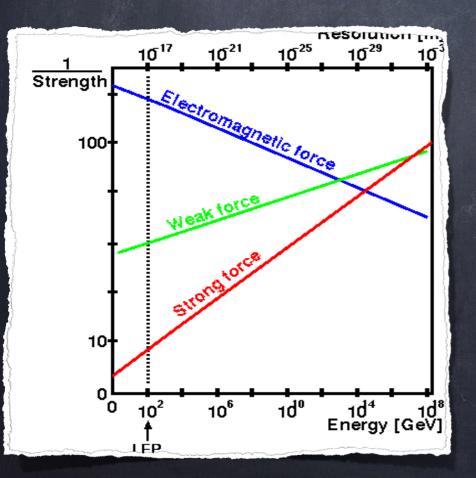
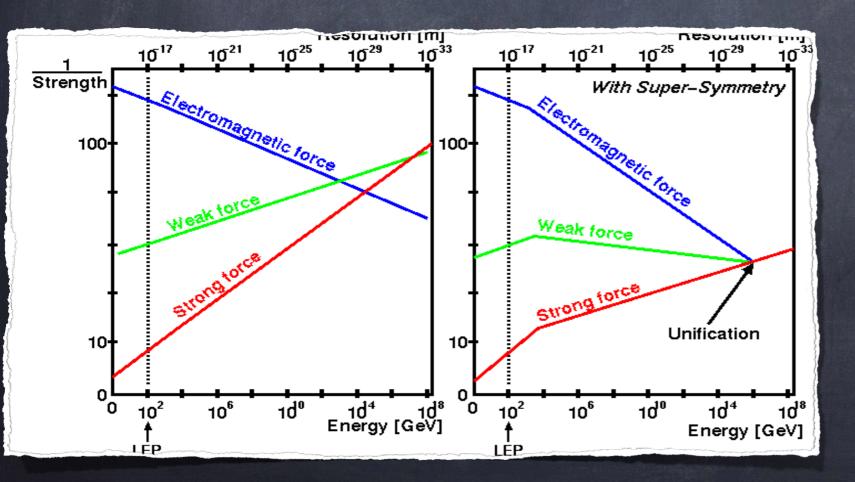
CNIS

Asymptotic Grand Unification

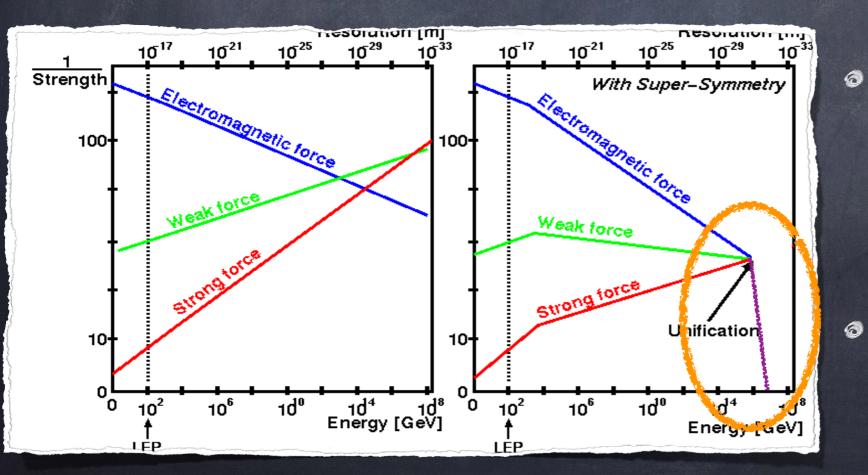

Giacomo Cacciapaglia IP2I Lyon, France

> LIO workshop June 2024

G.C., A.Cornell, A.Deandrea, C.Cot 2012.14732 G.C., A. Deandrea, R. Pasechnik, Z.W. Wang 2302.11671 G.C. 2309.10098 G.C., K.Bitaghsir Fadafan 2312.08456


- The Standard Model (SM) is a QFT based on local gauge symmetries
- o Gauge couplings run with the energy
- o In the SM...

