The scattering transform: a CNN without training

Sihao Cheng (程思浩) Institute for Advanced Study & Perimeter Institute

COSMO21 May 22, 2024

complex data

a vocabulary power spectrum P(k)?

simple information

data exploration no model

> classification discrete model

parameter inference continuous model

Non-magnetic turbulence

http://turbulence.pha.jhu.edu

Magnetic turbulence

information

Limitations: Iose information too many coefficients

How do we characterize a field?

power spectrum

scattering transform

CNN

cosmic density map

2-order statistics

slices of 3D MHD simulation

scattering statistics

Synthesized with scattering statistics

Ising model Turing pattern

sea temperature

solar UV image

cosmic matter

generated with scattering statistics (translation invariant)

How do we characterize a field?

scattering transform

from power spectrum to scattering transform

 $P(k) \propto \langle I \star e^{ikx} \rangle^2$

local kernel $\psi(x)$

 $S_1(k) = \langle \left| I \star \psi \right| \rangle$

 $\langle \cdot^2 \rangle = P(k)$

modulus

convolutional network

scale $j \approx 1/k$

wavelets and sparsity

vision cells in brain (Hubel & Wiesel 1968)

sparse representation of natural images (Olshausen & Field 1996)

> kernels learned in AlexNet (Krizhevsky, Sutskever, & Hinton 2012)

Dirac wavelet Fourier

close to Gabor wavelets

interpretation

modification of 2, 3, 4-point: log bin + stable non-linearity

structure sparsity $s_{21} \equiv \overline{S_2} / S_1$

Cheng & Menard, 2021b

structure shape $s_{22} \equiv S_2^{\parallel} / S_2^{\perp}$

 $l_1 \parallel l_2$:

Cheng & Menard, 2021b

arranged by 2nd-order scattering coefficients

UMAP 2

Cheng & Menard, 2021b

cosmological simulations

Matilla Zorrilla et al. 2016, Gupta et al. 2018 (Columbia lensing group)

inferring cosmological parameters

Cheng et al. 2020

inferring cosmological parameters

P(l) ~20 coefficients

scattering coefficients 37 coefficients

millions

informative compact			
robust 10 ³ Volumer 10 ²	S ₁ , S ₂ CNN (Rib	p(l)	peak cou
10 ¹	DES HSC	LSST,Euclid,WFIRST	noise
		noise level	

HSC year 1

HECTOMAP

WIDE12H

Cheng, Marques, Grandón, Thiele, Shirasaki, Ménard, Liu, 2024

VVDS

mock mass map with no noise

improvement from ST

high S8 value

_	ACT lensing+BAO SPT lensing+BAO <i>Planck</i> TT+TE+EE+lowE		Madhavacheril+23 Bianchini+20 Aghanim+20a	
	• Y1 C_{ℓ} +ST Y1 C_{ℓ} Y3 ξ_{\pm} Y1 ξ_{\pm} Y3 C_{ℓ} Y1 C_{ℓ}	raw photo-z	· · · · · · · · · · · · · · · · · · ·	Cheng+24 (This work) Cheng+24 (This work) Li+23 Hamana+20 Dalal+23 Hikage+19
(• Y1 C_{ℓ} +ST Y1 C_{ℓ} Y3 C_{ℓ} Y3 ξ_{\pm}	z adjusted		Cheng+24 (This work) Cheng+24 (This work) Dalal+23 Li+23
• DES Y3 C_{ℓ} +peaks DES Y3 C_{ℓ} DES Y3+KiDS-1000 ξ_{\pm} • DES Y3 moments • DES Y3 peaks • KiDS-450 deep learning DES Y3 ξ_{\pm} KiDS-1000 ξ_{\pm} KiDS-1000 C_{ℓ}		Zürcher+22 Doux+22 DES & KiDS 23 Gatti+22 Zürcher+22 Fluri+19 Secco+22 & Amon+22 Asgari+21 Loureiro+22		
9 ' '	1.0		1.1	
n/0.3				

BOSS galaxies (Georgias Valogiannis)

spherical generative model (Matt Price)

one-variable illustration: moments vs scattering

folding: better than High-order moments

folding the core

Cheng & Menard, 2021b

extension to cross-correlations

Simulation

Synthesized with scattering correlations

extension to cross-correlations

input image synthesis from scattering transform alone $Corr(I, I \star \psi)$

lensing field

cosmic web

25%

synthesized

histogram

50%

75%

lensing

overall amplitude of scattering correlations

spread

sparse

x1 (original) x0 xЗ Cheng, Morel, Allys, Ménard, Mallat, 2024, PNAS Nexus

angular variation of scattering correlations

curvy

pointy

x1 (original)

cosmic lensing

cosmic web

modeled fields with scattering statistics (200 steps)

Cheng, Morel, Allys, Ménard, Mallat, 2024, PNAS Nexus

2D fluid

magnet fluid

anisotropic fluid

How do we characterize a field?

information

number of statistics relation to physics

