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Optimal cosmology inference
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Solutions for optimal weak lensing inference
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provided the correct model
Principled & Interpretable

(inverse) Field-
based
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CNNs

Given large enough NN, it can
extract all information (Universal
approximation theorem)
Simpler to implement
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dimensional parameters
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Less compute cost

Unbiased results if we have the
correct forward model
Relatively easy to implement

Can we achieve optimal
compression in practice

How many statistics to include?
Dependence on mass mapping
algorithm / survey mask, etc.
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Forward modelling weak lensing data

Forward model for weak lensing data
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How to model P(x|6)”

Different forward models of the WL data:

e 3D density + ray tracing (BORG-WL)

e 2D convergence field modeling:

® Gaussian prior (ALMANAC)

@ Lognormal prior (KaRMMa/MIRO)
MUL-based prior

v



LLognormal model for convergence field
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KaRMMa — map inference with

lognormal priors

Sample mass maps from the posterior: P(x| D) o« P(D | k\P(k)
Other features:
o [ull-sky torward model (w/ HEALPIX maps)

® ‘Jomographic mass mapping (Include cross-correlations in the prior)

KaRMMa
, | Publicly available on
KaRMMa - Kappa Reconstruction for Mass Mapping .
Guthub. Reproduce
KaRMMa is a library for curved-sky mass map reconstruction using a lognormal prior. For more information, see KaRMMa DES-

our paper.
— Y3 mass-maps

Producing Bayesian mass maps with DES-Y3 weak lensing data yourself!

You can use this repository to run KaRMMa on DES-Y3 weak lensing data. The DES-Y3 data used to create
KaRMMa mass maps are included in this repository here.

hitps:// aithub.com/Supranta/KaRMMa



https://github.com/Supranta/KaRMMa

DES-Y3 KaRMMa mass maps

Used
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DES-Y3 KaRMMa mass maps

KaRMMa

= Null-B
Wiener
GLIMPSE
DES-Y3 public

Existing mass mapping
methods do not gwe
correct statistics

KaRMMa mass maps
have the expected two-
pownt functions

Boruah+ 2024
(2403.054854)
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O(5%) bias in
the recovered
power spectrum

Buases not

signaficant for
DES-Y3

Drawbacks of KaRMMa
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Drawbacks of KaRMMa
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We need a better forward model for Stage-1V surveys



WL simulations for Stage-1V surveys

I Approximate 8

" methods, Lognormal 3
simulations, e.g,

Some takeaways
from jfia’s survey

How to get
here?

We need more
accurate (higher
res/hydro) sims

Speed

P Full N-body
j + ray-traced
bk sumulations 2



Improving the lognormal prior using M L.

C¢ + PDF + peak + void (DES-Y3)
[ N-body
Lognormal model already described the
convergence field very well.
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maps to emulate ssmulation quality maps?
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ML blackbox

Main wdea: Use ML to learn the mapping from the
lognormal stmulations to more accurate sumulations!




Generative adversarial networks (GAN)

o Generator
Probabilistic

latent

space, e.g,

Normal or

Uniform dust.

Generated mass maps

Real (ray-traced) mass maps

Trammang method: Adversarial game between
G and D — G generates fake mass maps

& tries to fool D, D tries to catch the fake

Real / Fake

Discriminator

Trainang result: G gets better with
travmng and generaltes better mass maps




Generative adversarial networks (GAN)

Generated mass maps Training method: Adversarial game between

G and D — G generates fake mass maps
& tries to fool D, D tries to catch the fake

. Real / Fake
Need very
Latent space: small networks : D

wscriminator
lognormal random | 6(1000)
ﬁe Ids parameters

Trainang result: G gets better with

travmng and generaltes better mass maps
Real (ray-traced) mass maps

Realistic latent space — lognormal simulations —
ML needs to learn the small scale redistribution




urved sky WL maps w/ GANSky

We produce HEALPIX maps with GANSky



Explainable & physics-informed machine learning

Rotational equivariance built into the neural network

Bin 1 zoom-in Bin 4 zoom-in

More compact
density peak
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Multiple
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input peak

GAN output

The GAN only makes small changes to the map,

Le, output maps are almost similar to input maps
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GANDSky produces correct non-

(Gaussian summary statistics
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We can reproduce the non-
Gaussian summary statistics of
Jull ray-traced simulations with

GANs — at a fraction of the cost

GANSky maps have the second
moment of the non-Gaussian stats,

even at LSS T-Y1 level noise




GANDSky produces correct non-

(Gaussian summary statistics
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Traiing with only 1 simulation!

