KiD55Bl Simulation-Based Inference of KiDS-1000 Cosmic Shear

Maximilian von Wietersheim-Kramsta

maximilian.von-wietersheim-kramsta@durham.ac.uk

21/05/2023 - COSMO21, Chania

Kiyam Lin

Nicolas Tessore

Benjamin Joachimi

Arthur Loureiro

Robert Reischke

Angus Wright

Simulation-Based Inference (SBI)

A.k.a. likelihood-free or implicit likelihood inference

• Signal and noise modelling as complex as simulations can be.

• Likelihood can take an arbitrary form (non-Gaussian).

• Full Bayesian uncertainty propagation from measurements to parameters.

• Number of simulations required similar to the number needed for numerical covariances [Lin et al. 2022; arxiv:2212.04521].

SBI: Approximate Bayesian Computation

$$P(\boldsymbol{\theta}|\boldsymbol{d}) = \frac{P(\boldsymbol{d}|\boldsymbol{\theta}) \cdot P(\boldsymbol{\theta})}{P(\boldsymbol{d})} \propto P(\boldsymbol{\theta}, \boldsymbol{d}) \cdot P(\boldsymbol{\theta})$$
(1)

SBI: Density Estimation

P(

$$\boldsymbol{\theta}|\boldsymbol{d}) = \frac{P(\boldsymbol{d}|\boldsymbol{\theta}) \cdot P(\boldsymbol{\theta})}{P(\boldsymbol{d})} \propto P(\boldsymbol{\theta}, \boldsymbol{d}) \cdot P(\boldsymbol{\theta})$$
(2)

parameters, θ

Figure: [Alsing et al. 2019]

Weak Gravitational Lensing

Kilo-Degree Survey: KiDS-1000

Previous KiDS-1000 Cosmic Shear Results

Forward-Simulation Pipeline

Geometry of the simulations & tomography

Geometry of the simulations

Figure: [Tessore et al. 2023; arxiv:2302.01942]

$$C_{\delta\delta}^{(ij)}(\ell) = \frac{2}{\pi} \int d\chi \, W^{(i)}(z[\chi]) \int d\chi' \, W^{(j)}(z'[\chi]) \int dk \, k^2 \, P(k, z[\chi], z'[\chi]) \, j_\ell(k\chi) \, j_\ell(k\chi')$$
(3)

[von Wietersheim-Kramsta et al. 2024; arXiv:2404.15402]

GLASS: Generator of Large Scale Structure

$$C_{\delta\delta}^{(ij)}(\theta) = \langle \delta^{(i)}(\theta) \, \delta^{(j)*}(\theta) \rangle \tag{4}$$

$$\kappa(\theta, z) = \frac{3\Omega_m}{2} \int_0^z dz' \, \frac{f_k(z') \left[f_k(z') - f_k(z)\right]}{f_k(z)} \frac{1 + z'}{E(z')} \, \delta(\theta, z') \tag{5}$$

Figure: [Tessore et al. 2023; arxiv:2302.01942]

Galaxy Positions & Survey Characteristics

Galaxy Positions & Survey Characteristics

Galaxy Positions & Survey Characteristics

Variable Depth

Figure: Orange: theory [Heydenreich et al. 2020; arXiv:1910.11327]. Blue: forward-simulations.

Cosmic Shear & Galaxy Shapes

 $g(oldsymbol{\Theta}) = rac{\gamma(oldsymbol{\Theta})}{1-\kappa(oldsymbol{\Theta})}$

(6)

Galaxy Shapes & Survey Characteristics

Galaxy Shapes & Survey Characteristics

Galaxy Shapes & Survey Characteristics

$$\epsilon_{obs}(p, \vec{m}; \Theta) = (1 + M^{(p)}) \epsilon_{lensed}(\Theta) + \alpha^{(p)} \epsilon_{PSF}(m) + \beta^{(p)} \delta \epsilon_{PSF} + c^{(p)}$$
Tomographic bin
PSF shear bias
$$0 = 0.11 \sqrt{\epsilon_{PSF,1}^2 + \epsilon_{PSF,2}^2}$$

