In collab with Elena Sellentin, Jia Liu, Gabriela Marques, Sihao Cheng, Joaquin Armijo++ arXiv:2308.10866, 2403.03807 Grandón & Sellentin in prep. 2024

COSMO21, 21 May 2024, Chania 🗺

Daniela Grandón Leiden University

Weak lensing cosmology and non-Gaussian fields

Weak lensing convergence (κ) maps are 2D projections of the matter density along the line of sight.

$$\kappa(\boldsymbol{\theta}) = \frac{3H_0^2 \Omega_m}{2c^2} \int_0^{\chi_{lim}} \mathrm{d}\chi g(\chi) \chi \frac{\delta(\chi \boldsymbol{\theta}, \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})} d\chi g(\chi) \chi \frac{\delta(\chi \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})} d\chi g(\chi \boldsymbol{\theta}) \chi \frac{\delta(\chi \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})} d\chi g(\chi \boldsymbol{\theta}) \chi \frac{\delta(\chi \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})} d\chi g(\chi \boldsymbol{\theta}) \chi \frac{\delta(\chi \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})} d\chi g(\chi \boldsymbol{\theta})} d\chi g(\chi \boldsymbol{\theta}) \chi \frac{\delta(\chi \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})} d\chi \chi \frac{\delta(\chi \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})} d\chi \frac{\delta(\chi \boldsymbol{\theta})}{\chi} \chi \frac{\delta(\chi \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})} d\chi \frac{\delta(\chi \boldsymbol{\theta})}{\lambda} \chi$$

 χ)

Weak lensing convergence (κ) maps are 2D proping sight.

$$\kappa(\boldsymbol{\theta}) = \frac{3H_0^2 \Omega_m}{2c^2} \int_0^{\chi_{lim}} \mathrm{d}\chi g(\chi) \chi \frac{\delta(\chi \boldsymbol{\theta}, \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})}$$

$$g(\chi) = \int_{\chi}^{\chi_s} \mathrm{d}\chi' n(\chi') \frac{\chi' - \chi}{\chi}$$

Weak lensing convergence (κ) maps are 2D projections of the matter density along the line of

 χ)

Weak lensing convergence (κ) maps are 2D projections of the matter density along the line of sight. **Convergence map**

 χ)

$$\kappa(\boldsymbol{\theta}) = \frac{3H_0^2 \Omega_m}{2c^2} \int_0^{\chi_{lim}} \mathrm{d}\chi g(\chi) \chi \frac{\delta(\chi \boldsymbol{\theta}, \boldsymbol{\theta})}{a(\chi \boldsymbol{\theta})}$$

$$g(\chi) = \int_{\chi}^{\chi_s} \mathrm{d}\chi' n(\chi') \frac{\chi' - \chi}{\chi}$$

Weak lensing convergence (κ) maps are 2D projections of the matter density along the line of sight.

 χ)

$$\kappa(\boldsymbol{\theta}) = \frac{3H_0^2 \Omega_m}{2c^2} \int_0^{\chi_{lim}} \mathrm{d}\chi g(\chi) \chi \frac{\delta(\chi \boldsymbol{\theta}, \chi)}{a(\chi)} \frac{\delta(\chi \boldsymbol{\theta}, \chi)}{\lambda}$$

$$g(\chi) = \int_{\chi}^{\chi_s} \mathrm{d}\chi' n(\chi') \frac{\chi' - \chi}{\chi}$$

Convergence power spectrum

$$C_{\kappa}(\ell) = \frac{9H_0^4\Omega_m}{4c^4} \int_0^{\chi_s} \mathrm{d}\chi \frac{g^2(\chi)\chi}{a^2(\chi)} P_{\delta}\left(k = \frac{\ell}{\chi}, \chi\right)$$

Convergence map к-map 2 arcmin

Same power spectrum

Мар З

Same power spectrum

We need to go beyond 2point information!

Non-Gaussian, higher order statistics

Non-Gaussian, higher-order statistics

Non-Gaussian statistics

• Peak counts:

Probe overdense regions, massive clusters along the line of sight.

Credit: Gabriela Marques

Non-Gaussian statistics

• Peak counts:

Probe overdense regions, massive clusters along the line of sight.

• Minimum counts: Probe the emptiest/underdense regions.

Credit: Gabriela Marques

Non-Gaussian statistics

- Peak counts:
 - Probe overdense regions, massive clusters along the line of sight.
- Minimum counts: Probe the emptiest/underdense regions.
- **PDF:** Histogram of convergence values.

Credit: Gabriela Marques

Stage III analysis: Subaru Hyper Suprime-Cam Y1 data

- \rightarrow Y1 data: 137 deg²
- \rightarrow n_gal=17 arcmin⁻²
- Likelihood based on N-body sims
- Model the statistics with emulators.

Marques et al. 2023, Grandón et al. 2024 Thiele et al. 2023, Cheng et al. 2024, Armijo et al. in prep 2024

z-range	$n_g^{\rm eff}[{\rm arcmin}^{-2}]$
0.3 < z < 0.6	5.14
0.6 < z < 0.9	5.23
0.9 < z < 1.2	3.99
1.2 < z < 1.5	2.33

Results Stage III: HSC Y1 Non-Gaussian statistics

Grandón et al. 2024 arXiv:2403.03807, Marques et al. 2023 arXiv:2308.10866

Results Stage III: HSC Y1 Non-Gaussian statistics

Grandón et al. 2024 arXiv:2403.03807, Marques et al. 2023 arXiv:2308.10866

Improvement of ~21% compared to power spectrum only. ~35% when combined.

