Cosmic fields beyond 2pt: practical challenges and opportunities

Chihway Chang (UChicago/KICP) with Dhayaa Anbajagane, Yuuki Omori and many others in DES/DESC

Outline

- The ΛCDM paradigm and extracting information beyond 2pt • Practical challenges: beyond 2pt systematics
- Opportunities: primordial non-Gaussianity
- Towards field-level inference
- Summary & outlook

Outline

- The ΛCDM paradigm and extracting information beyond 2pt
- Practical challenges: beyond 2pt systematics
- Opportunities: primordial non-Gaussianity
- Towards field-level inference
- Summary & outlook

Cosmology as we know it today

- ACDM works very well
- Key questions: dark matter, dark energy, inflation
- Curiosities within ΛCDM: H0, S8, w0wa

Cosmology as we know it today

- ACDM works very well
- Key questions: dark matter, dark energy, inflation
- Curiosities within ΛCDM: H0, S8, w0wa

Cosmic Microwave Background (CMB)

Early-universe physics

Gravity, dark matter, dark energy

Galaxy positions

Astrophysics

CMB lensing

Sunyaev-Zeldovich Effect

Galaxy positions

Astrophysics

CMB lensing

The LSS is a powerful probe for

Early-universe physics ACDM (gravity, dark energy, dark matter) Astrophysics (galaxy evolution)

Galaxy lensing

z=1.4

z=5.7

CMB lensing

Compared to CMB More overall information The information is more complex Non-Gaussianity

Galaxy lensing

Sunyaev-Zeldovich Effect

Two-point correlation

Two-point correlation

Three-point correlation

Two-point correlation

Three-point correlation

Complex structures (filaments/voids)

Two-point correlation

(filaments/voids)

- Simple measurement and modeling Require less data and more robust to nuisance
 - parameters
- Less information

 10^{1}

Can only test limited range of models

Require lots of data to constrain lots of model parameters

Require less data and more robust to nuisance parameters

 10^{1}

- Less information
- Can only test limited range of models

 Require lots of data to constrain lots of model parameters

10 years ago

 10^{1}

- Simple measurement and modeling
- Require less data and more robust to nuisance parameters
- Less information
- Can only test limited range of models

 Require lots of data to constrain lots of model parameters

10 years ago

 10^{1}

- Simple measurement and modeling
- Require less data and more robust to nuisance parameters
- Less information
- Can only test limited range of models

Information rich

Complete description

- Complex measurement and modeling
- Require lots of data to constrain lots of model

parameters

10 years from now?

Lensing Higher-Order Statistics (HOS)

N-point correlations and related

N-point correlation function / N-spectrum Mass aperture statistics and their moments Moments / Cumulative Distribution Functions Integrated N-point correlation function Density-split statistics

Peaks / voids

Topological statistics (Minkowski, Betti #, persistent homology) *Wavelets / scattering transform*

Petri et al. (2015), Gruen et al. (2018), Allys et al. (2020), Halder et al. (2021), Zücher et al. (2021), Banerjee & Abel (2021), Fluri et al. (2022), Lanzieri et al. (2023)...

Field-level inference

Bayesian hierarchical modelling

Deep learnings, e.g. CNN

Summary statistics

Lensing Higher-Order Statistics (HOS)

N-point correlations and related

N-point correlation function / N-spectrum Mass aperture statistics and their moments Moments / Cumulative Distribution Functions Integrated N-point correlation function Density-split statistics

Peaks / voids

Topological statistics (Minkowski, Betti #, persistent homology) *Wavelets / scattering transform*

Petri et al. (2015), Gruen et al. (2018), Allys et al. (2020), Halder et al. (2021), Zücher et al. (2021), Banerjee & Abel (2021), Fluri et al. (2022), Lanzieri et al. (2023)...

