estimation \hat{x}_{MAP} ! Tobías I. Liaudat

Highest posterior density region

Posterior credible region:

$$\rho(\mathbf{x} \in C_{\alpha} | \mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} \rho(\mathbf{x} | \mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha,$$

We consider the highest posterior density (HPD) region

$$C^*_{\alpha} = \big\{ \mathbf{x} : \underbrace{f(\mathbf{x}) + g(\mathbf{x})}_{\text{potential}} \leq \gamma_{\alpha} \big\}, \quad \text{with } \gamma_{\alpha} \in \mathbb{R}, \quad \text{and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds},$$

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4 \exp[(-N/3)], 1)$, the HPD region C^*_{α} is contained by

$$\hat{\mathcal{C}}_lpha = \left\{ \mathbf{x} : f(\mathbf{x}) + g(\mathbf{x}) \leq \hat{\gamma}_lpha = f(\hat{\mathbf{x}}_{\mathsf{MAP}}) + g(\hat{\mathbf{x}}_{\mathsf{MAP}}) + \sqrt{N} au_lpha + N
ight\},$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

We only need to evaluate f + g on the MAP estimation \hat{x}_{MAP} ! Tobías I. Liaudat

Highest posterior density region

Posterior credible region:

$$\rho(\mathbf{x} \in C_{\alpha} | \mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} \rho(\mathbf{x} | \mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha,$$

We consider the highest posterior density (HPD) region

$$C^*_{\alpha} = \big\{ \mathbf{x} : \underbrace{f(\mathbf{x}) + g(\mathbf{x})}_{\text{potential}} \leq \gamma_{\alpha} \big\}, \quad \text{with } \gamma_{\alpha} \in \mathbb{R}, \quad \text{and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds},$$

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4 \exp[(-N/3)], 1)$, the HPD region C^*_{α} is contained by

$$\hat{\mathcal{C}}_lpha = \left\{ \mathbf{x} : f(\mathbf{x}) + g(\mathbf{x}) \leq \hat{\gamma}_lpha = f(\hat{\mathbf{x}}_{\mathsf{MAP}}) + g(\hat{\mathbf{x}}_{\mathsf{MAP}}) + \sqrt{N} au_lpha + N
ight\},$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

We only need to evaluate f + g on the MAP estimation \hat{x}_{MAP} ! Tobías I. Liaudat

Image credit: Cai et al. (2018b)

Hypothesis test with significance α :

- 1. Calculate the MAP: \mathbf{x}_{MAP}
- 2. Compute HPD region threshold $\hat{\gamma}_{lpha}$
- 3. Construct a surrogate image \mathbf{x}_{sgt}
- 4. Compute $\mathcal{E} = f(\mathbf{x}_{sgt}) + g(\mathbf{x}_{sgt})$
- 5. If $\mathcal{E} \leq \hat{\gamma}_{lpha}
 ightarrow$ inconclusive test
- 6. If ${\cal E}>\hat\gamma_lpha o$ reject hypothesis

MAP-based uncertainty quantification: Pixel-level UQ visualisation

Image credit: Cai et al. (2018b)

Local credible intervals (LCI)

- Set of superpixels $\{\Omega_i\}_{i=1}^M$ such that $\Omega_i \cap \Omega_j = \emptyset, \forall i \neq j \text{ and } \Omega = \cup_i \Omega_i \text{ with } \Omega$ the set of all the image pixels
- One superpixel region: $\mathbf{x}_{i,\xi} = \hat{\mathbf{x}}_{MAP}(\mathbf{I} - \zeta_{\Omega_i}) + (\xi + \bar{\mathbf{x}}_{MAP,\Omega_i})\zeta_{\Omega_i},$
- Compute each bound (root-finding alg.): $\begin{aligned} &\xi_{+,\Omega_i} = \\ &\max_{\xi} \left\{ \xi \mid f(\mathbf{x}_{i,\xi}, \mathbf{y}) + g(\mathbf{x}_{i,\xi}) \leq \hat{\gamma}_{\alpha}, \ \xi \in [0, +\infty) \right\}, \\ &\xi_{-,\Omega_i} = \\ &\min_{\xi} \left\{ \xi \mid f(\mathbf{x}_{i,\xi}, \mathbf{y}) + g(\mathbf{x}_{i,\xi}) \leq \hat{\gamma}_{\alpha}, \ \xi \in (-\infty, 0] \right\}, \end{aligned}$
- Display the length of the intervals: $\boldsymbol{\xi} = \sum_{i} (\xi_{+,\Omega_{i}} - \xi_{-,\Omega_{i}}) \boldsymbol{\zeta}_{\Omega_{i}}$

