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Motivation: SKA’s radio interferometer
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Radio interferometric imaging

Linear observational model

y = Φx+ n

y ∈ CM : Observed Fourier coefficients

n ∈ CM : Observational noise (White and Gaussian)

x ∈ RN : Sky intensity image

Φ ∈ CM×N : Linear measurement operator

− FFT and Fourier mask

Due to n and Φ the inverse problem is ill-posed

We need to estimate x̂ from y
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Uncertainty quantification: more than a point estimate

Image reconstruction: x̂
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Is this blob physical?

→ Is it a reconstruction artefact?

→ Is it backed by the data?

Several reasons to develop uncertainty quantification (UQ)
techniques for the reconstruction

Usual UQ techniques from the Bayesian framework rely on
interrogating the posterior exploiting Bayes’ theorem:

p(x|y)︸ ︷︷ ︸
Posterior

∝ p(y|x)︸ ︷︷ ︸
Likelihood

p(x)︸︷︷︸
Prior

Represent the posterior through samples drawn from ∼ p(x|y)
obtained through a Markov chain Monte Carlo (MCMC) alg.

For example, Cai et al. (2018a) applies this for radio imaging
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Uncertainty quantification: more than a point estimate

Cai et al. (2018a) approach:

1. Define a likelihood p(y|x) = exp[−f (x, y)]

→ The Gaussian likelihood f (x, y) is known: ∥y −Φx∥22/2σ2

2. Define a prior p(x) = exp[−g(x)]

→ Solution x is sparse in a wavelet dictionary Ψ. The prior g(x) is: λ∥Ψ†x∥1
→ CLEAN example: the prior gCL(x) is λ∥x∥0

3. Choose a point estimate

→ Use the Maximum-a-posteriori (MAP) estimation:

x̂MAP = argmax
x∈RN

p(x|y) = argmin
x∈RN

∥y −Φx∥22/2σ2 +

CLEAN: λ∥x∥0︷ ︸︸ ︷
λ∥Ψ†x∥1 ,

→ Estimate x̂MAP through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain {x(j)}Kj=1, x
(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Tob́ıas I. Liaudat 4



Uncertainty quantification: more than a point estimate

Cai et al. (2018a) approach:

1. Define a likelihood p(y|x) = exp[−f (x, y)]

→ The Gaussian likelihood f (x, y) is known: ∥y −Φx∥22/2σ2

2. Define a prior p(x) = exp[−g(x)]

→ Solution x is sparse in a wavelet dictionary Ψ. The prior g(x) is: λ∥Ψ†x∥1
→ CLEAN example: the prior gCL(x) is λ∥x∥0

3. Choose a point estimate

→ Use the Maximum-a-posteriori (MAP) estimation:

x̂MAP = argmax
x∈RN

p(x|y) = argmin
x∈RN

∥y −Φx∥22/2σ2 +

CLEAN: λ∥x∥0︷ ︸︸ ︷
λ∥Ψ†x∥1 ,

→ Estimate x̂MAP through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain {x(j)}Kj=1, x
(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Tob́ıas I. Liaudat 4



Uncertainty quantification: more than a point estimate

Cai et al. (2018a) approach:

1. Define a likelihood p(y|x) = exp[−f (x, y)]

→ The Gaussian likelihood f (x, y) is known: ∥y −Φx∥22/2σ2

2. Define a prior p(x) = exp[−g(x)]

→ Solution x is sparse in a wavelet dictionary Ψ. The prior g(x) is: λ∥Ψ†x∥1
→ CLEAN example: the prior gCL(x) is λ∥x∥0

3. Choose a point estimate

→ Use the Maximum-a-posteriori (MAP) estimation:

x̂MAP = argmax
x∈RN

p(x|y) = argmin
x∈RN

∥y −Φx∥22/2σ2 +

CLEAN: λ∥x∥0︷ ︸︸ ︷
λ∥Ψ†x∥1 ,

→ Estimate x̂MAP through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain {x(j)}Kj=1, x
(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Tob́ıas I. Liaudat 4