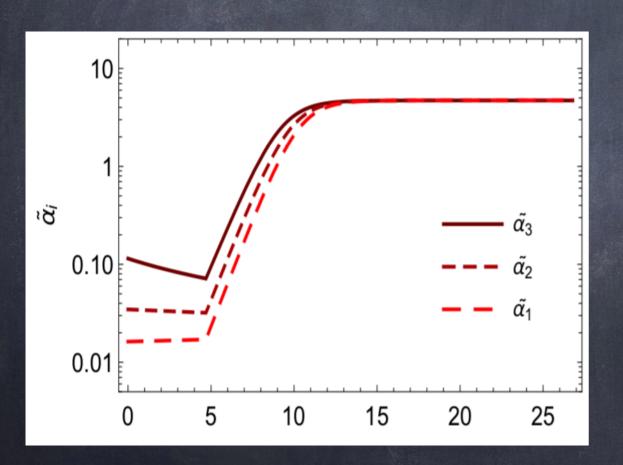
Can we replace $SU(3)_c \times SU(2)_L \times U(1)_Y$ with a simpler theory?


Tradicional GUTS

- SM gauge couplings expected to be equal at the GUT scale
- supersymmetry helps building "realistic" models
- proton decay hard to avoid!

Tradicional GUTs

- SM gauge couplings expected to be equal at the GUT scale
- supersymmetry helps building "realistic" models
- proton decay hard to avoid!


However:

Large matter representations needed to break the gauge symmetry!

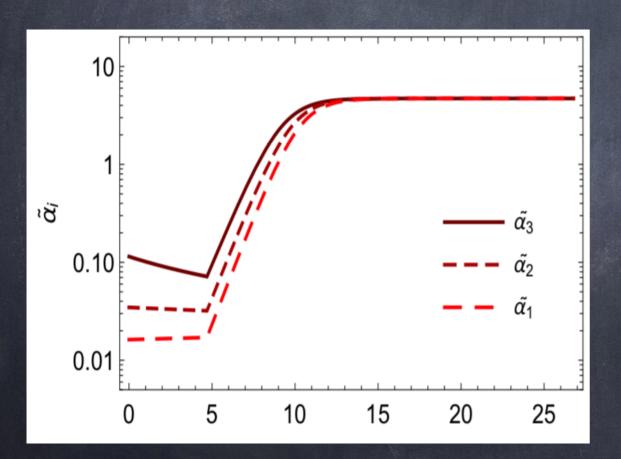
Landau pole!!!!

asymptotic GUT (aGUT)

Gauge couplings are never equal, but tend to the same UV fixed point!

A) Realised in asympt. safe gauge theories

(via large Nf resum with intermediate Pati-Salam)


Molinaro et al, 1807.03669

(via perturbative fixed points and Susy)

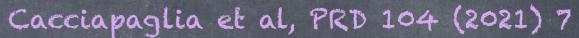
Bajic et al, 1610.09681 and 2308.13311

asymptotic GUT (aGUT)

Gauge couplings are never equal, but tend to the same UV fixed point!

B) Extra compact dimensions $2\pi \frac{d\alpha}{d \ln \mu} = \mu R \ b_5 \ \alpha^2$ $\tilde{\alpha} = \mu R \ \alpha \quad (\text{t Hooft coupling in $5D})$ $2\pi \left(\tilde{\alpha} + \frac{d\tilde{\alpha}}{d \ln \mu} \right) = b_5 \ \tilde{\alpha}^2$ $\tilde{\alpha}_{UV} = -\frac{2\pi}{b_5}$