MAP-based uncertainty quantification: Pixel-level UQ visualisation

Image credit: Cai et al. (2018b)

Fast pixel-wise errors at different scales

- Multiscale wavelet decomposition of level J: $\hat{\mathbf{x}}_{\text{MAP}} = \mathbf{\Psi} \, \hat{\mathbf{a}}_{\text{MAP}} = \sum_{l=0}^{J} \mathbf{\Psi}_{l} \, \hat{\mathbf{a}}_{\text{MAP},l} \,$
- Threshold that saturates the HPD region:

$$\begin{split} \hat{\xi}_{\mathsf{th}} &= \max_{\xi_{\mathsf{th}}} \{\xi_{\mathsf{th}} \,|\, f(\hat{\mathbf{x}}_{\mathsf{MAP},\,\xi_{\mathsf{th}}}, \mathbf{y}) + g(\hat{\mathbf{x}}_{\mathsf{MAP},\,\xi_{\mathsf{th}}}) \leq \hat{\gamma}_{\alpha}, \\ \\ \hat{\mathbf{x}}_{\mathsf{MAP},\,\xi_{\mathsf{th}}} &= \mathbf{\Psi} \, \mathcal{S}_{\mathsf{hard},\,\xi_{\mathsf{th}}}(\hat{\mathbf{a}}_{\mathsf{MAP}}), \, \xi \in [0, +\infty) \} \,. \end{split}$$

Compute using a root-finding algorithm

- Thresholded surrogate image at level j: $\hat{\mathbf{x}}_{\text{MAP},\,\hat{\xi}_{\text{th}},\,j} = \sum_{\substack{I=0\\l\neq j}}^{J} \Psi_{I} \, \hat{\mathbf{a}}_{\text{MAP},\,l} + \Psi_{j} \hat{\mathbf{a}}_{\text{MAP},\,\hat{\xi}_{\text{th}},\,j} \,,$
- Approximated error at level e_j : $e_j = \hat{\mathbf{x}}_{MAP} - \hat{\mathbf{x}}_{MAP, \hat{\xi}_{th}, j}$

- 1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator
- 2. Uncertainty quantification ightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator

- 2. Uncertainty quantification \rightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

- 1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator
- 2. Uncertainty quantification \rightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

- 1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator
- 2. Uncertainty quantification \rightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

- 1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator
- 2. Uncertainty quantification \rightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

Learned convex regulariser

We use the neural-network-based convex regulariser R from Goujon et al. (2023), where

$$R: \mathbb{R}^N \mapsto \mathbb{R}, \quad R(\mathbf{x}) = \sum_{n=1}^{N_C} \sum_k \psi_n \left((\mathbf{h}_n * \mathbf{x}) [k] \right),$$

- ψ_n are learned convex profile functions with Lipschitz continuous derivate

- Learnable 2nd degree splines
- There are N_C learned convolutional filters \mathbf{h}_n
- R is trained as a (multi-)gradient step denoiser

Properties:

- 1. Explicit cost
- 2. Convex
- 3. Smooth regulariser with known Lipschitz constant

