Jia Liu (Center for Data-Driven Discovery, Kavli IPMU) COSMO21, Chania, Crete, Greece, May 20th, 2024 LION

100800

Future Science with CMB x LSS (April 10-14, 2023, YITP, Kyoto)

CD3 x CMB x Astro Seminar by Jo Dunkley (Feb. 5, 2024)

A³ Net

AstroAl Asian Network Summer School September 2–6, 2024, Osaka, Japan Registration (deadline: June 30, 2024): cd3.ipmu.jp/a3n

Cosmological analysis: the usual practice

Left: CMB polarization map; middle: polarization power spectrum; right: inferred cosmological parameters; Credit: ESA and Planck Collaboration

Cosmological analysis: the usual practice

Left: CMB polarization map; middle: polarization power spectrum; right: inferred cosmological parameters; Credit: ESA and Planck Collaboration

Rationale

The COSMO21 series began in Lisbon in 2014, as an IAU Symposium, and was last held in Valencia in 2018. Since then, much has changed in the statistical analysis of cosmological data, with a large rise in the use of machine learning techniques in particular. Bayesian hierarchical modelling, using field-level inference, has been increasingly widespread, and simulation-based (or likelihood-free) inference is growing rapidly in the field, to tackle the complexity of low-redshift data whose (non-Gaussian) statistical properties may be very poorly known. Allied to that has been an increased interest in extreme data compression compression for data whose statistical properties are unknown. Machine teamost lif not all) these simulations, such as using neural ratio estimation (as one of a number of the statistical inference technicity). Accurace statistical properties are unknown. Machine team of a number of of a number of of a number of of a number of of automatic differentiation, differentiable forward models are also emergine to challes. beginning to challenge researchers in our field as elsewhere. This methodological development is accompanied by an upcoming explosion of data, expected from Euclid and the Rubin Observatory, and in due course the Roman Space Telescope and the Square Kilometre Array, to add to the current and recent survey data from KiDS, DES, HSC, and DESI, for example.

Tegmark 2004

Neutrino Mass

Dark Matter

Baryons

See Daniela Grandon's talk

	Variable parameters	Number of simulations for variable parameters	Number of simulations for the fiducial cosmology	Box size [Mpc/h]	Number of parti- cles
CosmoGridV1	$\Omega_m,\sigma_8,H_0,w_0,n_s,\Omega_b$	2500×7	200	900	832^{3}
COSMO-SLICS	$\Omega_m,\sigma_8,H_0,w_0$	$25{\times}2$	800	505	1536^{3}
DarkGridV1	Ω_m,σ_8	58×5	50	900	768^{3}
MASSIVENUS	$\Omega_m, \sigma_8, M_{ u}$	101×1	n/a	512	1024^{3}
DH10	Ω_m,σ_8	158×1	n/a	140	256^{3}

Table 1. List of simulation sets used in map-level simulation-based inference of cosmological parameters from LSS probes, either for forecasts or measurements. The COSMO-SLICS simulations description is taken from Harnois-Déraps et al. [100], the MASSIVENUS from Liu et al. [98], the DARKGRIDV1, a precursor to COSMOGRIDV1, from Zürcher et al. [46], and the DH10 from Dietrich & Hartlap [36]. This list includes only simulations that have lightcone shells/snapshots output dense enough to enable map-level inference with projected probe maps from LSS surveys. This list is not exhaustive; other notable datasets were used by Fluri et al. [17], Liu et al. [42], Zorrilla Matilla et al. [106].

