IMPERIAL

Field-level inferences of galaxy clustering

Eleni Tsaprazi Imperial College London

Cosmo21 - May 22nd, 2024

Reaching an observational limit: how to optimally extract information?

Eleni Tsaprazi - Imperial College London

2-point statistics of galaxy clustering

Beyond 2-point statistics

How can we go beyond?

Higher-order / non-Gaussian statistics

wavelet-based peak statistics Minkowski functionals Betti numbers

How can we extract information of the full field?

Extracting the full-field statistics with **BORG**

3D large-scale structure constrained with galaxy clustering accounting for survey geometry

BORG has been successfully applied to real data

IMPERIAL

How can we prepare for next-generation data? Full inference and / or cross-correlations peculiar velocities

gravitational potential

tidal shear

divergence

Tsaprazi+23

Field-level inference of galaxy intrinsic alignment

Tsaprazi+22

Field-level inference of galaxy intrinsic alignment

70,000 SDSS-III BOSS LRGs

3D tidal fields from SDSS-III BOSS 15.6 Mpc/h

IMPERIAL

Tsaprazi 23

The non-linear alignment model

70,000 SDSS-III BOSS LRGs

The non-linear alignment likelihood

70,000 SDSS-III BOSS LRGs

4σ detection at 20 Mpc/h

Constant with luminosity, color and redshift

2pt: 9σ at 6 Mpc/h, smaller scales — higher redshifts: need photometry

Field-level inference from spectroscopic and photometric redshifts

- Depth / magnitude vs accuracy
- Photo-z uncertainties can bias cosmological analyses

3D dark matter density can constrain galaxy locations

$$\mathcal{P}(z_i \mid z_{\text{obs}i}, \delta) \propto \mathcal{P}(\delta \mid z_i) \mathcal{P}(z_i \mid z_{\text{obs}i})$$

Eleni Tsaprazi - Imperial College London

Constraining galaxy locations with clustering

IMPERIAL

12

Validation on self-consistent mock data

- 2e7 photometric and 1% spectroscopic redshifts
- Power-law galaxy bias (linear), resolution 13 Mpc
- z = 0.7

mock galaxy

coordinates (observed & ground

truth)

Constrained dark matter density and peculiar velocity

IMPERIAL

Eleni Tsaprazi - Imperial College London

Filamentary structure thanks to the gravity model

Increase in the galaxy count cross-correlation

Information gain vs resolution / galaxy bias

Summary

- Existing 2-point estimators miss information
- Need all high-order statistics
- Galaxy intrinsic alignment
- Photometric galaxy clustering

Outlook

- We're reaching the limit of observable galaxies
- Focus on
 - fully exploiting information in the data
 - self-consistently propagating uncertainties
 - demonstrating the power of high-order statistics