> Gies, PRD 68 (2003) Morris, JHEP 01 (2005) 002


Minimal SU(S) aGUT

 S^1

 $\mathbb{Z}_2 \times \mathbb{Z}'_2$

P1

• • • • • • • • • • • •

$$(P_0) \Rightarrow \begin{cases} A^a_{\mu}(x, -y) = P_0 A^a_{\mu}(x, y) P^{\dagger}_0, \\ A^a_y(x, -y) = -P_0 A^a_y(x, y) P^{\dagger}_0, \end{cases}$$
$$(P_1) \Rightarrow \begin{cases} A^a_{\mu}(x, \pi R - y) = P_1 A^a_{\mu}(x, y) P^{\dagger}_1, \\ A^a_y(x, \pi R - y) = -P_1 A^a_y(x, y) P^{\dagger}_1, \end{cases}$$

$$P_0 = (+ + + - -),$$

$$P_1 = (+ + + + +).$$

$$\psi_{\overline{5}} = \left(\begin{array}{c} B^c \\ l \end{array}
ight) \left(\begin{array}{c} (-+) \\ (++) \end{array}
ight)$$
 Lh zero \circledast
 $\psi_{\overline{5}} = \left(\begin{array}{c} b \\ L^c \end{array}
ight) \left(\begin{array}{c} (--) \\ (+-) \end{array}
ight)$ Rh zero

Po

SU(5) broken in y=0 to the SM by boundary conditions

SM fermions cannot be embedded in complete multiplets of SU(5)!!!

Yukawa non-unification

The most general bulk Lagrangian reads:

$$\mathcal{L}_{SU(5)} = -\frac{1}{4} F_{MN}^{(a)} F^{(a)MN} - \frac{1}{2\xi} (\partial_{\mu} A^{\mu} - \xi \partial_{5} A_{y})^{2} + i \overline{\psi_{5}} \not D \psi_{5} + i \overline{\psi_{5}} \not D \psi_{\overline{5}} + i \overline{\psi_{10}} \not D \psi_{10}$$

+ $i \overline{\psi_{\overline{10}}} \not D \psi_{\overline{10}} - \left(\sqrt{2} Y_{\tau} \, \overline{\psi_{\overline{5}}} \psi_{\overline{10}} \phi_{5}^{*} + \sqrt{2} Y_{b} \, \overline{\psi_{5}} \psi_{10} \phi_{5}^{*} + \frac{1}{2} Y_{t} \, \epsilon_{5} \, \overline{\psi_{\overline{10}}} \psi_{10} \phi_{5} + \text{h.c.} \right)$
+ $|D_{M} \phi_{5}|^{2} - V(\phi_{5}) + i \overline{\psi_{1}} \not \partial \psi_{1} - \left(Y_{\nu} \, \overline{\psi_{1}} \psi_{\overline{5}} \phi_{5} + \text{h.c.} \right) ,$

@ Yukawas DO NOT unify!

 Baryon and Lepton numbers can be defined (no proton decay processes)