Uncertainty quantification: more than a point estimate

Cai et al. (2018a) approach:

1. Define a likelihood p(y|x) = exp[−f (x, y)]

→ The Gaussian likelihood f (x, y) is known: ∥y −Φx∥22/2σ2

2. Define a prior p(x) = exp[−g(x)]

→ Solution x is sparse in a wavelet dictionary Ψ. The prior g(x) is: λ∥Ψ†x∥1
→ CLEAN example: the prior gCL(x) is λ∥x∥0

3. Choose a point estimate

→ Use the Maximum-a-posteriori (MAP) estimation:

x̂MAP = argmax
x∈RN

p(x|y) = argmin
x∈RN

∥y −Φx∥22/2σ2 +

CLEAN: λ∥x∥0︷ ︸︸ ︷
λ∥Ψ†x∥1 ,

→ Estimate x̂MAP through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain {x(j)}Kj=1, x
(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Tob́ıas I. Liaudat 4



Uncertainty quantification: more than a point estimate

Cai et al. (2018a) approach:

1. Define a likelihood p(y|x) = exp[−f (x, y)]

→ The Gaussian likelihood f (x, y) is known: ∥y −Φx∥22/2σ2

2. Define a prior p(x) = exp[−g(x)]

→ Solution x is sparse in a wavelet dictionary Ψ. The prior g(x) is: λ∥Ψ†x∥1
→ CLEAN example: the prior gCL(x) is λ∥x∥0

3. Choose a point estimate

→ Use the Maximum-a-posteriori (MAP) estimation:

x̂MAP = argmax
x∈RN

p(x|y) = argmin
x∈RN

∥y −Φx∥22/2σ2 +

CLEAN: λ∥x∥0︷ ︸︸ ︷
λ∥Ψ†x∥1 ,

→ Estimate x̂MAP through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain {x(j)}Kj=1, x
(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Tob́ıas I. Liaudat 4



Uncertainty quantification: more than a point estimate

Cai et al. (2018a) approach:

1. Define a likelihood p(y|x) = exp[−f (x, y)]

→ The Gaussian likelihood f (x, y) is known: ∥y −Φx∥22/2σ2

2. Define a prior p(x) = exp[−g(x)]

→ Solution x is sparse in a wavelet dictionary Ψ. The prior g(x) is: λ∥Ψ†x∥1
→ CLEAN example: the prior gCL(x) is λ∥x∥0

3. Choose a point estimate

→ Use the Maximum-a-posteriori (MAP) estimation:

x̂MAP = argmax
x∈RN

p(x|y) = argmin
x∈RN

∥y −Φx∥22/2σ2 +

CLEAN: λ∥x∥0︷ ︸︸ ︷
λ∥Ψ†x∥1 ,

→ Estimate x̂MAP through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain {x(j)}Kj=1, x
(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Tob́ıas I. Liaudat 4



The problem is not solved

Difficulties in the high-dimensional setting:

1. Even if we know the likelihood, applying Φ is computationally expensive

2. Handcrafted priors like wavelets are not expressive enough

3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior p(x|y) without sampling
from it?

If we restrict to log-concave posteriors something beautiful happens!
→ A concentration phenomenom (Pereyra, 2017)

log-concave posterior p(x|y) = exp[−f (x)− g(x)]/Z → convex potential f (x) + g(x)
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Highest posterior density region

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cαdx = 1− α,

We consider the highest posterior density (HPD) region

C∗
α =

{
x : f (x) + g(x)︸ ︷︷ ︸

potential

≤ γα
}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds,

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior p(x|y) = exp[−f (x)− g(x)]/Z is log-concave on RN . Then, for any
α ∈ (4 exp[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : f (x) + g(x) ≤ γ̂α = f (x̂MAP) + g(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√
16 log(3/α) independent of p(x|y).