Measurement: Pseudo Angular Power Spectra

Forward-simulations Speed

KiDS-SBI

Parameter	Symbol	Prior type	Prior range	Fiducial
Density fluctuation amp.	<i>S</i> ₈	Flat	[0.1, 1.3]	0.76
Hubble constant	h_0	Flat	[0.64, 0.82]	0.767
Cold dark matter density	$\omega_{ m c}$	Flat	[0.051, 0.255]	0.118
Baryonic matter density	$\omega_{ m b}$	Flat	[0.019, 0.026]	0.026
Scalar spectral index	$n_{\rm s}$	Flat	[0.84, 1.1]	0.901
Intrinsic alignment amp.	A_{IA}	Flat	[-6, 6]	0.264
Baryon feedback amp.	$A_{\rm bary}$	Flat	[2, 3.13]	3.1
Redshift displacement	$\boldsymbol{\delta}_{z}$	Gaussian	$\mathcal{N}(0, \boldsymbol{C}_{z})$	0
Multiplicative shear bias	$M^{(p)}$	Gaussian	$\mathcal{N}(\overline{M}^{(p)},\sigma_M^{(p)})$	$\overline{M}^{(p)}$
Additive shear bias	$c_{1,2}^{(p)}$	Gaussian	$\mathcal{N}(\overline{c}_{1,2}^{(p)},\sigma_{c_{1,2}}^{(\widetilde{p})})$	$\overline{c}_{1,2}^{(p)}$
PSF variation shear bias	$lpha_{1,2}^{(p)}$	Gaussian	$\mathcal{N}(\overline{lpha}_{1,2}^{(p)},\sigma_{lpha_{1,2}}^{(p)})$	$\overline{\alpha}_{1,2}^{(p)}$

Further massive compression from summary statistics to reduce dimensionality via score compression [Alsing et al. 2018]

$$\mathcal{L} = \mathcal{L}_* + \delta \boldsymbol{\theta}^T \nabla \mathcal{L}_* - \frac{1}{2} \delta \boldsymbol{\theta}^T \mathbf{J}_* \delta \boldsymbol{\theta}, \qquad (7)$$
$$\boldsymbol{t} = \nabla \boldsymbol{\mu}^T \boldsymbol{C}^{-1} (\boldsymbol{d} - \boldsymbol{\mu}). \qquad (8)$$

The score compression is repeated after an initial SBI which refines the fiducial parameter estimate.

KiDS-SBI: Neural Likelihood Estimation (DELFI)

An ensemble of six independent Masked Autoregressive Flows (MAFs) is combined to characterise the likelihood

$$p(\mathbf{t}|\boldsymbol{\theta}; \mathbf{w}) = \prod_{\alpha=1}^{N_{\text{NDEs}}} \beta_{\alpha} p_{\alpha}(\mathbf{t}|\boldsymbol{\theta}; \mathbf{w})$$
(9)

parameters, θ

Internal Consistency & Goodness-of-Fit

[von Wietersheim-Kramsta et al. 2024; arXiv:2404.15402]

Compare different types of inferences:

- \bullet "Standard" Gaussian likelihood assumption with a fixed covariance matrix
- SBI with a learned multivariate Gaussian (MDN)
 ⇒ Gaussian likelihood with a parameter-dependent covariance matrix
- Full neural density SBI (ensemble of MAFs)

 \Rightarrow non-Gaussian likelihood with a parameter-dependent covariance matrix

KiDS-SBI: Mock Analysis

S₈-dependent Uncertainty

S₈-dependent Uncertainty from Theory

Scaling of the analytical Gaussian likelihood in KiDS-1000 if $C_{\text{scaled}}^{(ij)}(\ell) = a C^{(ij)}(\ell)$

Two main models:

• "Standard" isotropic systematics model :

galaxy selection function isotropic in each tomographic bin

• Anisotropic systematics model :

anistropic galaxy selection (position, shapes and redshift)

+ anisotropic PSF distortions

Cosmological Results for Flat \CDM

Cosmological Results for Flat \CDM

KiDS-SBI PC _l : Anisotropic sys. 1	nodel		
KiDS-SBI PC _l : Std. isotropic sys	model	=	
KiDS-1000 PC_{ℓ} (Loureiro et al. 2021)		-	-
KiDS-1000 COSEBIs (Asgari et al. 2021)		=	_
KiDS-1000 updated z cal. (van den Busch et al. 2022)		-	-
KiDS-1000 updated shear mes. (Li et al. 2023)		-	└─
KiDS-1000 Hybrid (DES & KiDS 2023)		-	•
KiDS-1000+DES-Y3 Hybrid (DES & KiDS 2023)			÷
DES-Y3 ξ_{\pm} (Amon et al. 2022)		=	<u>.</u>
HSC-Y3 PC_{ℓ} (Dalal et al. 2023)		-	
Planck 2018 TT,TE,EE+lowE (Planck Collaboration et al. 2020))		+
· · ·			
	0.6 0	.7	0.8
		28	

KiDS-SBI: Conclusions

- SBI is a powerful tool to rigorously conduct cosmological inference and model testing
- We report $\mathbf{S_8} = \mathbf{0.731} \pm \mathbf{0.033}$ which is in 2.9 σ tension with Planck 2020
- Neglecting variable depth and shear biases can bias S_8 by approx. 5%
- Cosmic shear likelihood is consistent with a Gaussian
- Its covariance is measurably cosmology-dependent (cosmic variance) \Rightarrow uncertainty on S₈ is 10% higher

Questions?

