Gravitational-wave cosmology: current results and statistical challenges ahead

The standard cosmological model?

For almost 100 years, we have been measuring the expansion of the Universe

The standard cosmological model?

According to General Relativity, and confirmed by many observations, the Universe is expanding with a rate described by

$$\frac{H(z)}{H_0} = \sqrt{\Omega_{m,0}(1+z)^3 + \Omega_\Lambda + \Omega_r(1+z)^4 + \Omega_k(1+z)^2}$$

HubbleDark matterDark energyRadiationCurvatureconstant

The cosmic expansion offers us many potential discoveries:

- What are the energy species living in our Universe?
- Is General Relativity valid on cosmological scales?
- What are the average and critical densities of the Universe?

Critical density

$$\rho_c = \frac{3H_0^2}{8\pi G}$$

Energy density

$$\Omega_{\rm X} = \frac{\rho_{\rm X}}{\rho_c}$$

How have been measuring the Universe expansion so far?

Direct (Standard Candles)

Indirect (Standard Candles)

- Cepheids, Supernovae Type IA, Active Galactic nuclei, Kilonovae (?) and short Gamma-ray Burst
- **Issues:** Requires complex astrophysical calibration

- Cosmic Microwave Background temperature fluctuations, Baryonic nucleosynthesis
- **Issues:** Cosmic variance (a single Universe)

Measurements of the Hubble constant

- There is a tension between direct and indirect measurements of the Hubble constant.
- Although in-depth studies for hidden systematics the tension has not been yet alleviated.
- We require to directly measure the Universe expansion in all the observable Universe.

Gravitational Wave sources at cosmological scales

INFN

GW150914 1×10^{-1/} Inspiral Merger Ringm down The first direct detection gravitational waves 180,000 km/s ears 14 Sept 2015 An 'interesting' signal is detected at both LIGO sites 1.0 Strain (10⁻²¹) 0.5 Rapid analysis suggested the signal was from two black 0.0 holes crashing into each other billion -0.5 n 0.2 seconds three times the mass of Detailed analysis was performed over the following months. (That's before multicellular life evolved on Earth) -1.0Numerical relativity Reconstructed (template) 180km 29 Separation (R_S) Velocity (c) 6.0 (c) 7.0 (c) 7.0 (c) 4 36 the radius of the final black hole Black hole separation 3 ashington and Louisian Black hole relative velocity @daniel.williams 0 0.30 0.35 0.40 0.45 Credit: LVK EPO and Outreach groups

B. P. Abbott et al. PRL 116, 061102 (2016)

Time (s)

Gravitational Waves from cosmic distances

Source frame

Detector frame

Gravitational Wave sources at cosmological scales

In order to measure the expansion of the Universe we need to know the source's distance and recessional velocity

1 AU 1 pc 100 pc 1 kpc 100 kpc 1 Mpc 100 Mpc 1 Gpc 10 Gpc

Distances with Electromagnetic observations

Distances with GW observations

Compact binary coalescences

From GWs we can not measure the **source redshift** (escaping velocity)

In recent years, we used several methods to assign a redshift to GW sources

- **Bright sirens:** An associated Electromagnetic (EM) counterpart (GRB, Kilonova etc...) can provide the identification of the host galaxy.
- Dark sirens: Galaxy surveys can be used to identify possible hosts in the GW localization volume.
- **Spectral sirens:** Knowledge of the source-frame mass distribution can be used to assign a redshift to GW sources.

GW170817 + EM transients

At 12:41:04 UTC a GW from the merger of two neutron stars is detected

- +2 seconds later Integral and Fermi detect a GRB.
- ~10 hrs later a kilonova emission from NGC4993 is observed.

With GW170817 we have been provided:

- Luminosity distance from GW170817.
- Redshift identification of the host galaxy from NGC4993.
- Peculiar motion of NGC4993.

Bright sirens: Cosmology with GW170817

E Instein Telescope

INFN

[LVC+, Nature (2017)]

11

Bright sirens: Cosmology with GW170817

INFN

Dark Sirens cosmology

Spectral sirens: GW-only cosmology

• If we assume an overdensity of BBHs produced at 35 solar masses, some "extreme" cosmologies can not fit the overdensity of BBHs.

Open questions

- What is the mass and redshift distribution of BBHs?
- Which are the various formation channels for BBHs?

[M. Mapelli arXiv:2106.00699 for review]

GW cosmology after GWTC-3: Spectral sirens

- As a consequence, the masses of GW observations are redshifted by the expansion of the Universe [Ye+ PRD 104 2021].
- Open question: Are these models able to adapt to complex astrophysical observations? [Pierra+, PRD 109, 2024]

GW cosmology after GWTC-3: Spectral sirens

GW cosmology after GWTC-3: Spectral sirens

The only EM information is the counterpart of GW170817

H₀ posterior of the 3 mass models combined with GW170817 posterior

INFN

Dark sirens: Cosmology aided by galaxy surveys

- A cosmological model has statistical support when the GW localization matched an *overdensity* of galaxies.
- Galaxy catalogs are not complete at higher redshifts, we need to apply corrections in order to now bias our analyses [*R. Gray+, PRD* (2019)].
- **Open question:** How does galaxy properties correlate with CBC hosting? [Perna, **SM**, 2405.07904]
 - Two main actors: Star Formation rate and total stellar mass [M. Artale +, MNRAS (2021)]

Dark sirens: Cosmology aided by galaxy surveys

[[]Mastrogiovanni+, PRD 2023]

GW hosting models will have an important impact for cosmology

Simone Mastrogiovanni - Chania, cosmo21 conference, May 20th 2024

E mary

INFŃ

20

GW cosmology after GWTC-3: Dark sirens

Main result of the paper showing various H0 posteriors.