Field-level inference

Bayesian hierarchical modelling

Deep learnings, e.g. CNN

Summary statistics

Outline

- The ΛCDM paradigm and extracting information beyond 2pt
- Practical challenges: beyond 2pt systematics
- Opportunities: primordial non-Gaussianity
- Towards field-level inference
- Summary & outlook

Anbajagane, CC, Banerjee et al. (2024)

Dhayaa Anbajagane

Arka Banerjee

Aspen HOS workshop, June 2022

What does it take for your to trust HOS @ some level as 2pt? · Blinding @ Covarianée (zpt is 1 mature) O no analytical cross-check (cf. Sim-based) @ Goussian likelihood (-> LFZ): DEMULTIOR @ knowing limits @ Null tests @ Simpli Dimplicity

Aspen HOS workshop, June 2022

What does it take for your to trust HOS @ some level as 2pt ? · Blinding @ Covariance (2pt is 1 mature) (no analytical cross-check (cf. Sim-based) @ Goussian likelihood (-> LFZ) DEMULTIOR @ Null tests Tests

Aspen HOS workshop, June 2022

Towards robust HOS: scale-dependent CDFs

 10^{1}

 θ [arcmin]

10²

The first question to ask

extract considering both systematic effects and computational limitations?

• How much information is there in the field? And how much can we practically

The first question to ask

- How much information is there in the field? And how much can we practically extract considering both systematic effects and computational limitations?
- The answer to these questions depends on
 - The science question of interest (w/LCDM, EDE, fNL, non-CDM)
 - The dataset (density/galaxy, redshift, noise, systematics)
 - The implementation (statistics, inference, sampling)

A simple exploration

- Assuming
 - wCDM
 - DES Y3-like lensing
 - Fixed scale
 - Moments and CDFs*
- A simple analysis says that we gain significantly (3x in area) going from 2pt to 3pt, and much less after that

Recall Bhuv and Sihao's talk

* no directional information

Next, redo all the 2pt tests...

	k = -0.020 $k = -0.006$ $k = 0.006$	0.002 00	k = 0.002 k = 0.006
$ \Delta P/\sigma $	$ \begin{bmatrix} 10^{1} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \end{bmatrix} $ (0, 0)	<i>Ρ</i> /σ	$k = -0$ $k = -0$ $k = -0$ 10^{1} 10^{0} $(0, 0)$
	10^{-3}	₫	10 ⁻¹ 10 ⁻²
Δ <i>P</i> /0	10^{-1} (0, 2) 10^{-2} 10 ⁻³ 10 ⁻³	$\Delta P/\sigma$	10 ¹ 10 ⁰ (0, 2)
	$\begin{array}{ccc} 10^1 & 10^2 & 10^1 \\ \theta_s \text{ [arcmin]} & \theta_s \text{ [arcmin]} \end{array}$		10^{-1} 10^{-2} 10^{-2} 10^{1} 10^{2} $\theta_{s} \text{ [arcmin]}$

But that may not be sufficient!

• New systematic effects could appear at higher order

Correlation of signal and noise at all orders Gatti, Jeffrey et al. (2023)

Robust HOS

- 3pt level) is crucial for having HOS be trusted to the same level as 2pt
- working together with people familiar with 2pt analyses

• For data in the near future and wCDM/LCDM, having a 3pt-level pipeline could bring us a long way way to extracting all the accessible non-Gaussian information

• Ensuring that the analysis is robust to all sources of systematic effects (at least at the

• It is encouraging that people are working on these (sometimes tedious) tasks and

Outline

- The ΛCDM paradigm and extracting information beyond 2pt
- Practical challenges: beyond 2pt systematics
- **Opportunities: primordial non-Gaussianity**
- Towards field-level inference
- Summary & outlook

Anbajagane, CC, Lee, Gatti (2024)

Dhayaa Anbajagane

Hayden Lee

Marco Gatti

wCDM/LCMD

- Most literature today use HOS to extract information beyond 2pt in the field to constrain wCDM/LCDM
- This makes sense since gravity is highly non-Gaussian, there's a lot of information we are leaving behind when we only do 2pt

See talks from Bhuv, Joachim, Daniela, Niall, Judit, Supranta...