Indalo states

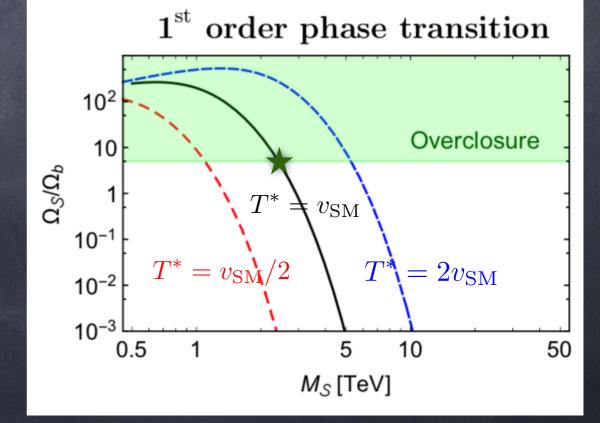
Multiplets	Fields	L	В	Q	Q_3
$\psi_{\overline{5}}$	B_R^c	1/2	1/6	1/3	0
	τ_L	1	0	-1	-1
	ν_L	1	0	0	1
ψ_5	b_R	0	1/3	-1/3	0
	$ \begin{array}{c c} b_{R} \\ \mathcal{T}_{L}^{c} \\ \mathcal{N}_{L}^{c} \\ \end{array} $ $ \begin{array}{c} T_{R}^{c} \\ \mathcal{T}_{R}^{c} \\ \end{array} $	-1/2	1/2	1	1
	\mathcal{N}_L^c	-1/2	1/2	0	-1
ψ_{10}	T_R^c	1/2	1/6	-2/3	0
	\mathcal{T}_{R}^{c}	-1/2	1/2	1	0
	t_L	0	1/3	2/3	1
	b_L	0	1/3	-1/3	-1
$\psi_{\overline{10}}$	t_R	0	1/3	2/3	0
	τ_R	1	0	-1	0
	$\overline{T_L^c}$	1/2	1/6	-2/3	-1
	$\begin{bmatrix} \tau_R \\ T_L^c \\ B_L^c \end{bmatrix}$	1/2	1/6	1/3	1
ψ_1	N	1	0	0	0
ϕ_5	H	1/2	-1/6	-1/3	0
	ϕ^+	0	0	1	1
	ϕ_0	0	0	0	-1
A_X	X	1/2	-1/6	-4/3	-1
	Y	1/2	-1/6	-1/3	1

 Non-SM components carry unusual B and L charges

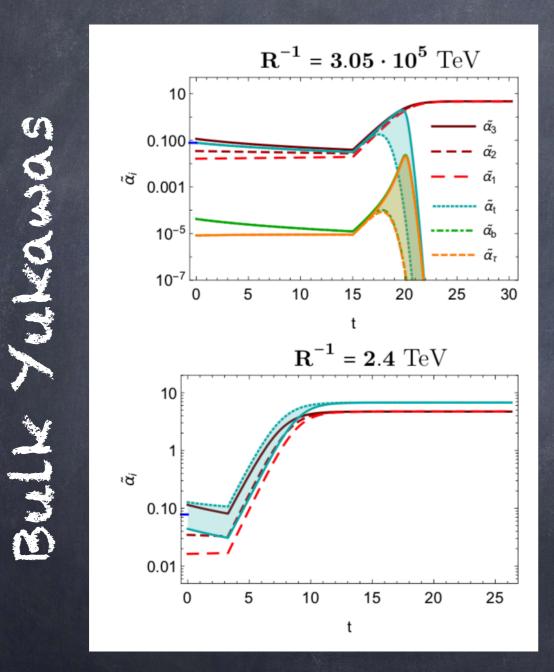
Hence, they cannot decay into SM states

States with mass 1/R stable

9 = Indalo


- Prehistoric symbol found in Almería caves, Spain
- It means "creation" or "nature" in
 Zulu

Indalo-genesis


Multiplets	Fields	L	В	Q	Q_3
$\psi_{\overline{5}}$	B_R^c	1/2	1/6	1/3	0
	τ_L	1	0	-1	-1
	ν_L	1	0	0	1
ψ_5	b_R	0	1/3	-1/3	0
	$ \begin{array}{c c} b_{R} \\ \mathcal{T}_{L}^{c} \\ \mathcal{N}_{L}^{c} \\ \end{array} $ $ \begin{array}{c} T_{R}^{c} \\ \mathcal{T}_{R}^{c} \\ \end{array} $	-1/2	1/2	1	1
	\mathcal{N}_L^c	-1/2	1/2	0	-1
ψ_{10}	T_R^c	1/2	1/6	-2/3	0
	\mathcal{T}_{R}^{c}	-1/2	1/2	1	0
	t_L	0	1/3	2/3	1
	b_L	0	1/3	-1/3	-1
$\psi_{\overline{10}}$	t_R	0	1/3	2/3	0
	τ_R	1	0	-1	0
	$\overline{T_L^c}$	1/2	1/6	-2/3	-1
	$ \begin{bmatrix} \tau_R \\ T_L^c \\ B_L^c \end{bmatrix} $	1/2	1/6	1/3	1
ψ_1	N	1	0	0	0
ϕ_5	H	1/2	-1/6	-1/3	0
	ϕ^+	0	0	1	1
	ϕ_0	0	0	0	-1
A_X	X	1/2	-1/6	-4/3	-1
	Y	1/2	-1/6	-1/3	1