Also the **Gower Street Sims** (Jeffrey+2024) and for 3D fields: the **Quijote** simulations (Villaescusa-Navarro+2019) and the **CAMELS** Simulations (Villaescusa-Navarro+2020)

Kacprzak+2023

Gabriela Marques Fermilab (Peaks & Minima)

Leander Thiele Kavli IPMU (PDF)

Sihao ChengDaniela GrandonIASLeiden(Scattering Transform)(Baryonic Effects)

Jess Cowell Kavli IPMU/Oxford (Marked PS)

Joaquin Armijo Kavli IPMU (Minkowski Functionals)

HSC Weak Lensing Higher-Order Statistics

Camila Noaves INPE (Implicit Likelihood)

Will Coulton Cambridge (Bispectrum)

Masato Shirasaki NAOJ (DMO Simulation)

Ken Osato Chiba U (Baryonic Simulation)

	HSC	DES	KIDS
FoV (deg2)	1.8	3	1
Area (deg2)	1100	5000	1350
N _{gal} (arcmin ⁻²)	22	7	9

Name	# of realizations
Fiducial	2268
Photo- $z \operatorname{run} 1$	100
Photo- $z \operatorname{run} 2$	100
multiplicative-bias run 1	100
multiplicative-bias run 2	100
Cosmology-varied run	50×100

Shirasaki+2021 Marques+2024

Three level blinded analysis (honor system):

- Built pipeline with only simulations and define data cuts to mitigate systematics
- Unblind B-mode and randoms
- Unblind the power spectrum
- Unblind the full data

Thiele+2023 Marques+2024 Grandon+2024 Cheng+2024

Large-scale structure surveys: Stage III \rightarrow Stage IV

	HSC	DES	KIDS	EUCLID	LSST	CSST	ROMAN
FoV (deg2)	1.8	3	1	0.5	3.5	1.1	0.28
Area (deg2)	1100	5000	1350	15000	18000	15000	2000
N _{gal} (arcmin ⁻²)	22	7	9	30	30	28	50

Higher-order stats topical team, co-lead Joachim Harnois-Deraps

* These are approximate numbers. Please refer to official documents for up-to-date numbers.

kinetic SZ thermal SZ

Interaction with electrons

Integrated SW

(also: Rees-Sciama, Moving lens) Evolving gravitational potential

CMB Lensing

Photon's path bent by curved spacetime

Cosmic Infrared Background

Emission from dusty galaxies

Credit: HST

Radio Galaxies

Synchrotron emission from AGNs

Future discoveries rely on CMB & LSS

Neutrino Mass

Inflationary grav. waves

Primordial non-Gaussianity

Astrophysics, and more!

<mark>Adrian Bayer</mark> Princeton/CCA

Zack Li Berkeley/LBL

Joe DeRose Berkeley/LBL

Yici Zhong U Tokyo

Yu Feng Google

Will Coulton Giuseppe Puglisi

Linda Blot Kavli IPMU

Marcelo Alvarez Stanford

Junjie Xia Hideki Tanimura Kavli IPMU Kavli IPMU

Cambridge

U Catania

Alex Laguë Mat Madhavacheril U Penn U Penn

	mmDL Sehgal+2010 Han+2021	Websky Stein+2020 Li+2022	Agora Omori 2022
N-body box N _{particles}	1 Gpc/h 1024 ³	7.7 Gpc 6144 ³	1 Gpc/h 3840 ³
Min. M _{halo}	$10^{13}~{ m M}_{\odot}$	$1.2 ext{ x } 10^{13} ext{ M}_{_{\odot}}$	1.5 x 10 ⁹ M _o /h
LSS observables	None	None	κ, clusters, LIM
No. realizations	1	1	1

* Inputs from SO, CMB-S4, LSST, DESI, PFS, SPHEREx, Roman collaborators

	mmDL Sehgal+2010 Han+2021	Websky Stein+2020 Li+2022	Agora Omori 2022	Stage IV requirements*
N-body box N _{particles}	1 Gpc/h 1024 ³	7.7 Gpc 6144 ³	1 Gpc/h 3840 ³	a few Gpc
Min. M _{halo}	$10^{13} \mathrm{M}_{\odot}$	$1.2 ext{ x } 10^{13} ext{ M}_{_{\odot}}$	1.5 x 10 ⁹ M _o /h	$10^{12} \mathrm{M}_{\odot}$
LSS observables	None	None	κ , clusters, LIM	κ, galaxies,clusters
No. realizations	1	1	1	10–100