• We can try to test different models of the early universe (e.g. primordial non-Gaussianity, or PNG)

primordial and late-time non-Gaussianity (cf. CMB)

• However, gravity is highly non-Gaussian, the low-redshift observables contain both

simulations?

• But, perhaps not all hope is lost, we do know fairly well how to forward-model gravity. Can we disentangle the primordial and late-time non-Gaussianity via

simulations?

Inject bispectrum templates $(f_{\rm NL}^{\rm eq}, f_{\rm NL}^{\rm or, lss}, f_{\rm NL}^{\rm loc}, f_{\rm NL}^{\rm or, cmb})$

z=1100

• But, perhaps not all hope is lost, we do know fairly well how to forward-model gravity. Can we disentangle the primordial and late-time non-Gaussianity via

"The World" The Ulagam Simulations

- N-body simulation suite designed for fullsky analyses of wide-field surveys for fNL
- Initial conditions from Quijote (Villaescusa-Navarro et al. 2020) and **Quijote-PNG** (Coulton et al. 2022)

https://ulagam-simulations.readthedocs.io/

$$N = 512^{3}$$
$$L = 1 \text{ Gpc}/h$$
$$\{\Omega_{\rm m}, \sigma_8, n_s, w, f_{\rm NL}^{\rm X}\}$$

Accurate to k < 1 [h/Mpc], $\ell < 1000$

Gravitational potential $\Phi(\mathbf{k}) = \phi(\mathbf{k}) + \int f_{\mathrm{NL}}[\delta_D] K(\mathbf{k}_1, \mathbf{k}_2) \phi(\mathbf{k}_1) \phi(\mathbf{k}_2) d^3 k_1 d^3 k_2$

Gaussian

$$B_{\Phi} = 2f_{\mathrm{NL}}K(\mathbf{k}_1,\mathbf{k}_2)P_{\Phi}$$

floc NI, Presence of second scalar field $f_{\rm NL}^{\rm eq}$ $f^{\mathrm{or},\mathrm{lss}}$

- $P_{\Phi,1}P_{\Phi,2} + \text{cyc.}$
- Presence of "non-canonical" kinetic terms
- $f_{\rm NL}^{\rm or, cmb}$ Approx. orthogonal to local and equilateral
 - Similar to above, but better approximation at squeezed

Analysis setup

- Weak lensing convergence maps
- Moments (N=2-5), CDFs
- Fisher forecast on constraints on fNL
- Simulation covariance at fiducial cosmology
- Compare DES Y3, DES Y6, LSST Y1, LSST Y10

Run	$\mathbf{P}_{\mathrm{fid}} \pm \Delta P$	$N_{ m s}$
Fiducial		20
Local PNG, $f_{\rm NL}^{\rm loc}$	0 ± 100	10
Equilateral PNG, $f_{\rm NL}^{\rm eq}$	0 ± 100	10
LSS Orthogonal PNG, $f_{\rm NL}^{\rm or,lss}$	0 ± 100	10
CMB Orthogonal PNG, $f_{\rm NL}^{\rm or,cmb}$	0 ± 100	10
Matter density, $\Omega_{\rm m}$	0.3175 ± 0.01	10
Density fluctuations amplitude. σ_8	0.834 ± 0.015	10
Dark energy EoS w_0	-1 ± 0.05	10
Spectral index n_s	0.9624 ± 0.02	10

In which order is the information stored?

LSST Y10-like

Moments (N = 2) Moments ($N \leq 3$)

— Moments ($N \leq 4$) CDFs — Moments ($N \leq 5$)

A reasonable scale to look at is ~10' (5-15 Mpc)

DES Y6 competitive with BOSS LSST Y10 competitive with DESI

Lensing HOS for early-universe physics

- Advantages of doing this:

 - Offer potential detection of scale-dependent PNG
 - Lensing simulations are faster than galaxies
 - Combined with galaxies could potentially calibrate galaxy bias
- Be imaginative in new things we can already test!