Baryogenesis could also
 produce an asymmetric
 abundance of Indalo states

Dark Matter candidate! $1/R = 2.4 \ TeV$

The Yukawa sector runs into problems

For smaller values of the KK scale the Yukawas run to Landau poles

Localising all Yukawas except the top, allows for UV fixed point.

But hard to do: SO(10) is ruled out, in fact!

Khojali et al, 2210.03596

A classification is in order!

Cacciapaglia, 2309.10098

- Define a bulk gauge group $\mathcal{G} \supset \mathcal{G}_{SM}$, and parities breaking $\mathcal{G} \to \mathcal{H} \supset \mathcal{G}_{SM}$
- Find pairs $P_i \times P_j$ such that $\mathcal{H}_i \cap \mathcal{H}_j = \mathcal{G}_{SM} + X$ (minimality)
- Find minimal set of bulk fermions that contain SM zero
 modes and preserve UV fixed point
- Check running of the Yukawa couplings: do fixed point exist in the UV?
- Check if gauge-Higgs unification occurs, and if the model can be supersymmetrised (link Yukawa's to gauge couplings)

SU(6)

$\mathcal{P}_1 = diag(+, +, +, +, +, -)$	$\mathcal{H}_1 = SU(5) \times U(1)_{Z1}$,
$\mathcal{P}_2 = diag(+, +, +, -, -, +)$	$\mathcal{H}_2 = SU(4) \times SU(2) \times U(1)_{Z2} ,$
$\mathcal{P}_3 = \text{diag}(+, +, +, -, -, -)$	$\mathcal{H}_3 = SU(3) \times SU(3) \times U(1)_{Z3}.$

The matrices \mathcal{P}_i represent the intrinsic parity: an overall sign can be added for matter fields

Intrinsic parities:

Adjoint (35)	P_1	<i>P</i> ₂	<i>P</i> ₃
(8, 1) _{0,0}	even	even	even
$(1,3)_{0,0}$	even	even	even
$(1,1)_{0,0}$	even	even	even
(3, 2) _{-5/3,0}	even	odd	odd
$(\bar{3}, 2)_{5/3,0}$	even	odd	odd
$(1,1)_{0,0}$	even	even	even
(3, 1) _{-1/3,3}	odd	even	odd
(1, 2) _{1/2,3}	odd	odd	even
$(\bar{3},1)_{1/3,-3}$	odd	even	odd
(1,2) _{-1/2,-3}	odd	odd	even

F (6)	P_1	<i>P</i> ₂	<i>P</i> ₃
$(3,1)_{-1/3,1/2}$	even	even	even
(1, 2) _{1/2,1/2}	even	odd	odd
$(1,1)_{0,-5/2}$	odd	even	odd

S (21)	<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₃
(3, 2) _{1/6,1}	even	odd	odd
$(6,1)_{-2/3,1}$	even	even	even
(1,3) _{1,1}	even	even	even
(1,1) _{0,-5}	even	even	even
$(3,1)_{-1/3,-2}$	odd	even	odd
$(1,2)_{1/2,-2}$	odd	odd	even

