Interplay of Chiral Transitions in the Standard Model

LIO International Conference on Asymptotic safety in Quantum Field Theory: Grand Unification

Richard Schmieden

Supervisor: Holger Gies and Luca Zambelli

[arXiv:2306.05943]

Theoretisch-Physikalisches Institut

June 7, 2024

[Interplay of Chiral Transitions in the Standard Model](#page-32-0) Richard Schmieden

June 7, 2024 0/28

Introduction - Chiral Transitions in the Standard Model

• Fundamental fermionic degrees of freedom in the Standard Model are massless while all matter particles possess mass

Two symmetry breaking mechanisms:

- Chiral symmetry breaking due to the strong interaction
- Higgs mechanism, spontaneously breaks gauge and chiral symmetry
- Investigate interplay of these two mechanisms in a suitable toy model
- Construct Asymptotically free scaling solutions within the toy model

The Functional Renormalization Group

Modified generating functional

$$
e^{W_k[J]}=\int {\cal D}\varphi e^{-S[\varphi]-\Delta S_k[\varphi]+ \int_x J\varphi}
$$

where:

 $S[\varphi]$: action of the theory

 $\Delta S_k[\varphi] = \int_x \frac{1}{2} \varphi(x) R_k(x) \varphi(x)$: momentum dependent mass term

Typical form of the regulator $R_k(p^2)$ and its derivative [Gies '06].

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

The Functional Renormalization Group

Effective average action

$$
\Gamma_k[\phi] = \sup_J \left(\int \mathrm{d}^d \!\! \mathsf{x} J \phi - W_k[J] \right) \! - \! \Delta S_k[\phi]
$$

⇒Wetterich equation [Wetterich '93]

$$
\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr} \left[\partial_t R_k \left(\Gamma_k^{(2)}[\Phi] + R_k \right)^{-1} \right]
$$

Typical form of the regulator $R_k(p^2)$ and its derivative [Gies '06].

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Flow Equations

Truncate the effective average action

 \rightarrow restrict to manageable amount of operators

Extract flow equations of operators by suitable projection

Compare different truncation schemes as convergence checks

Figure: RG flow of the effective action in theory space [Gies '06].

QCD sector in the Standard Model is asymptotically free

Radiative corrections induce non-trivial IR physics through dimensional transmutation [Coleman, Weinberg '73]

 \rightarrow strong gauge coupling g grows towards the IR, diverges at scale $\Lambda_{\rm OCD}$

 Λ_{QCD} sets the scale of the infrared physics, while degrees of freedom undergo huge change:

- UV: quarks and gluons describe the physics at high energies
- IR: mesons and bound states describe the low energy physics

Capturing chiral symmetry breaking from QCD To capture the dynamical chiral symmetry breaking in QCD we use dynamical bosonization:

Fundamental QCD action

$$
S_{\text{QCD}} = \int_{x} \bar{\psi}_{i}^{a} (i\partial \delta_{ij} + \bar{g}A_{ij}) \psi_{j}^{a} + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{(\partial_{\mu} A^{\mu})^{2}}{2\xi}
$$

induces effective four-fermion vertices through quantum fluctuations

 \Rightarrow At intermediate scales: NJL-type interactions included

Capturing chiral symmetry breaking from QCD

$$
\Gamma_k = \int_x \bar{\psi}_i^a (iZ_\psi \partial \delta_{ij} + \bar{g}A_{ij}) \psi_j^a + \frac{Z_F}{4} F_{\mu\nu} F^{\mu\nu} + \frac{(\partial_\mu A^\mu)^2}{2\xi} + \frac{1}{2} \bar{\lambda}_\sigma (S - P).
$$

where $(S - P) = (\bar{\psi}_i^a \psi_i^b)^2 - (\bar{\psi}_i^a \gamma_5 \psi_i^b)^2$

Flow of four fermion coupling $\partial_t\lambda_\sigma\sim g^4$

Towards IR: $g \nearrow$ due to asymptotic freedom, hence $\lambda_{\sigma} \nearrow$

 \rightarrow Non-perturbative effects like χ SB require effective low energy description

Dynamical Bosonization

Translate microscopic degrees of freedom to macroscopic ones (quarks, gluons \rightarrow mesons)

 $\bar{\psi}_i^{\mathsf{a}} \psi_i^{\mathsf{b}} \quad \rightarrow \quad \varphi^{\mathsf{a} \mathsf{b}}$

Encode four-fermion interaction in Yukawa interaction

On all scales k: Additional contributions to the flow eqs. of the Yukawa model to compensate the 4-Fermi coupling [Gies, Wetterich '03]

