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Optimal cosmology inference
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How do we optimally 
extract information from 

cosmological data?

CNN
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Solutions for optimal weak lensing inference

Method Advantages Outstanding issues

Bayesian 
forward-

modelled field-
based 

inference

- Guaranteed to be optimal 
provided the correct model 


- Principled & Interpretable

- ….

- Computationally expensive 

- Sampling over very high-

dimensional parameters

- Multimodality in the posteriors?

- ….

(inverse) Field-
based 

inference with 
CNNs

- Given large enough NN, it can 
extract all information (Universal 
approximation theorem)


- Simpler to implement

- ….

- Is the compression optimal?

- Interpretability

- ….

SBI with all 
possible 
summary 
statistics

- Less compute cost

- Unbiased results if we have the 

correct forward model

- Relatively easy to implement

- ….

- Can we achieve optimal 
compression in practice


- How many statistics to include?

- Dependence on mass mapping 

algorithm / survey mask, etc.

- ….

This session

Judit, 
Maximilian, 
Lucas’ talk

Niall, Bhuv, 
Lucas’s  

talk



Forward modelling weak lensing data

γκθ γobs 𝒟

Forward model for weak lensing data
Compare at 
field level

Different forward models of  the WL data: 

• 3D density + ray tracing (BORG-WL)  

• 2D convergence field modeling: 

• Gaussian prior (ALMANAC) 

• Lognormal prior (KaRMMa/MIKO) 

• ML-based prior 

• ……

Forward modelling the convergence field 
How to model ?P(κ |θ)

Get 
constraints

KS transform Shape noise

This talk

Obs. effects



Lognormal model for convergence field

• Lognormal prior is analytic,
, where,  

• Correct 2-pt and 1-pt function  

• Adds non-Gaussian information

κ = ey − Λ y ∼ 𝒩(μ, σ2)

Clerkin+, 2017

Convergence field can 
be described as a 

lognormal random field



KaRMMa — map inference with 
lognormal priors

Sample mass maps from the posterior:  

Other features: 

• Full-sky forward model (w/ HEALPIX maps) 

• Tomographic mass mapping (Include cross-correlations in the prior)

P(κ |D) ∝ P(D |κ)P(κ)

https://github.com/Supranta/KaRMMa 

Publicly available on 
Github. Reproduce 
KaRMMa DES-

Y3 mass-maps 
yourself !

Assume 
lognormal  
prior on κ

https://github.com/Supranta/KaRMMa


Resolve smaller 
structures

Boruah+ 2024 
(2403.05484)

Used 
KaRMMa to 
produce better 
mass maps 

with DES-Y3 
data

DES-Y3 KaRMMa mass maps



KaRMMa mass maps 
have the expected two-

point functions

Existing mass mapping 
methods do not give 

correct statistics

Boruah+ 2024 
(2403.05484)

DES-Y3 KaRMMa mass maps



Drawbacks of  KaRMMa

 bias in 
the recovered 

power spectrum

𝒪(5%)
Bias in the 

recovered 1-pt 
function

Biases not 
significant for 

DES-Y3



 bias in 
the recovered 

power spectrum

𝒪(5%)
Bias in the 

recovered 1-pt 
function

Biases not 
significant for 

DES-Y3

But lognormal 
model not 

sufficient for 
Stage-IV surveys

Drawbacks of  KaRMMa

We need a better forward model for Stage-IV surveys



WL simulations for Stage-IV surveys

Accuracy

Sp
ee

d

Approximate 
methods, Lognormal 

simulations, e.g, 
FLASK

Full N-body 
+ ray-traced 
simulations

??
How to get  

here? We need more 
simulations 

(realization/
parameter spaces)

Methods usually live here

Accuracy-speed tradeoff

We need more 
accurate (higher 
res/hydro) sims

Some takeaways 
from Jia’s survey



Improving the lognormal prior using ML

Main idea: Use ML to learn the mapping from the 
lognormal simulations to more accurate simulations!

Lognormal ML blackbox Full simulation

Lognormal model already described the 
convergence field very well.  

Can we make small changes to the lognormal 
maps to emulate simulation quality maps?



