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Merging paradigms

AI
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Applied Math
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e.g. Physical

Properties, Models
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Physics Enhanced Learning



Physics Enhanced Learning
Embed physical understanding of the world into machine learning models.

(See review by Karniadakis et al. 2021.)
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Redshift augmentation of supernovae
observations (Boone 2019, Alves et al. 2022,
2023)

Redshift augmentation
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Data efficiency suffers: data “used” to learn physics, rather than problem.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Geometric deep learning on the sphere (Cobb et al.
2021; McEwen et al. 2022; Ocampo, Price & McEwen 2023)

CMB observed on the
celestial sphere

Matt PriceKevin Mulder

See Cosmo21 poster
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

Jason McEwen 8



Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Physics informed neural networks (PINNs)
encode differentiable equations (e.g.
boundary conditions) in loss.

PINNs
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Differentiable physical models
▶ Radio interferometric telescope

(Mars et al. 2023, 2024)
▶ Optical PSF

(Liaudat et al. 2023)
▶ JAX-Cosmo

(Campagne et al. 2023)

Physics inside AI models for imaging data from
radio interferometric telescopes (Mars et al. 2024)Jason McEwen 8



Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Differentiable mathematical methods
▶ Spherical harmonic transforms

(s2fft; Price & McEwen 2024)
▶ Spherical wavelet transforms

(s2wav; Price et al. 2024)

Matt Price Alicja Polanska

See Cosmo21 poster

Jess Whitney
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Probabilistic Learning



Probabilistic Learning
Embed a probabilistic representation of data, models and/or outputs.

(See Murray 2022.)
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ MC Dropout (Gal & Ghahramani 2016): drop
nodes probabilistically to sample an
ensemble of networks.

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Bayes by Backprop (Blundel et al. 2015): model
distribution of weights (by variational
inference).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Emulation: sample from learned prior
(Perraudin et al. 2020, Allys et al. 2020, Price et al.
2023, Price et al. in prep., Mousset, Price, Allys,
McEwen in prep.)

Emulated LSS
(Mousset, Price, Allys, McEwen in

prep.)
Matt Price

See Cosmo21 poster
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Enhanced Bayesian model selection
(harmonic; McEwen et al. 2021, Polanska et al. 2023,
2024, Piras et al. in prep.)

▶ Only requires posterior samples.
▶ Agnostic to sampling technique:

⇝ Leverage efficient samplers.
⇝ Variational inference.

▶ Scale to high dimensions.
Matt PriceAlicja Polanska Davide Piras

See Cosmo21 talk
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Simulation-based inference (SBI)
(Alsing et al. 2018, Cranmer et al. 2021, Lin et al. 2022, in
prep., von Wietersheim-Kramsta et al. 2024)

▷ Model selection for SBI (Spurio Mancini et al. 2022)
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SBI with scattering transform
(Lin et al. in prep.)Kiyam Lin

See Cosmo21 poster
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Variational inference (Whitney et al. in prep.)

Mass mapping with uncertainties
by variational inference
(Whitney et al. in prep.)Matt PriceTobias Liaudat

See Cosmo21 talk

Jess Whitney
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Intelligible AI



Intelligible AI
Machine learning methods that are able to be understood by humans.

(See Weld & Bansal 2018, Ras et al. 2020.)
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

▷ Feature importances
(Lochner et al. 2016)

Supernova feature importances

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

▷ Saliency maps
(Bhambra et al. 2022)

Galaxy saliency mapping

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Deep priors learned from training data
(hybrid model-based and data-driven)
(Remy et al. 2022, McEwen et al. 2023)

Compute Bayesian evidence for
model selection

(proxnest, McEwen et al. 2023)Matt PriceTobias Liaudat Henry Aldridge

See Cosmo21 poster
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Interpretable constraints on ML models,
e.g. convexity
(Liaudat et al. 2023)

Impose convexity on learned model

Matt PriceTobias Liaudat

See Cosmo21 talk
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Reliability

Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.
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Reliability

Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

▷ Validity of statistical distributions
(Hermans et al. 2022, Lemos et al. 2023)

Validity of distribution
(Hermans et al. 2022)
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Reliability

Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

▷ Validity of statistical distributions
(Hermans et al. 2022, Lemos et al. 2023)
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Coverage analysis for SBI with
scattering (Lin et al. in prep.)

Kiyam Lin

See Cosmo21 poster
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Reliability

Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

▷ Diversity (avoiding mode-collapse)
(Price et al. 2023, Whitney et al. in prep.)

Recover probability
distribution over full
underlying manifoldMatt PriceTobias Liaudat

See Cosmo21 talk

Jess Whitney
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With great power comes great responsibility!
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Physics Enhanced Learning
Embed physical understanding of the world into machine learning models.

(See review by Karniadakis et al. 2021.)
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Data efficiency suffers: data “used” to learn physics, rather than problem.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Highly computationally demanding.
▷ Always required?

▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
▷ Inductive biases not enforced.
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen 2023).
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Probabilistic Learning
Embed a probabilistic representation of data, models and/or outputs.

(See Murray 2022.)
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Reliability section).
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Availability and representativeness of training data.
▷ Reliability, e.g. diversity of ML model often lacking.

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Reliability (hold that thought… see upcoming Reliability section).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Reliability?

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
▷ Statistical validation (hold that thought… see upcoming Reliability section).
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Intelligible AI
Machine learning methods that are able to be understood by humans.

(See Weld & Bansal 2018, Ras et al. 2020.)
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Transfer learning, self-supervised learning.
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Reliability

Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

▷ Uncertainties not aways meaningful.
▷ Diversity of ML model often lacking.

▷ Integrate in statistical framework to inherit theoretical guarantees.
▷ Extensive validation tests (e.g. Hermans et al. 2022, Lemos et al. 2023).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Well-posed frameworks (e.g. physics enhanced, probabilistic).
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