Learned convex regulariser

We use the neural-network-based convex regulariser R from Goujon et al. (2023), where

$$R: \mathbb{R}^N \mapsto \mathbb{R}, \quad R(\mathbf{x}) = \sum_{n=1}^{N_C} \sum_k \psi_n \left((\mathbf{h}_n * \mathbf{x}) [k] \right),$$

- ψ_n are learned convex profile functions with Lipschitz continuous derivate

- Learnable 2nd degree splines
- There are N_C learned convolutional filters \mathbf{h}_n
- R is trained as a (multi-)gradient step denoiser

Properties:

- 1. Explicit cost
- 2. Convex
- 3. Smooth regulariser with known Lipschitz constant

Numerical experiments

RI imaging models:

Model from Cai et al. (2018a): $\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda_{1}\|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1} + \iota_{\mathbb{R}^{N}}(\mathbf{x}),$ **Proposed model:** $\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda_{2}/\mu R_{\theta}(\mu\mathbf{x}) + \iota_{\mathbb{R}^{N}}(\mathbf{x}),$

MAP estimations are computed using the FISTA algorithm

Validation of the UQ is done by sampling both posterior distributions using a proximal MCMC algorithm, SK-ROCK (Pereyra et al., 2020)

Experiment settings:

- Image size 256×256
- Input SNR of 30dB
- Gridded Fourier sampling: 10% coverage from a Gaussian distribution ($M \approx 6.5 imes 10^3$)
- Wavelets used: Daubechies 8

Numerical experiments

RI imaging models:

Model from Cai et al. (2018a): $\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg\min} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda_{1}\|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1} + \iota_{\mathbb{R}^{N}}(\mathbf{x}),$ **Proposed model:** $\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg\min} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda_{2}/\mu R_{\theta}(\mu\mathbf{x}) + \iota_{\mathbb{R}^{N}}(\mathbf{x}),$

MAP estimations are computed using the FISTA algorithm

Validation of the UQ is done by sampling both posterior distributions using a proximal MCMC algorithm, SK-ROCK (Pereyra et al., 2020)

Experiment settings:

- Image size 256×256
- Input SNR of 30dB
- Gridded Fourier sampling: 10% coverage from a Gaussian distribution ($M \approx 6.5 \times 10^3$)
- Wavelets used: Daubechies 8

Numerical experiments

RI imaging models:

Model from Cai et al. (2018a): $\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg\min} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda_{1}\|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1} + \iota_{\mathbb{R}^{N}}(\mathbf{x}),$ **Proposed model:** $\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg\min} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda_{2}/\mu R_{\theta}(\mu\mathbf{x}) + \iota_{\mathbb{R}^{N}}(\mathbf{x}),$

MAP estimations are computed using the FISTA algorithm

Validation of the UQ is done by sampling both posterior distributions using a proximal MCMC algorithm, SK-ROCK (Pereyra et al., 2020)

Experiment settings:

- Image size 256×256
- Input SNR of 30dB
- Gridded Fourier sampling: 10% coverage from a Gaussian distribution ($M \approx 6.5 imes 10^3$)
- Wavelets used: Daubechies 8

Improved the reconstruction by 3.8 dB

Posterior standard deviation

Computed using 10^4 samples obtained from the sampling algorithm SK-ROCK (Pereyra et al., 2020)

Wavelet

Learned regulariser

More meaningful uncertainties in the posterior Std Dev

The learned convex regulariser was trained on natural images, not RI images Tobías I. Liaudat

Pixel-based uncertainty quantification

The local credible intervals (LCI) give a local measure of uncertainty $\rm LCI - < LCI >$

Posterior Standard Deviation

Pixel size 4×4

Pixel size 8×8

Computation time reduced by a factor of 10^3 wrt sampling

Fast pixel-wise errors at different scales

We can compute pixel-wise error at different scales using:

- A wavelet dictionary (e.g. Carrillo et al. (2012))

- The HPD region computed

Computing time and likelihood evaluations

Models	MAP optim.	Posterior sampling	$\begin{array}{c} LCIs \\ 8\times8 \end{array}$	Fast pixel UQ
Wavelet-based QUANTIFAI	0.94 0.64	$\begin{array}{c} 36.0\times10^3\\ 6.44\times10^3\end{array}$	149.7 108.2	0.17

Table: Computation wall-clock times for the W28 image in seconds.