Baryonic feedback

Baryonic feedback

Fractional impact of baryons on the matter power spectrum at z=0 for different simulations.

IllustrisTNG BAHAMAS low-AGN ____

HSC Y1 analysis: Impact of baryons

BAHAMAS fid-AGN _.__

BAHAMAS high-AGN

-0.06

-1.5

HSC Y1 analysis: Impact of baryons

0.0

1.5

 $\kappa/\langle\sigma(\kappa)\rangle$

Grandón et al. 2024 arXiv:2403.03807

3.0

Impact of baryons on the inferred S_8

 $\Delta S_8 = S_8^{\rm H} - S_8^{\rm DM}$

Impact of baryons on the inferred S₈

 $\Delta S_8 = S_8^{\rm H} - S_8^{\rm DM}$

Impact of baryons on the inferred S₈

$$\Delta S_8 = S_8^{\rm H} - S_8^{\rm I}$$

Impact of baryons on the inferred S_8

 $\Delta S_8 = S_8^{\rm H} - S_8^{\rm DM}$

Impact of baryons on the inferred S₈

 $\Delta S_8 = S_8^{\rm H} - S_8^{\rm DM}$

Impact of baryons on the inferred S₈

 $\Delta S_8 = S_8^{\rm H} - S_8^{\rm DM}$

Results: HSC Y1 real data

TT+TE+EE+lowE $C_{\ell}^{\kappa\kappa}$ 300< ℓ <900 $C_{l}^{\kappa\kappa}$ 300<l<1900 $C_{\ell}^{\kappa\kappa}$ 900< ℓ <1900 ST $\ell_{center} = 550$ ST $l_{center} = 550, 1200$ ST $\ell_{center} = 1200$ Peaks 8' Peaks 5' Peaks 2'

Minima 8'

Minima 5' Minima 2'

Baryonic feedback and Stage IV analysis

Impact of baryons for Stage IV: Peak counts

Peak counts 2 arcmin

Grandón et al. in prep 2024 LSST-DESC

Impact of baryons for Stage IV: Peak counts

Peak counts 2 arcmin

Peak counts 5 arcmin

Grandón et al. in prep 2024 LSST-DESC

Our goal is to establish a Bayesian framework that enables trustworthy parameter inference from non-Gaussian statistics, applied to real data.

Bayesian Model Averaging (BMA)

Weighted average of multiple models (baryonic feedback models). Weights determined by the Bayesian evidence.

$$\mathcal{P}(\boldsymbol{\theta}|\boldsymbol{x}) = \frac{\sum_{k} \mathcal{P}(\boldsymbol{\theta}|\boldsymbol{x}, M_{k}) \mathcal{P}(M_{k}|\boldsymbol{x})}{\sum_{k} \mathcal{P}(M_{k}|\boldsymbol{x})}$$

The models *M_k*: BAHAMAS low-AGN, fid-AGN, high-AGN.

Bayesian Model Averaging for Baryonic feedback.

$$P(\boldsymbol{x}_{o}|\boldsymbol{\mu}_{B}, \mathsf{C}, N_{r}) = \frac{\bar{c}_{p}|\mathsf{C}|^{-1/2}}{\left[1 + \frac{(\boldsymbol{x}_{o} - \boldsymbol{\mu}_{B})^{T}\mathsf{C}^{-1}(\boldsymbol{x}_{o} - \boldsymbol{\mu}_{B})}{N_{r} - 1}\right]^{\frac{N_{r}}{2}}}$$

First step: Parameter inference for each model individually. Likelihood (Sellentin & Heavens 2016):

Bayesian Model Averaging for Baryonic feedback.

$$P(\boldsymbol{x}_{o}|\boldsymbol{\mu}_{B},\mathsf{C},N_{r}) = \frac{\bar{c}_{p}|\mathsf{C}|^{-1/2}}{\left[1 + \frac{(\boldsymbol{x}_{o}-\boldsymbol{\mu}_{B})^{T}\mathsf{C}^{-1}(\boldsymbol{x}_{o}-\boldsymbol{\mu}_{B})}{N_{r}-1}\right]^{\frac{N_{r}}{2}}}$$

 $B_i =$

First step: Parameter inference for each model individually. Likelihood (Sellentin & Heavens 2016):

Baryonic feedback correction factor

$$= \frac{\langle x_i^{\rm B} \rangle}{\langle x_i^{\rm DMO} \rangle}$$

$$= \mu_i(\boldsymbol{\theta}) B_i$$

Case 1: Data vector with Fid-AGN contamination

Peak counts 2 arcmin

Grandón & Sellentin in prep. 2024

Case 1: Data vector with Fid-AGN contamination

Peak counts 2 arcmin

Case 2: Data vector with model misspecification

Grandón & Sellentin in prep. 2024

Stage-III and Stage-IV surveys.

order to debias parameter inference.

estimators.

Summary

Non-Gaussian statistics can provide precise cosmological constraints for

We expect severe biases in cosmological parameters for weak lensing Stage-IV analysis. For peak counts, we need to smooth the map >>>5arcmin in

Fitting a multitude of baryon models to the data, and having the data select the best model, is a solid technique to inference from non-Gaussian

Stage III analysis: Cosmology from weak lensing non-Gaussian stats with Subaru Hyper Suprime-Cam Y1 Marques et al. 2023 arXiv:2308.10866 Grandón et al. 2024 arXiv:2403.03807 Thiele et al. 2023 arXiv:2304.05928 Cheng et al. 2024 arXiv:2404.16085

HSC Y1 CNN, Lu et al. 2023

HSC Y1 ST, Cheng et al. 2023

improvement from ST