We only need to evaluate f + g on the MAP estimation x̂MAP!
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MAP-based uncertainty quantification

Image credit: Cai et al. (2018b)

Hypothesis test with significance α:

1. Calculate the MAP: xMAP

2. Compute HPD region threshold γ̂α

3. Construct a surrogate image xsgt

4. Compute E = f (xsgt) + g(xsgt)

5. If E ≤ γ̂α → inconclusive test

6. If E > γ̂α → reject hypothesis
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MAP-based uncertainty quantification: Pixel-level UQ visualisation

Image credit: Cai et al. (2018b)

Local credible intervals (LCI)

Set of superpixels {Ωi}Mi=1 such that
Ωi ∩ Ωj = ∅,∀i ̸= j and Ω = ∪iΩi with Ω the
set of all the image pixels

One superpixel region:
xi,ξ = x̂MAP(I − ζΩi ) + (ξ + x̄MAP,Ωi )ζΩi ,

Compute each bound (root-finding alg.):
ξ+,Ωi =
maxξ {ξ | f (xi,ξ, y) + g(xi,ξ) ≤ γ̂α, ξ ∈ [0,+∞)} ,
ξ−,Ωi =
minξ {ξ | f (xi,ξ, y) + g(xi,ξ) ≤ γ̂α, ξ ∈ (−∞, 0]} ,

Display the length of the intervals:
ξ =

∑
i (ξ+,Ωi − ξ−,Ωi ) ζΩi
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MAP-based uncertainty quantification: Pixel-level UQ visualisation

Image credit: Cai et al. (2018b)

Fast pixel-wise errors at different scales

Multiscale wavelet decomposition of level J:
x̂MAP = Ψ âMAP =

∑J
l=0 Ψl âMAP,l ,

Threshold that saturates the HPD region:

ξ̂th =max
ξth

{ξth | f (x̂MAP, ξth , y) + g(x̂MAP, ξth) ≤ γ̂α,

x̂MAP, ξth = Ψ Shard, ξth(âMAP), ξ ∈ [0,+∞)} .

Compute using a root-finding algorithm

Thresholded surrogate image at level j :
x̂MAP, ξ̂th, j

=
∑J

l=0,
l ̸=j

Ψl âMAP,l +Ψj âMAP, ξ̂th, j
,

Approximated error at level ej :
ej = x̂MAP − x̂MAP, ξ̂th, j
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Scalable Bayesian uncertainty quantification

1. Scalability → Need to rely on optimisation sampling, use the MAP estimator

2. Uncertainty quantification → Need the potential to be convex and explicit

3. Good reconstruction → Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

We constrain our prior to be convex, but we gain an effortless UQ!
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Learned convex regulariser

We use the neural-network-based convex regulariser R from Goujon et al. (2023), where

R : RN 7→ R, R(x) =
NC∑
n=1

∑
k

ψn ((hn ∗ x) [k]) ,

- ψn are learned convex profile functions with Lipschitz continuous derivate

- Learnable 2nd degree splines

- There are NC learned convolutional filters hn

- R is trained as a (multi-)gradient step denoiser

Properties:

1. Explicit cost

2. Convex

3. Smooth regulariser with known Lipschitz constant
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Numerical experiments

RI imaging models:

Model from Cai et al. (2018a): x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ1∥Ψ†x∥1 + ιRN (x) ,

Proposed model: x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ2/µRθ(µx) + ιRN (x) ,

MAP estimations are computed using the FISTA algorithm

Validation of the UQ is done by sampling both posterior distributions using a proximal MCMC
algorithm, SK-ROCK (Pereyra et al., 2020)

Experiment settings:

Image size 256× 256

Input SNR of 30dB

Gridded Fourier sampling: 10% coverage from a Gaussian distribution (M ≈ 6.5× 103)

Wavelets used: Daubechies 8
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MAP reconstructions
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SNR = 3.39 dB SNR = 23.05 dB SNR = 26.85 dB

Improved the reconstruction by 3.8 dB
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Posterior standard deviation

Computed using 104 samples obtained from the sampling algorithm SK-ROCK (Pereyra et al.,
2020)
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Wavelet Learned regulariser

More meaningful uncertainties in the posterior Std Dev
The learned convex regulariser was trained on natural images, not RI images
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Pixel-based uncertainty quantification

The local credible intervals (LCI) give a local measure of uncertainty
LCI − < LCI >