	A (15)	<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₃
	(3,2) _{1/6,1}	even	odd	odd
	$(\bar{3},1)_{-2/3,1}$	even	even	even
	(1,1) _{1,1}	even	even	even
	$(3, 1)_{-1/3, -2}$	odd	even	odd
	(1, 2) _{1/2,-2}	odd	odd	even
	A ₃ (20)	P_1	<i>P</i> ₂	<i>P</i> ₃
	(3,2)-1/6,3/2	even	odd	odd
	$(3,1)_{2/3,3/2}$	even	even	even
	$(1, 1)_{-1, 3/2}$	even	even	even
	(3,2)1/6,-3/2	odd	odd	even
($(\bar{3},1)_{-2/3,-3/2}$	odd	even	odd
	$(1, 1)_{1, -3/2}$	odd	even	odd

10

SU(6)

Case $P_1 \times P_2$: one Higgs from gauge fields (GHU)

SM-like zero modes:

$$\mathbf{6}^{(-,-)} \supset d_R, \ \bar{\mathbf{6}}^{(+,-)} \supset l_L + \nu_R, \ \mathbf{15}^{(+,-)} \supset q_L + d_R, \ \bar{\mathbf{15}}^{(-,-)} \supset l_L + u_R + e_R,$$

$$\mathbf{21}^{(+,-)} \supset q_L + d_R, \ \mathbf{20}^{(-,-)} \supset q_L + u_R + e_R.$$

SU(6)

Case $P_1 \times P_2$: one Higgs from gauge fields (GHU)

SM-like zero modes:

$$\mathbf{6}^{(-,-)} \supset d_R, \ \mathbf{\bar{6}}^{(+,-)} \supset l_L + \nu_R, \ \mathbf{15}^{(+,-)} \supset q_L + d_R, \ \mathbf{\bar{15}}^{(-,-)} \supset l_L + u_R + e_R, \\ \mathbf{21}^{(+,-)} \supset q_L + d_P, \ \mathbf{20}^{(-,-)} \supset q_L + u_R + e_R.$$

Model 6A:

6A:
$$\Psi_{15}^{(+,-)} \supset q_L + d_R$$
, $\Psi_{\overline{15}}^{(-,-)} \supset l_L + u_R + e_R$, $\Phi_{15}^{(-,-)} \supset \varphi'_H$.

d and e Yukawas from GHU

 $\mathcal{L}_{\text{Yuk}} = -Y_u \,\overline{\Psi}_{15} \Psi_{15} \Phi_{15} + \text{h.c.}$

$$b_5 = \frac{61 - 16n_g}{3}$$
,

Gauge FP requires $n_g \leq 3$

SU(6)

Case $P_1 \times P_2$: one Higgs from gauge fields (GHU)

SM-like zero modes:

 $\mathcal{L}_{\text{Yuk}} = -Y_u \,\overline{\Psi}_{1\overline{5}} \Psi_{15} \Phi_{15} + \text{h.c.}$

$$6^{(-,-)} \supset d_R, \ \bar{6}^{(+,-)} \supset l_L + \nu_R, \ \mathbf{15}^{(+,-)} \supset q_L + d_R, \ \bar{\mathbf{15}}^{(-,-)} \supset l_L + u_R + e_R, \\ \mathbf{21}^{(+,-)} \supset q_L + d_R, \ \mathbf{20}^{(-,-)} \supset q_L + u_R + e_R.$$

 $b_5 = \frac{61 - 16n_g}{3}$,

Model 6A:
$$\Psi_{15}^{(+,-)} \supset q_L + d_R, \quad \Psi_{15}^{(-,-)} \supset l_L + u_R + e_R, \quad \Phi_{15}^{(-,-)} \supset \varphi'_H.$$

d and e Yukawas from GHU

Gauge FP requires
$$n_g \leq 3$$

Model 65:

21 105 $b_5 = \frac{37}{3} - 8n_g$, Gauge FP requires $n_g = 1$

Minimal SU(N) models (not final)