"re-parametrized" QCD

With this dynamical bosonization we can rewrite QCD into a Yukawa-QCD model

$$
\Gamma_k = \int_x Z_{\varphi} |\partial_{\mu}\varphi^{ab}|^2 + \bar{\psi}_i^2 i \vec{p}_{ij} \psi_j^a + \frac{Z_F}{4} F_{\mu\nu}^z F_{z}^{\mu\nu} + \frac{(\partial_{\mu} A^{\mu})^2}{2\xi} + (\text{G hosts}) + U(\varphi) + h \bar{\psi}_i^a (P_R \varphi^{ab} + P_L \varphi^{\dagger ab}) \psi_i^b
$$

Initial values of the newly introduced parameters can be chosen to reproduce QCD results.

Chiral symmetry breaking in QCD signaled by non-zero vacuum expectation value in the scalar potential

 \rightarrow dynamical generation of quark masses

Flow equation for $\tilde{\epsilon} \sim m^2$ of the auxiliary field φ [Gies '06].

As long as $g < g_{cr}$: $\tilde{\epsilon}$ controlled by fixed point structure

If $g > g_{cr}$: Fixed points annihilate, $\tilde{\epsilon}$ runs fast towards negative values ($m^2 < 0$: χ SB)

 \rightarrow Scale at which χ SB is triggered (\sim Λ _{OCD}) is set by the strong gauge coupling.

Higgs mechanism

The Higgs mechanism induces masses for all Fermions as well as the weak bosons through the scalar potential acquiring a non-zero vacuum expectation value (vev)

E.g. look at the flow of a scalar potential in a Higgs-Yukawa toy model

$$
\Gamma_k = \int_X (\partial_\mu \phi)^2 + U(\phi^2) + \bar{\psi}i\partial\!\!\!/ \psi + i h \bar{\psi} \phi \psi
$$

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Interplay of Chiral Transitions in the Standard Model wonard ochrhiede Richard Schmieden

Higgs mechanism - second order phase transition

Varying the couplings in the UV changes the obtained vev

 $\epsilon_{\Lambda} = \frac{m^2}{\Lambda^2}$ Λ^2

Larger values of ϵ_{Λ} : Potential stays symmetric

Smaller values of ϵ_{Λ} : Potential develops minimum at non-vanishing field.

The vev as a function of the control parameter is described by a second order quantum phase transition (tied to the fine tuning problem)

Reparametrization of the scalar field Reparametrization of the auxiliary scalar field φ as

$$
\Phi^{ab} = \frac{1}{\sqrt{2}} \left(\varphi^{ab} + \epsilon^{ac} \epsilon^{bd} \varphi^{*cd} \right)
$$

$$
\tilde{\Phi}^{ab} = \frac{1}{\sqrt{2}} \left(\varphi^{*ab} - \epsilon^{ac} \epsilon^{bd} \varphi^{cd} \right)
$$

and setting

$$
\phi^{\mathsf{a}} \equiv \Phi^{\mathsf{a}2}
$$

$$
\tilde{\phi}^{\mathsf{a}} \equiv \tilde{\Phi}^{2\mathsf{a}}
$$

allows us to identify the SU(2)_L doublet (ϕ), which acquires its own dynamics through standard model interactions

$$
\mathcal{L}_{\text{Yuk}} = \frac{i h_b}{\sqrt{2}} \left(\bar{\psi}_{L,i}^a \phi^a b_{R,i} + \text{h.c.} \right) + \frac{i h_t}{\sqrt{2}} \left(\bar{\psi}_{L,i}^a \phi_c^a t_{R,i} + \text{h.c.} \right) + \frac{i h}{\sqrt{2}} \left(\bar{\psi}_{R,i}^a \tilde{\phi}^a b_{L,i} + \bar{\psi}_{R,i}^a \tilde{\phi}_c^a t_{L,i} + \text{h.c.} \right)
$$