One full sky simulation have many many patches!

All summaries (DES-Y3) All summaries (DES-Y6) All summaries (LSST-Y1)
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Training w/ only I Our method 1s not data Wall be useful for computing
Sull-sky simulation, hungry — interpretable covarances of NG stats for
achieves accuracy of latent space does the Stage-1V surveys — hugely

ray-tracing sims trick! reduce the computation cost




Map-based cosmology interence

Extensiwe code testing

Gaussi: Map (analyti

Map sam lln . Gaussian Map
. — (3 % 10° parameters)

> k' P(k|O", D)

Sampler: HMC

Cosmology sampling:

@i-l-l A P(@‘K’H—l , D)

Sampler: slice sampler

Lested the correctness of cosmology posteriors for

Two-step sampling for cosmology bosteriors ) )
p sampling P simple analytic cases




Map-based cosmology interence

| Power spectrum

Map-based inference
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Forecast for LSST-Y1: Upto 2.5x
improvement in the constraints on the dark energy
equation using map-based inference (equivalent to

statistical power of 6 LSS I-like surveys)

However, no significant gain_for ACDM analysis!
Some degeneracy breaking!




Field-level intrinsic alignment constraints

‘T hese terms are non-Gaussian even
if 015 Gaussian

We expect to get stronger IA
constraints using field-level inference

DES Y3 Fiducial (TATT)

DES Y3 ACDM-Optimized (TATT)
DES Y3 (NLA)

HSC Y1 ¢y (NLA)

HSC Y1 & (NLA)

KiDS-1000 (NEA no-z)

For LSST) 1A
expected 1o
contribute

> 40% of the
error budget

Dx stronger constraints on higher TATT parameters dominate the error

order IA parameters using MBI budget for DES-T3.



Summary

¢ Forward modelled field-level inference 1s the optimal way to extract
cosmological information from a data set

®* We have made multiple breakthroughs to enable field-level inference
with weak lensing data:

o [mproved mass maps from DES-Y3 weak lensing data using KaRMMa
o Developed a GAN-based simulator to produce accurate weak lensing maps
o 2.5x gain i cosmological constraints with WL using MBI

o MBI can put much stronger constraints on IA parameters
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Tomographic mass-mapping

Mass-mapping
without tomography
Foreground bin (single bin)
0.006

0.004

0
0. (deg)

Background bin (single bin)

0.020

0.015

0.010

0.005

Mass-mapping
with tomography

Foreground bin (tomographic)

0
0, (deg)

ackground bin (tomographic
Background bin (tomographic

0.002

0.000

—0.002

—0.004

0.010

0.005

x mean (Bin 2)

Resolve smaller structures
in low-redshift bins —
improvement most drastic

in the low SNR maps

Weak-lensing data in
different bins trace the
same large-scale structures

High-redshuift bins inform
the structures in the lower

redshift bins



T'he promise ot field-level cosmology interence

—— SPTpol 100d-deep (P) Bayesian
SPTpol 100d-deep (P) Bayesian, A, free
—— SPTpol 100d-deep (P) QE

CMB lensing: Upto
50% stronger
constraints on A, for

CMB-84 (Millea+,
20)

Weak lensing: Upto
2.5 tumes stronger
constraints w/

. LSST-Y1 (Boruah+
Power spectrum 2 3 )

Map-based inference
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Projected galaxy clustering: Upto Sx stronger

constraints (Dai+, 22)

Map-based cosmology inference
shows the promise to improve
cosmological information across

different probes




