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3x2pt Method
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Set of 3 2pt correlations: clustering, cosmic shear, 
galaxy-galaxy lensing

In practice: bin galaxies tomographically, and compute 
correlations within and between bins

Since we bin by redshift, there are systematics related 
to redshift estimation
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Augmented Photo-z Training Samples
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What are photo-z’s and why do we need them?
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● LSST will see so many galaxies, itʼs 
infeasible to measure spectroscopic 
redshifts for all of them

● There is an intrinsic relationship 
between redshift and a galaxyʼs 
photometry

● This relationship can be modelled 
using ML techniques if you have a 
training set with spectroscopic 
redshifts
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What makes photo-z’s difficult?
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● Spectroscopic redshifts are easier to obtain for 
brighter, redder objects→tend to be lower 
redshift than expected LSST data

● LSST will go much deeper than existing 
spectroscopic samples, including DESI

● Training samples for LSST photo-zʼs will be 
non-representative!
○ Leads to poor photo-z estimation for galaxies 

with features not represented in the training 
sample
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What makes photo-z’s difficult?
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Used the DC2 simulation to create a training sample 
that looks like current spectroscopic samples and 
estimated photo-zʼs using FlexZBoost
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Augmentation

Can we add simulated galaxies to the training sample to improve photo-z quality?

● Select 10,000 Buzzard galaxies with features that are unrepresented in DC2 training 
sample
○ i-mag > 23
○ (g-z) color < 1.75
○ ztrue > 1.0 
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Combination matched to DC2 training sample boundaries



Augmentation

Can we add simulated galaxies to the training sample to improve photo-z quality?

● Select 10,000 Buzzard galaxies with features that are unrepresented in DC2 training 
sample
○ i-mag > 23
○ (g-z) color < 1.75
○ ztrue > 1.0 →alone or in combination with one of the photometric criteria
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Combination matched to DC2 training sample boundaries



Simulation Post-Processing
● Buzzard was chosen for augmentation specifically because it uses different methods to create 

SEDs for galaxies than DC2→different color-redshift relation
● Shifting the Buzzard magnitudes so the median magnitude in each band matches the median 

of the DC2 application sample (simulating real data)
○ Produces best case augmented training sample
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Does Augmentation Work?
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% improvement 46% (outlier frac)
54% (NMAD)

46% (outlier frac)
56% (NMAD)

49% (outlier frac)
56% (NMAD)

% recovery 65% (outlier frac)
77% (NMAD)

65% (outlier frac)
78% (NMAD)

69% (outlier frac)
80% (NMAD)

Single Feature Double Feature Triple Feature

Representative:
Outlier fraction: 0.141
NMAD: 0.057

Unaugmented:
Outlier fraction: 0.48
NMAD: 0.19
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Optimized Tomographic Binning
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Why binning?

● Even with our improved photo-z estimates, theyʼre still not precise enough for 3D 
correlation functions→instead we bin by redshift and do 2D angular correlations 
within each bin

● Bins are often chosen to be equally spaced in redshift (equal Δz) or with an equal 
number of galaxies in each bin
○ Can also space equally in comoving distance (Δχ)

● But there are an infinite number of choices to make→is there a better choice to 
maximize the 3x2pt information we get out?

● LSST will also be past the shot noise limit, can we remove some galaxies to 
further improve the 3x2pt results?
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Optimizing the Bin Edges

Introduce the binning equation parameterized by α 
and β 

Divide M evenly into the number of bins, then 
interpolate back to redshift 

For (α, β) = (0,0): M = zmax, recover equal Δz bins

For (α, β) = (1,0): M = Ngal,tot, recover equal number 
bins

For (α, β) = (0,1): M = χmax, recover equal Δχ bins

Calculate DETF figure of merit for each choice of (α, β)
→ maximize the FOM to optimize the bin edges
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Find (α, β) = (0.25, 2.0) 
produces highest FOM 
for the cosmoDC2 
simulation
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Photo-z Post Processing: 
Neural Network Classifiers
● LSST wonʼt be shot noise limited→can potentially 

improve binning further by removing galaxies 
with bad photo-z estimates

● Train two NNCs to estimate which galaxies are 
likely to have “bad” photo-zʼs:
○ Photo-z estimate is an outlier compared to the true 

redshift (outlier NNC; Broussard & Gawiser 2021)
○ Photo-z estimate is far enough away from the true redshift 

to be sorted into a different bin than it otherwise would 
be (misclassification NNC; Moskowitz et al. 2023)

○ Find the amount of galaxies to remove that maximizes 
FOM
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The Optimized Binning Choice
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The optimized 
binning 
prefers 
narrower 
low-z bins and 
wider high-z 
bins

Improve the 
FoM by ~13%, 
equivalent to 
~1 extra year 
of observing
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Conclusions and Future Work

● LSST will rely on non-representative training samples for photo-z estimation
● Training sample augmentation can reduce the outlier fraction of photo-z estimates 

by as much as 50% when working with realistically non-representative training 
samples
○ More sophisticated augmentation procedures and simulations with higher redshift ranges could 

improve this even more

● The combination of optimized tomographic bin edges and NNC sample selection 
can improve the DETF FOM by ~13%, equivalent to an extra year of LSST

● Conducting a full cosmological parameter estimation with these analysis choices 
will show if they can reduce bias from incorrect n(z) estimates
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