Name	$\mathcal{G}_{ ext{bulk}}$	Fermions	Scalars	Yukawas	n_g bulk	Higgs sector	Minimal?			
	$\mathcal{G}_{ m 4D} = \mathcal{G}_{ m SM}$									
5A	SU(5)	$\begin{split} \Psi_5 \supset d_R , \ \Psi_5 \supset l_L , \\ \Psi_{10} \supset q_L , \ \Psi_{\bar{10}} \supset u_R + e_R \end{split}$	$\Phi_5 \supset \varphi_H$	All bulk	≤ 3	SM-like	Yes			
5S	SU(5)	$\Psi_5 \supset d_R, \ \Psi_5 \supset l_L,$ $\Psi_{15} \supset q_L, \ \Psi_{\bar{10}} \supset u_R + e_R$	$\Phi_5 \supset \varphi_H$ $\Phi_{\bar{45}} \supset \varphi'_H + \dots$	All bulk	1	2HDM Type-II or flip	No			
	$\mathcal{G}_{4\mathrm{D}} = \mathcal{G}_{\mathrm{SM}} \times \mathrm{U}(1)_Z$									
6A	SU(6)	$\Psi_{15}\supset q_L+d_R,$	Adj $\supset \varphi_H$	d, e GHU	≤ 3	2HDM	Yes			
	50(0)	$\Psi_{15} \supset l_L + u_R + e_R$	$\Phi_{15} \supset \varphi'_H$	<i>u</i> bulk		Type-II				
6A flip	SI I(6)	$\Psi_{20}\supset q_L+u_R+e_R,$	Adj $\supset \varphi_H$	u GHU	≤ 3	2HDM	Yes			
or mp	30(0)	$\Psi_6 \supset d_R, \ \Psi_{\bar{6}} \supset l_L + \nu_R$	$\Phi_{15} \supset \varphi'_H$	<i>d,e</i> bulk	<u> </u>	Type-II	165			
6S	SU(6)	$\Psi_{21} \supset q_L + d_R$,	$\operatorname{Adj} \supset \varphi_H$	d, e GHU	1	2HDM	No			
0.5	30(0)	$\Psi_{\bar{15}} \supset l_L + u_R + e_R$	$\Phi_{105} \supset \varphi'_H + \dots$	<i>u</i> bulk	L	Type-II	INU			
6A'	SU(6)	$\Psi_{15} \supset q_L + l_L^c$,	$\Phi_{15} \supset \varphi_H$	<i>u</i> bulk	≤ 3	SM-like	No			
	30(0)	$\Psi_{\bar{15}} \supset u_R + e_R + d_R^c$	$\Psi_{15} \supset \varphi_H$	<i>u</i> Duik	<u> </u>	JIVI-IIKe	110			
6S'	SU(6)	$\begin{split} \Psi_{21} \supset q_L + l_L^c , \\ \Psi_{\bar{15}} \supset u_R + e_R + d_R^c \end{split}$	$\Phi_{105} \supset \varphi_H + \dots$	u bulk	1	SM-like	No			
	50(0)	$\Psi_{\bar{15}} \supset u_R + e_R + d_R^c$	$\Psi_{105} \rightarrow \Psi_H \mp \cdots$			01v1-11KC				

Minimal SU(N) models (not final)