Generative adversarial networks (GAN)

p1 p2
p3

p4
p5

p6
p7

p8

Probabilistic  
latent  

space, e.g,  
Normal or  

Uniform dist.

Generator

Discriminator

Real (ray-traced) mass maps

Generated mass maps Training method: Adversarial game between 
G and D — G generates fake mass maps 
& tries to fool D, D tries to catch the fake

Training result: G gets better with 
training and generates better mass maps



Generative adversarial networks (GAN)

p1 p2
p3

p4
p5

p6
p7

p8

Generator

Discriminator

Real (ray-traced) mass maps

Generated mass maps Training method: Adversarial game between 
G and D — G generates fake mass maps 
& tries to fool D, D tries to catch the fake

Training result: G gets better with 
training and generates better mass maps

Latent space: 
lognormal random 

fields

Need very 
small networks 
—  
parameters

𝒪(1000)

Realistic latent space — lognormal simulations — 
ML needs to learn the small scale redistribution



Curved sky WL maps w/ GANSky

We produce HEALPIX maps with GANSky



Explainable & physics-informed machine learning

Multiple 
peaks 

from one 
input peak

More compact 
density peak

The GAN only makes small changes to the map,  
i.e, output maps are almost similar to input maps

Rotational equivariance built into the neural network



GANSky produces correct non-
Gaussian summary statistics

We can reproduce the non-
Gaussian summary statistics of  
full ray-traced simulations with 

GANs — at a fraction of  the cost

GANSky maps have the second 
moment of  the non-Gaussian stats, 

even at LSST-Y1 level noise



GANSky reproduce the bispectra of  these maps correctly

GANSky produces correct non-
Gaussian summary statistics

Including correct cross-bin bispectra



Training with only 1 simulation!

Our method is not data 
hungry — interpretable 

latent space does the 
trick!

Training w/ only 1 
full-sky simulation, 
achieves accuracy of  

ray-tracing sims

Will be useful for computing 
covariances of  NG stats for 
Stage-IV surveys — hugely 
reduce the computation cost

One full sky simulation have many many patches!



Map-based cosmology inference
Extensive code testing

(2 parameters)

(  parameters)3 × 105

Tested the correctness of  cosmology posteriors for 
simple analytic casesTwo-step sampling for cosmology posteriors



However, no significant gain for CDM analysis! 
Some degeneracy breaking!

Λ

Forecast for LSST-Y1: Upto 2.5x 
improvement in the constraints on the dark energy 
equation using map-based inference (equivalent to 
statistical power of  6 LSST-like surveys)

Map-based cosmology inference



Field-level intrinsic alignment constraints
These terms are non-Gaussian even 

if   is Gaussianδ

We expect to get stronger IA 
constraints using field-level inference

5x stronger constraints on higher 
order IA parameters using MBI

PRELIM
IN

ARY For LSST, IA 
expected to 
contribute 

 of  the 
error budget

≳ 40 %

TATT parameters dominate the error 
budget for DES-Y3. 



Summary

• Forward modelled field-level inference is the optimal way to extract 
cosmological information from a data set 

• We have made multiple breakthroughs to enable field-level inference 
with weak lensing data: 

• Improved mass maps from DES-Y3 weak lensing data using KaRMMa 

• Developed a GAN-based simulator to produce accurate weak lensing maps 

• 2.5x gain in cosmological constraints with WL using MBI 

• MBI can put much stronger constraints on IA parameters



Extra Slides



Tomographic mass-mapping
Mass-mapping  

without tomography
Mass-mapping  
with tomography

Weak-lensing data in 
different bins trace the 

same large-scale structures

High-redshift bins inform 
the structures in the lower 

redshift bins

Resolve smaller structures 
in low-redshift bins — 

improvement most drastic 
in the low SNR maps



The promise of  field-level cosmology inference

CMB lensing: Upto 
50% stronger 

constraints on  for 
CMB-S4 (Millea+, 

20)

Aϕ

Weak lensing: Upto 
2.5 times stronger 

constraints w/ 
LSST-Y1 (Boruah+ 

23)

Projected galaxy clustering: Upto 5x stronger 
constraints (Dai+, 22)

Map-based cosmology inference  
shows the promise to improve  

cosmological information across  
different probes