Table: The number of measurement operator evaluations used by the QUANTIFAI for the W28 image.

MCMC	LCIs	LCIs	Fast
sampling	8×8	16 imes 16	pixel UQ
$11 imes10^{6}$	$81.5 imes10^3$	$21.2 imes 10^3$	28

The fast pixel UQ is 10^6 and 10^3 times faster than the MCMC sampling and LCIs, respectively.

Hypothesis test

Scalable hypothesis testing for structure in the reconstruction

MAP reconstruction

MAP reconstruction Tobías I. Liaudat

т 0.0

-1.8

-2.0

Blurred substructure

Is the blob physical? ightarrow Yes

Is the substructure physical? ightarrow Yes

Simulate single frequency MeerKAT ungridded visibility patterns

- Start frequency of 1400MHz with a channel width of 10MHz
- Pointing: J2000, RA=13h18m54.86s, DEC=-15d36m04.25s

We use forward operator based on a torch-based 2D NUFFT with Kaisser-Bessel gridding.

Results for **1h of observation time** ($M \approx 3 \times 10^4$). MAP reconstruction SNR: **23.88dB**

Computation wall-clock time: MAP estimation \rightarrow 34.96s, fast pixel UQ \rightarrow 0.86s

Results for **8h of observation time** ($M \approx 2.4 \times 10^5$). MAP reconstruction SNR: **28.56dB**

Computation wall-clock time: MAP estimation ightarrow 137.0s, fast pixel UQ ightarrow 1.84s

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and pixel-wise errors at different scales
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

Perspectives:

- Implement & benchmark $\operatorname{QUANTIFAI}$ on a massively parallelised computing env. (ongoing work)
- Bayesian model comparison of models with data-driven priors, (See Henry Aldridge's poster)

Publication: Liaudat et al. (2023), arXiv:2312.00125 Code: github.com/astro-informatics/quantifai

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and pixel-wise errors at different scales
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

Perspectives:

- Implement & benchmark $\operatorname{QUANTIFAI}$ on a massively parallelised computing env. (ongoing work)
- Bayesian model comparison of models with data-driven priors, (See Henry Aldridge's poster)

Publication: Liaudat et al. (2023), arXiv:2312.00125 Code: github.com/astro-informatics/quantifai

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and pixel-wise errors at different scales
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

Perspectives:

- Implement & benchmark $\operatorname{QUANTIFAI}$ on a massively parallelised computing env. (ongoing work)
- Bayesian model comparison of models with data-driven priors, (See Henry Aldridge's poster)

Publication: Liaudat et al. (2023), arXiv:2312.00125 Code: github.com/astro-informatics/quantifai

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and pixel-wise errors at different scales
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

Perspectives:

- Implement & benchmark $\operatorname{QUANTIFAI}$ on a massively parallelised computing env. (ongoing work)
- Bayesian model comparison of models with data-driven priors, (See Henry Aldridge's poster)

Publication: Liaudat et al. (2023), arXiv:2312.00125 Code: github.com/astro-informatics/quantifai

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and pixel-wise errors at different scales
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

Perspectives:

- Implement & benchmark $\operatorname{QUANTIFAI}$ on a massively parallelised computing env. (ongoing work)
- Bayesian model comparison of models with data-driven priors, (See Henry Aldridge's poster)

Publication: Liaudat et al. (2023), arXiv:2312.00125 Code: github.com/astro-informatics/quantifai

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and pixel-wise errors at different scales
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

Perspectives:

- Implement & benchmark $\operatorname{QUANTIFAI}$ on a massively parallelised computing env. (ongoing work)
- Bayesian model comparison of models with data-driven priors, (See Henry Aldridge's poster)