* Inputs from SO, CMB-S4, LSST, DESI, PFS, SPHEREx, Roman collaborators

	mmDL Sehgal+2010 Han+2021	Websky Stein+2020 Li+2022	Agora Omori 2022	Stage IV requirements*
N-body box N _{particles}	1 Gpc/h 1024 ³	7.7 Gpc 6144 ³	1 Gpc/h 3840 ³	a few Gpc
Min. M _{halo}	$10^{13} \mathrm{M}_{\odot}$	$1.2 \times 10^{13} \mathrm{M_{\odot}}$	1.5 x 10 ⁹ M _o /h	$10^{12} \mathrm{M}_{\odot}$
LSS observables	None	None	κ , clusters, LIM	κ, galaxies,clusters
No. realizations	1	1	1	10–100

* Inputs from SO, CMB-S4, LSST, DESI, PFS, SPHEREx, Roman collaborators

	mmDL Sehgal+2010 Han+2021	Websky Stein+2020 Li+2022	Agora Omori 2022	Stage IV requirements*	Half Dome 2024-
N-body box N _{particles}	1 Gpc/h 1024 ³	7.7 Gpc 6144 ³	1 Gpc/h 3840 ³	a few Gpc	3.5 Gpc/h, 6144 ³
Min. M _{halo}	$10^{13} \mathrm{M}_{\odot}$	$1.2 ext{ x } 10^{13} ext{ M}_{\odot}$	1.5 x 10 ⁹ M _o /h	$10^{12} \mathrm{M_{\odot}}$	$10^{12} \mathrm{M}_{\odot}$
LSS observables	None	None	κ , clusters, LIM	κ, galaxies,clusters	κ , galaxies, clusters, +more
No. realizations	1	1	1	10–100	11+1 f _{NL} (more to come)

* Inputs from SO, CMB-S4, LSST, DESI, PFS, SPHEREx, Roman collaborators

See Adrian Bayer's talk

		\mathbf{Sim}	Simulation setup			Run time				Data volume			
Run	$N_{ m sim}$	N_c	$L \ [{ m Mpc/h}]$	$\left N_{ m side} ight $	$N_{ m node}$	Hour	IC [%]	PM [%]	FOF [%]	IO [%]	Halos	Particles	Sheets
full res	11 (+1)	6144^{3}	3750	8192	2048	4.38	2.89	72.40	14.48	10.24	362G	17T	1.4T
$1/2 \mathrm{ res}$	1	4096^{3}	5000	8192	512	1.95	3.26	74.17	10.84	11.73	29G	$7.7\mathrm{T}$	824G
$1/4 \mathrm{res}$	1	2048^{3}	5000	8192	64	2.42	3.72	81.61	11.92	2.76	1.4G	$1.2\mathrm{T}$	376G
1/8 res	1	1024^{3}	5000	2048	8	2.32	3.08	77.22	18.81	0.89	21M	149G	33G
$1/16 \mathrm{~res}$	1	512^{3}	5000	2048	1	3.01	1.73	65.86	32.21	0.21	176K	19G	8.9G

TABLE II. Summary of the HalfDome simulation N-body runs, including the number of simulations $N_{\rm sim}$, particle number N_c , box size L, the resolution of the HEALPix maps $N_{\rm side}$, run time, and data products and their corresponding volumes per simulation. Except for 1/2 resolution, which runs on NERSC Cori, all simulations are performed on Stampede2. The cosmic variance is turned off for 1/4 resolution. At the full resolution, in addition to the 11 default runs, we provide an additional run with primordial non-Gaussianity $f_{\rm NL}=20$.

Your contribution to the next generation simulations!

- New sciences / methods that can be enabled by simulations
- What aspects of simulations you'd like to see improving (new observables, resolution, number of sims., parameter sampling...)
- Please share your thoughts in: <u>https://t.ly/JvHdl</u>

A³ Net [AstroAl Asian Network] First Summer school September 2-6, 2024, Osaka, Japan

https://cd3.ipmu.jp/a3n Registration open this week!

的意家

24時間営業中