• We expect lensing HOS could contribute meaningfully to the constraints on fNL

• Independent cross-check with scale-dependent galaxy bias measurements

Outline

- The ΛCDM paradigm and extracting information beyond 2pt
- Practical challenges: beyond 2pt systematics
- Opportunities: primordial non-Gaussianity
- Towards field-level inference
- Summary & outlook

Omori, Zeghal, Lanusse, CC et al. (in prep)

Yuuki Omori

Justine Zehgal

François Lanusse

Full-field inference

- gravity over cosmic time

• The ultimate level of modeling the LSS is when we have a field-level model of what we see — maps of initial conditions + cosmological and nuisance parameters • Individually we know how to do these steps, the most non-trivial step is evolving

Forward-model structure formation

There is a spectrum of implementations to forward-model structure formation

N-body

FastPM

Full physics Computationally expensive LPT

Lognormal Gaussian

Approximate physics Computationally cheap

Forward-model structure formation

There is a spectrum of implementations to forward-model structure formation

N-body

FastPM

Full physics Computationally expensive

> See talks from Florent, Eleni, Supranta, Arthur, Adrian...

Lognormal Gaussian

Approximate physics Computationally cheap

LPT

Forward-model structure formation

There is a spectrum of implementations to forward-model structure formation

N-body

JaxPM

Full physics Computationally expensive

> See talks from Florent, Eleni, Supranta, Arthur, Adrian...

Lognormal Gaussian

Approximate physics Computationally cheap

LPT

JaxPM-based field-level inference framework

• https://github.com/DifferentiableUniverseInitiative/JaxPM

Hybrid Physical-Neural ODEs for Fast N-body Simulations

Denise Lanzieri^{*1} **François Lanusse**^{*2} **Jean-Luc Starck**²

- Example: 2s (LPT), 90s (JaxPM) for single HMC step
 - LSST Y10-like, 5 redshift bins
 - 5x5 deg^2, 400x400x4600 Mpc/h, 200x200x128 pixels
- Require sampling ~5M parameters (!!)

(2023)

The challenge of sampling

Lots of fine-tuning is still needed to recover contours that make sense (ongoing work...) Focus on being constantly grounded by the 2pt analysis we think we know how to do, and fair comparison between different methods

LPT, weak lensing convergence field, 25 deg²

The challenge of sampling

Lots of fine-tuning is still needed to recover contours that make sense (ongoing work...) Focus on being constantly grounded by the 2pt analysis we think we know how to do, and fair comparison between different methods

LPT, weak lensing convergence field, 25 deg²

Outline

- The ΛCDM paradigm and extracting information beyond 2pt
- Opportunities: primordial non-Gaussianity
- Practical challenges: beyond 2pt systematics
- Towards field-level inference
- Summary & outlook

Summary & Outlook

• The gain in beyond 2pt statistics depends on **the science**, the dataset, and how we **extract the signal** — it may not always make sense to go to the highest order • There are practical challenges that we are working on to make HOS more robust • There is great opportunities for learning about the **new physics** via lensing HOS • **Field-level inference** is the final frontier — lots of work needed to do full-physics

The community has made a lot of progress making these maps!

Weak lensing mass

0.01

SV (2015)

150 deg² 3.4 M galaxies

Vikram, CC, Jain et al. (2015) CC, Vikram, Jain et al. (2015) DES Collaboration

0.01

Y1 (2018)

1,300 deg² 35 M galaxies

> *CC et al.* (2018) DES Collaboration

Y3 (2021)

-0.015

4,300 deg² 100 M galaxies

Jeffrey, Gatti, CC et al. (2021) DES Collaboration

0.01

Y6 (2024) expected

0.01

~4,300 deg² ~150 M galaxies

DES Collaboration

Summary & Outlook

• The gain in beyond 2pt statistics depends on **the science**, the dataset, and how we **extract the signal** — it may not always make sense to go to the highest order • There are practical challenges that we are working on to make HOS more robust • There is great opportunities for learning about the **new physics** via lensing HOS • **Field-level inference** is the final frontier — lots of work needed to do full-physics