We select the K-band for the luminosities of galaxies and the preferred mass model (powerlaw+Gaussian peak)

E Instein Telescop

The likelihood for an inhomogeneous Poisson process in presence of selection biases, for a **constant rate in detector time**, is (see <u>Mandel+ 2018 MNRAS</u>, <u>Vitale+ 2020</u>)

Dete

$$\mathcal{L}(x|\Lambda) \propto e^{-N_{\rm exp}} \prod_{i=1}^{N_{\rm obs}} T_{\rm obs} \int \mathcal{L}_n(x|\theta,\Lambda) \frac{dN}{dtd\theta} d\theta$$
Noise process
$$\frac{\text{Expected}}{\text{number of}} \qquad N_{\rm exp} = T_{\rm obs} \int p_{\rm det}(\theta,\Lambda) \frac{dN}{dtd\theta} d\theta.$$

Integral over the events (numerator): Done summing over posterior samples

Integral over the events (numerator): Done summing over posterior samples

Number of detected events

$$N_{\rm exp} \approx \frac{T_{\rm obs}}{N_{\rm gen}} \sum_{j}^{N_{\rm det}} \frac{1}{\pi_{\rm inj}(\theta_j)} \frac{dN}{dtd\theta} \bigg|_{j}$$
Number of injections generated (even not detected)
Prior used for injections

The hierarchical likelihood computed numerically is given by the equation below

$$\mathcal{L}(x|\Lambda) \approx e^{-N_{\exp}} \prod_{i=1}^{N_{obs}} \frac{T_{obs}}{N_s} \sum_{j=1}^{N_s} \frac{1}{\pi(\theta_{j,i})} \frac{dN}{dtd\theta} \Big|_{j,i}$$

Can we keep sampling this likelihood? Most likely no...

- Problem 1: Timing
- Problem 2: Numerical stability
- Problem 3: Rate modelling (Physics) for another talk :)

Solution 1

 Graphical processing units offer 2 order of magnitudes of boost

Solution 2

 Likelihood-free approaches (Normalizing flow) requires no

[Leyde+, PRD 109 (2024)]

What is next for GW cosmology?

Improving the current detector network < 2035

1 per 6.0109e+12 years

O4 data taking, <u>97 new</u> candidates

INFN

Detection ranges of 3G detectors

INFN

Conclusions: A snapshot for the expected numbers

Using expected detection ranges from

INFN

Thank you for your attention

Robust assumptions?

Observed vs predicted abs mag distributions, binned by redshift

> **Motivates** choice of K-band for our main results

Planck

SH0ES

INFN

Changing SNR cut produces consistent H_0 posteriors.

Population excess at ~ 35 M_{\odot} observed for each SNR cut

Planck

SH0ES

Simone Mastrogiovanni - Chania, cosmo21 conference, May 20th 2024

Planck

SH0ES

200

Gravitational Wave sources at cosmological scales

There are large uncertainties on the GW estimation of the luminosity distance. The precision can be improved with (i) extra EM information (ii) precession or higher order modes.

Dark sirens: Cosmology aided by galaxy surveys

- In the case that the GW is not observed with EM counterpart, we can use galaxy catalogs to identify possible galaxy hosts [Schutz, Nature 1986].
- Galaxy surveys will provide possible redshifts.
- GW will provide luminosity distance.
- Best localized events provide better constraints for cosmology.

GW dark sirens, galaxies and cosmological properties

- CBCs hosted by luminous galaxies:
 - we can exclude lower H0 values
 - The rate of CBC mergers per galaxy should be 1 every 100'000 years.
- CBCs hosted by all the galaxy type:
 - Lower values of H0 can not be easily excluded
 - The rate of CBC merger per galaxy should be 1 every 1,000,000 years.

Dark sirens with 2.5 Generation GW detectors

Localization is of crucial importance for the galaxy catalog method.

- About 3000 dark sirens will be localized better than GW190814.
- ~5 dark sirens will be so well localized to have ~1 galaxy in their localization volume.
- ~100 dark sirens will have less than 1000 galaxies in their localization paper.
- With one year of observation, constraint on H0 at the 5% precision

GW and Large-scale structures

Redshift 0

Redshift 1.5

Redshift 2

Possible redshift

Open question: How does GW track other Large-scale structure tracers? (Mostly galaxy clusters and HI maps)

[S. Libanore et al JCAP02(2021)035]

Normalizing flows for GW cosmology

Einstein Telescope

INFŃ