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

The Full Model

Splitting of the meson field φ into left- and right-doublets yields

$$
\Gamma_{k} = \int_{x} Z_{\phi} |\partial_{\mu}\phi|^{2} + Z_{\tilde{\phi}} |\partial_{\mu}\tilde{\phi}|^{2} + \bar{\psi}_{i}^{2}i\mathcal{D}_{ij}\psi_{j}^{a} + \frac{Z_{F}}{4} F_{\mu\nu}^{z} F_{z}^{\mu\nu} \n+ \frac{(\partial_{\mu}A^{\mu})^{2}}{2\xi} + (\text{Chosts}) + U(\rho, \tilde{\rho}) \n+ \frac{i h_{t}}{\sqrt{2}} (\bar{\psi}_{L,i}^{a}\phi_{c}^{a}t_{R,i} + \text{h.c.}) + \frac{i h_{b}}{\sqrt{2}} (\bar{\psi}_{L,i}^{a}\phi^{a}b_{R,i} + \text{h.c.}) \n+ \frac{i h}{\sqrt{2}} (\bar{\psi}_{R,i}^{a}\tilde{\phi}^{a}b_{L,i} + \bar{\psi}_{R,i}^{a}\tilde{\phi}_{c}^{a}t_{L,i} + \text{h.c.})
$$

 \Rightarrow analyze parametric dependence of phase transitions in this model

Scaling near quantum phase transition described by critical exponents For the order parameter we have $v \propto \left| \delta \epsilon_\Lambda \right|^\beta$ β can be related to the critical exponent η which measures the deviation of the RG scaling exponent from its canonical value $\Theta = 2 - \eta$

Phase Transitions for different Model Parameters

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Critical Exponents for different Model Parameters

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Phase transitions for increasing QCD coupling

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Critical Exponents for increasing QCD coupling

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Scaling Solutions in Higgs-QCD Models

Spontaneous symmetry breaking in asymptotically free gauge theories admit Cheng-Eichten-Lee scaling solutions [Cheng,Eichten,Lee '74].

In these models, couplings are controlled by the running of the strong gauge coupling g .

Signaled by a quasi fixed-point in composite couplings $\frac{h^2}{\sigma^2}$ $\frac{h^2}{g^2}, \frac{\lambda}{g^2},$ etc, i.e. $h^2 \to 0, \lambda \to 0,$ as $g^2 \to 0.$

Scaling solutions in Higgs-QCD models

For this, assume validity of the DER, where $\rho^2 \gg m^2$ and mass threshold effects can be neglected.

Extract one loop polynomial beta functions from the nonpeturbative FRG results.

Check for fixed points in the beta functions: $\partial_t \frac{h^2}{g^2}$ $rac{h^2}{g^2} = \frac{\beta_{h2}}{g^2} - \eta_F \frac{h^2}{g^2}$ $\frac{h^2}{g^2}, \cdots$

Scaling solutions in the Yukawa sector For $h_*^2=0$ we find 4 quasi fixed points

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Scaling solutions in the scalar sector Assume quartic potential $U = \frac{\lambda_1}{2} (\rho^2 + \tilde{\rho}^2) + \lambda_2 \rho \tilde{\rho}$ where $\rho \sim \phi^2$

Red lines correspond to the QFP solutions, $\lambda_1 \propto g^2, \lambda_2 = 0$

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Conclusions

Able to quantify interplay of the two breaking mechanisms through (pseudo-)critical exponents:

- Stronger gauge interactions lessen the fine-tuning necessary
- Other parameters have little influence on the phase transition
- Model admits CEL scaling solutions

Further points of interest:

- \Rightarrow Study influence of the electroweak sector on the phase transition
- \Rightarrow Study precise details of the rebosonized model's quasi fixed-points
- \Rightarrow Fate of the rebosonization in the deep UV

Thank you!

[Interplay of Chiral Transitions in the Standard Model](#page-0-0) Richard Schmieden

Literature I

- Holger Gies. Introduction to the Functional RG and Applications to Gauge Theories. *Lecture Notes in Physics*, 2006.
- Christof Wetterich. Exact evolution equation for the effective potential. *Phys. Lett. B*, 1993.
- Clemens Gneiting. *Higgs mass bounds from renormalization flow* Diploma Thesis, 2005.
- René Sondenheimer *Renormalization group flow of the Higgs sector*, PhD Thesis 2016.
- Holger Gies et al. Towards a renormalizable standard model without fundamental Higgs scalar. *Phys. Rev. D*, 2004.

Literature II

- Holger Gies and Christof Wetterich. Renormalization flow of bound states. *Phys. Rev. D*, 2002.
- Holger Gies and René Sondenheimer. Higgs Mass Bounds from Renormalization Flow for a Higgs-top-bottom model. *Eur. Phys. J*, 2015.
- Dirk Jungnickel and Christof Wetterich. Effective action for the chiral quark-meson model *Phys. Rev. D*, 1995.
- Holger Gies and Christof Wetterich. Universality of spontaneous chiral symmetry breaking in gauge theories, *Phys. Rev. D*, 2004.
- Holger Gies. Running coupling in Yang-Mills theory: A flow equation study. *Phys. Rev. D*, 2002.