Publication: Liaudat et al. (2023), arXiv:2312.00125 Code: github.com/astro-informatics/quantifai

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and pixel-wise errors at different scales
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

Perspectives:

- Implement & benchmark $\operatorname{QUANTIFAI}$ on a massively parallelised computing env. (ongoing work)
- Bayesian model comparison of models with data-driven priors, (See Henry Aldridge's poster)

Publication: Liaudat et al. (2023), arXiv:2312.00125 Code: github.com/astro-informatics/quantifai

References

- Cai, X., Pereyra, M., & McEwen, J. D. (2018a). Uncertainty quantification for radio interferometric imaging I. Proximal MCMC methods. Monthly Notices of the Royal Astronomical Society, 480(3), 4154–4169.
- Cai, X., Pereyra, M., & McEwen, J. D. (2018b). Uncertainty quantification for radio interferometric imaging: II. MAP estimation. Monthly Notices of the Royal Astronomical Society, 480(3), 4170–4182.
- Carrillo, R. E., McEwen, J. D., & Wiaux, Y. (2012). Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio-interferometric imaging. <u>Monthly Notices of the Royal Astronomical Society</u>, 426(2), 1223–1234.
- Goujon, A., Neumayer, S., Bohra, P., Ducotterd, S., & Unser, M. (2023). A neural-network-based convex regularizer for inverse problems. IEEE Transactions on Computational Imaging, 9, 781–795.
- Liaudat, T. I., Mars, M., Price, M. A., Pereyra, M., Betcke, M. M., & McEwen, J. D. (2023). Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging. <u>arXiv e-prints</u>, Article arXiv:2312.00125, arXiv:2312.00125.
- Pereyra, M. (2016). Proximal markov chain monte carlo algorithms. Statistics and Computing, 26(4), 745-760.
- Pereyra, M. (2017). Maximum-a-posteriori estimation with bayesian confidence regions. SIAM Journal on Imaging Sciences, 10(1), 285–302.
- Pereyra, M., Mieles, L. V., & Zygalakis, K. C. (2020). Accelerating proximal markov chain monte carlo by using an explicit stabilized method. SIAM Journal on Imaging Sciences, 13(2), 905–935.

Questions?

Results for **2h of observation time** ($M \approx 6 \times 10^4$). MAP reconstruction SNR: **25.89dB**

Computation wall-clock time: MAP estimation \rightarrow 58.85s, fast pixel UQ \rightarrow 0.99s

Results for **4h of observation time** ($M \approx 1.2 \times 10^5$). MAP reconstruction SNR: **27.4dB**

Computation wall-clck time: MAP estimation ightarrow 93.63s, fast pixel UQ ightarrow 1.32s

Learned convex regulariser

The regulariser is trained to solve the denoising task

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^N}{\arg\min} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda R_{\boldsymbol{\theta}}(\mathbf{x}), \qquad (1)$$

The denoising problem is tackled through the unique fixed point of (1) by the gradient step:

$$T_{R_{\theta},\lambda,\alpha}(\mathbf{x}) = \mathbf{x} - \alpha((\mathbf{x} - \mathbf{y}) + \lambda \nabla R_{\theta}(\mathbf{x})),$$

Doing a *t*-fold composition we obtain

$$\mathcal{T}^t_{R_{m{ heta}},\lambda,lpha}(\mathbf{y}^{(m)})pprox \mathbf{x}^{(m)}$$

The training objective with training loss \mathcal{L} , e.g., ℓ_1 , reads

$$m{ heta}_t^*, \lambda_t^* \in rgmin_{m{ heta},\lambda} \sum_{m=1}^M \mathcal{L}\left(T_{R_{m{ heta}},\lambda,lpha}^t(\mathbf{y}^{(m)}), \mathbf{x}^{(m)}
ight)\,,$$

For more info: Goujon et al. (2023). Tobías I. Liaudat

26