

Neural Networks as Classifiers of **Cosmological Models**

Lisa Goh, Indira Ocampo, Savvas Nesseris, Valeria Pettorino CosmoStat, CEA Paris-Saclay lisa.goh@cea.fr

COSMO21, 21 May 2024, Chania, Crète

Context

The concordance Λ CDM model has been widely successful in describing our Universe. However, pertinent questions remain:

• What is the true nature of dark energy?

• How can we explain the Hubble tension ($\sim 5\sigma$ discrepancy between Planck and SHOES) and the S_8 tension ($\sim 2 - 3\sigma$ discrepancy between Planck and low-redshift probes)?

Is the Λ CDM model sufficient?

Beyond ACDM

<u>Quintessence Models: Coupled Dark Energy</u>

• First hypothesised in the 1990s as a solution to the coincidence problem (Wetterich 1995, Amendola 2000)

• Has also shown to be able to relieve the H_0 tension (Pettorino 2013, Di Valentino et al. Review 2020), while still compatible with data

• Still actively studied at the background and perturbation levels, Nbody simulations, spherical collapse models

Coupled Dark Energy

Introducing a coupling between fermionic dark matter (DM) particles and dark energy, assumed to take on the form of a scalar field ϕ

$$\nabla^{\mu}T^{\phi}_{\mu\nu} = \kappa\beta T^{\rm cdm} \nabla_{\nu}\phi$$

Where the coupling strength parameter β is a function of redshift:

$$\beta(z) = \frac{\beta_1 + \beta_n}{2} + \frac{1}{2} \sum_{i=1}^{n-1} (\beta_{i+1} - \beta_i) \tanh[s_i(z - z_i)]$$

;
$$\nabla^{\mu}T^{\rm cdm}_{\mu\nu} = -\kappa\beta T^{\rm cdm}\nabla_{\nu}\phi$$

Coupled Dark Energy

$z = \{0, 100, 1000\}$

Constraining tomographic CDE with 3x2pt probes

Source: Goh et al. 2023

----- KiDS-1000 Cosmic Shear (constant β)

2.5

3.0

Galaxy Clustering and 3x2pt very effective at constraining coupling strength β at low redshifts!

Neural Networks as Model Classifiers

<u>Can we go beyond Bayesian constraints?</u>

- We investigate if a neural network (NN) is able to differentiate between models $\Lambda \rm CDM$ and tomographic CDE based on data
- Generate mock data to train our NN, using it on a sample test set to classify between both models
- Using $f\sigma_8(z)$ and its uncertainty as our observable to probe our cosmological model

Methodology Gene

<u>Generating mock</u> $f\sigma_8(z)$

- Generate values of fσ₈(z) for 16 redshift bins, using the modified CLASS code of Goh et al. 2023 (https://github.com/LisaGoh/CDE)
- ACDM: $\omega_m = [0.01, 0.7]$ CDE: $\omega_m = [0.01, 0.7],$ $\beta_i = [0.001, 0.5]$
- Assume a 3-bin parameterisation with $z = \{0, 100, 1000\}$

Methodology

<u>Simulating Stage IV survey-like specifications</u>

z	$rac{dN_{BGS}}{dz \ d { m deg}^2}$	z	$rac{dN_{ELG}}{dz \ d { m deg}^2}$	$rac{dN_{LRG}}{dz \ d { m deg}^2}$
	1105	0.65	309	832
0.05	1165	0.75	2269	986
0.15	3074	0.85	1923	662
0.25	1909	0.95	2094	272
0.35	732	1.05	1441	51
0.45	120	1.15	1353	17
		1.25	1337	0
		1.35	523	0
		1.45	466	0
		1.55	329	0
		1.65	126	0
		1.75	0	0
		1.85	0	0

Source: DESI Collaboration et al. 2016

- Following the redshift distribution, galaxy bias and number densities from DESI Bright Galaxy Survey (BGS), Emission Line Galaxies (ELG) and Luminous Red Galaxies (LRG) (DESI Collaboration et al. 2016)
- Adding noise: Calculate the Fisher matrix to obtain the covariance matrix C_{ij} of $f\sigma_8(z)$ between redshift bins

Training the NN

<u>Tuning NN Hyperparameters with Optuna</u>

- We use Optuna to optimise the NN architecture: varying the number of hidden layers, nodes, type of optimiser and dropout rate
- Minimise the loss function
- Use early stopping to prevent overfitting of the data

Training the NN

<u>Tuning NN Hyperparameters with Optuna</u>

- We use Optuna to optimise the NN architecture: varying the number of hidden layers, nodes, type of optimiser and dropout rate
- Minimise the loss function
- Use early stopping to prevent overfitting of the data

	Hyperparameter				
Model	Hidden	Nodes	Dropout	Training	
	layers		rate	epochs	
β_1	1	38	0.224	660	
β_2	1	116	0.218	683	
β_3	1	82	0.215	673	

Training the NN

Accuracy Curves

Results

Multiclass Classification

<u>Generalising between coupling epochs</u>

Can we differentiate between early and late time coupling?

SORT OF!

Predic		
eta_1	β ₂	β_3
0.13 ±0.02	0.15 ±0.03	0.18 ±0.03
0.76 ±0.04	0.01 ±0.02	0.01 ±0.02
0.03 ±0.02	0.20 ±0.06	0.12 ±0.06
0.08 ±0.04	0.63 ±0.06	0.69 ±0.06

Conclusions

- With binary classification, the network performs similarly well regardless of epoch in which coupling is activated
- In multi-class classification, models with late-time coupling are most accurately identified by the NN
- In light of upcoming surveys like *Euclid*, which will provide us with a wealth of spectroscopic clustering data, NNs could prove a robust cross-check of conventional Bayesian methods in constraining beyond- Λ CDM physics

• We demonstrate the feasibility of our NN in differentiating between ΛCDM and tomographic CDE models, using simulated stage-IV survey data of $f\sigma_8$'s

1	0
	n
	$\mathbf{\circ}$

Lisa Goh CosmoStat, CEA Paris-Saclay lisa.goh@cea.fr

Thank you!