SNR = 26.85 dB
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Fast pixel-wise errors at different scales

We can compute pixel-wise error at different scales using:

- A wavelet dictionary (e.g. Carrillo et al. (2012)) - The HPD region computed

Error prediction

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

Level 4 Level 3 Level 2 Level 1 All levels

True error

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

-4.00

-3.00

-2.00

-1.00

0.00

Level 4 Level 3 Level 2 Level 1 All levels

Minimizing the number of likelihood evaluations
Computation time reduced by a factor of 105 wrt samplingTob́ıas I. Liaudat 16



Computing time and likelihood evaluations

Table: Computation wall-clock times for the W28 image in seconds.

Models
MAP Posterior LCIs Fast
optim. sampling 8× 8 pixel UQ

Wavelet-based 0.94 36.0× 103 149.7 —
QuantifAI 0.64 6.44× 103 108.2 0.17

Table: The number of measurement operator evaluations used by the QuantifAI for the W28 image.

MCMC LCIs LCIs Fast
sampling 8× 8 16× 16 pixel UQ

11× 106 81.5× 103 21.2× 103 28

The fast pixel UQ is 106 and 103 times faster than the MCMC sampling and LCIs, respectively.
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Hypothesis test

Scalable hypothesis testing for structure in the reconstruction
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A more realistic experiment

Simulate single frequency MeerKAT ungridded visibility patterns

- Start frequency of 1400MHz with a channel width of 10MHz

- Pointing: J2000, RA=13h18m54.86s, DEC=-15d36m04.25s

1h 2h 4h 8h

M ≈ 3× 104 M ≈ 6× 104 M ≈ 1.2× 105 M ≈ 2.4× 105

We use forward operator based on a torch-based 2D NUFFT with Kaisser-Bessel gridding.
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A more realistic experiment

Results for 1h of observation time (M ≈ 3× 104). MAP reconstruction SNR: 23.88dB
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Computation wall-clock time: MAP estimation → 34.96s, fast pixel UQ → 0.86s

Tob́ıas I. Liaudat 20



A more realistic experiment

Results for 8h of observation time (M ≈ 2.4× 105). MAP reconstruction SNR: 28.56dB
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Computation wall-clock time: MAP estimation → 137.0s, fast pixel UQ → 1.84s
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Conclusions

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and pixel-wise errors at different scales

- Only rely on optimisation to compute the MAP and avoid sampling

- We used learned convex regularisers

- Considerably decreased reconstruction errors
- Improved quality of the posterior St Dev

Perspectives:
- Implement & benchmark QuantifAI on a massively parallelised computing env. (ongoing work)

- Bayesian model comparison of models with data-driven priors, (See Henry Aldridge’s poster)

Publication: Liaudat et al. (2023), arXiv:2312.00125
Code: github.com/astro-informatics/quantifai
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A more realistic experiment

Results for 2h of observation time (M ≈ 6× 104). MAP reconstruction SNR: 25.89dB
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Computation wall-clock time: MAP estimation → 58.85s, fast pixel UQ → 0.99s
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A more realistic experiment

Results for 4h of observation time (M ≈ 1.2× 105). MAP reconstruction SNR: 27.4dB
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Computation wall-clck time: MAP estimation → 93.63s, fast pixel UQ → 1.32s

Tob́ıas I. Liaudat 25



Learned convex regulariser

The regulariser is trained to solve the denoising task

x∗ = argmin
x∈RN

1

2
∥x− y∥22 + λRθ(x) , (1)

The denoising problem is tackled through the unique fixed point of (1) by the gradient step:

TRθ,λ,α(x) = x− α((x− y) + λ∇Rθ(x)) ,

Doing a t-fold composition we obtain

T t
Rθ,λ,α

(y(m)) ≈ x(m)

The training objective with training loss L, e.g., ℓ1, reads

θ∗
t , λ

∗
t ∈ argmin

θ,λ

M∑
m=1

L
(
T t
Rθ,λ,α

(y(m)), x(m)
)
,

For more info: Goujon et al. (2023).
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