Niall Jeffrey, Justin Alsing, François Lanusse (2020)

Likelihood-free inference with neural compression of DES SV weak lensing map statistics MNRAS Volume 501, Issue 1, February 2021, Pages 954–969.

Arthur Loureiro, et al. (2021)

KiDS & Euclid: Cosmological implications of a pseudo angular power spectrum analysis of KiDS-1000 cosmic shear tomography

arxiv 2110.06947v1 .

🚺 David Levin (1994)

Fast integration of rapidly oscillatory functions

JCAM Volume 67, Issue 1, 20 February 1996, Pages 95-101.

References

Justin Alsing et al. (2019)

Fast likelihood-free cosmology with neural density estimators and active learning

Monthly Notices of the Royal Astronomical Society Volume 488, Issue 3, September 2019, Pages 4440-4458.

Justin Alsing et al. (2018)

Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology

Monthly Notices of the Royal Astronomical Society Volume 477, Issue 3, July 2018, Pages 2874–2885.

Appendices A - Pipeline Setup

- Shear-shear weak lensing from KiDS-1000 using pseudo-Cls
- Latin hypercube of cosmology values as simulation input

Parameter	Symbol	Prior type	Prior range	Fiducial
Density fluctuation amp.	S_8	Flat	[0.1, 1.3]	0.76
Hubble constant	h_0	Flat	[0.64, 0.82]	0.767
Cold dark matter density	$\omega_{ m c}$	Flat	[0.051, 0.255]	0.118
Baryonic matter density	$\omega_{ m b}$	Flat	[0.019, 0.026]	0.026
Scalar spectral index	$n_{ m s}$	Flat	[0.84, 1.1]	0.901
Intrinsic alignment amp.	A_{IA}	Flat	[-6, 6]	0.264
Baryon feedback amp.	$A_{\rm bary}$	Flat	[2, 3.13]	3.1
Redshift displacement	$\boldsymbol{\delta}_{z}$	Gaussian	$\mathcal{N}(0, \mathbf{C}_z)$	0
Multiplicative shear bias	$M^{(p)}$	Gaussian	$\mathcal{N}(\overline{M}^{(p)},\sigma_M^{(p)})$	$\overline{M}^{(p)}$
Additive shear bias	$c_{1,2}^{(p)}$	Gaussian	$\mathcal{N}(\overline{c}_{1,2}^{(p)},\sigma_{c_{1,2}}^{(\widetilde{p})})$	$\overline{c}_{1,2}^{(p)}$
PSF variation shear bias	$\alpha_{1,2}^{(p)}$	Gaussian	$\mathcal{N}(\overline{lpha}_{1,2}^{(p)},\sigma_{lpha_{1,2}}^{(p)})$	$\overline{\alpha}_{1,2}^{(p)}$

Appendices A - Pipeline Setup

Appendices B - Compression and DELFI

• A stack of NDEs are used in DELFI

$$\boldsymbol{\rho}(\mathbf{t}|\boldsymbol{\theta};\mathbf{w}) = \prod_{\alpha=1}^{N_{\mathrm{NDEs}}} \beta_{\alpha} \boldsymbol{\rho}_{\alpha}(\mathbf{t}|\boldsymbol{\theta};\mathbf{w}), \tag{10}$$

- A mixture of Gaussian Mixture Density Networks (MDNs) and Masked Autoregressive Flows (MAFs) are employed in this ensemble
- Further massive compression from summary statistics to reduce dimensionality via score compression

$$\mathcal{L} = \mathcal{L}_* + \delta \boldsymbol{\theta}^T \nabla \mathcal{L}_* - \frac{1}{2} \delta \boldsymbol{\theta}^T \mathbf{J}_* \delta \boldsymbol{\theta}, \qquad (11)$$

$$\boldsymbol{t} = \nabla \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{C}^{-1} (\boldsymbol{d} - \boldsymbol{\mu}), \qquad (12)$$

Remap this to a MLE estimate via the Fisher matrix

$$\hat{\theta} = \theta_* + \boldsymbol{F}_*^{-1} \nabla \mathcal{L}_* = \theta_* + \boldsymbol{F}_*^{-1} \boldsymbol{t}_*,$$
(13)

Appendices C - PyDELFI

[Alsing et al. 2019]

Appendices D - SBI - ABC

$$P(oldsymbol{ heta}|oldsymbol{d}) = rac{P(oldsymbol{d}|oldsymbol{ heta}) \cdot P(oldsymbol{ heta})}{P(oldsymbol{d})}$$

(14)

43

Appendices E - Score Compression

[Alsing et al. 2018]

 $\mathbf{t} = \mathbf{M}(\mathbf{d})$

Appendices F - Sensitivity to Compression

Appendix G - Sensitivity to Fiducial Cosmology

Appendix H - Active Learning

Appendix I - Simulation Number Sufficiency

Appendix J - Full Posterior

Appendix K - Signal Test