$\mathcal{G}_{ ext{bulk}}$	Fermions	Scalars	Yukawas	n_g bulk	Higgs sector	Minimal?			
$\mathcal{G}_{4\mathrm{D}} = \mathcal{G}_{\mathrm{SM}}$									
SU(5)	$\begin{split} \Psi_5 \supset d_R , \ \Psi_5 \supset l_L , \\ \Psi_{10} \supset q_L , \ \Psi_{\bar{10}} \supset u_R + e_R \end{split}$	$\Phi_5 \supset \varphi_H$	All bulk	≤ 3	SM-like	Yes			
SU(5)	$\begin{split} \Psi_5 \supset d_R, \ \Psi_5 \supset l_L, \\ \Psi_{15} \supset q_L, \ \Psi_{\bar{10}} \supset u_R + e_R \end{split}$	$\Phi_5 \supset \varphi_H$ $\Phi_{\bar{45}} \supset \varphi'_H + \dots$	All bulk	1	2HDM Type-II or flip	No			
		$\mathcal{G}_{4\mathrm{D}} = \mathcal{G}_{\mathrm{SM}} \times \mathrm{U}($	$(1)_Z$						
SUIG	$\Psi_{15} \supset q_L + d_R$,	$\operatorname{Adj} \supset \varphi_H$	d, e GHU	≤ 3	2HDM	Yes			
30(0)	$\Psi_{15} \supset l_L + u_R + e_R$	$\Phi_{15} \supset \varphi'_H$	<i>u</i> bulk		Type-II				
ST I(6)	$\Psi_{20}\supset q_L+u_R+e_R,$	Adj $\supset \varphi_H$	u GHU	< 3	2HDM	Yes			
30(0)	$\Psi_6 \supset d_R$, $\Psi_{\bar{6}} \supset l_L + \nu_R$	$\Phi_{15} \supset \varphi'_H$	<i>d,e</i> bulk	20	Type-II	105			
ST I(6)	$\Psi_{21}\supset q_L+d_R,$	Adj $\supset \varphi_H$	d, e GHU	1	2HDM	No			
30(0)	$\Psi_{\bar{15}} \supset l_L + u_R + e_R$	$\Phi_{105} \supset \varphi'_H + \dots$	<i>u</i> bulk	1	Type-II	INU			
SU(6)	$\Psi_{15}\supset q_L+l_L^c,$	$\Phi_{1r} \supset \omega_{1r}$	<i>u</i> bulk	< 3	SM-like	No			
	$\Psi_{\bar{15}} \supset u_R + e_R + d_R^c$	Ψ15 - ΨΗ	<i>u</i> Duik	20	OWI-IIKC	INU			
SU(6)	$\Psi_{21} \supset q_L + l_L^c,$ $\Psi_{c_L} \supset \mu_P + e_P + d^c$	$\Phi_{105} \supset \varphi_H + \dots$	<i>u</i> bulk	1	SM-like	No			
	SU(5) SU(5) SU(6) SU(6) SU(6)	$SU(5) \begin{array}{ c c c c } \Psi_{5} \supset d_{R}, & \Psi_{5} \supset l_{L}, \\ \Psi_{10} \supset q_{L}, & \Psi_{10} \supset u_{R} + e_{R} \\ \hline \Psi_{10} \supset q_{L}, & \Psi_{10} \supset u_{R} + e_{R} \\ \hline \Psi_{15} \supset d_{R}, & \Psi_{5} \supset l_{L}, \\ \Psi_{15} \supset q_{L}, & \Psi_{10} \supset u_{R} + e_{R} \\ \hline \Psi_{15} \supset q_{L}, & \Psi_{10} \supset u_{R} + e_{R} \\ \hline \Psi_{15} \supset l_{L} + u_{R} + e_{R} \\ \hline \Psi_{20} \supset q_{L} + u_{R} + e_{R}, \\ \Psi_{6} \supset d_{R}, & \Psi_{6} \supset l_{L} + v_{R} \\ \hline SU(6) & \Psi_{21} \supset q_{L} + d_{R}, \\ \Psi_{15} \supset l_{L} + u_{R} + e_{R} \\ \hline SU(6) & \Psi_{15} \supset l_{L} + u_{R} + e_{R} \\ \hline \Psi_{15} \supset l_{L} + u_{R} + e_{R} \\ \hline \Psi_{15} \supset u_{R} + e_{R} + d_{R}^{c} \\ \hline \Psi_{15} \supset u_{R} + e_{R} + d_{R}^{c} \\ \hline \Psi_{21} \supset q_{L} + l_{L}^{c}, \\ \hline \Psi_{21} \supset q_{L} + l_{L}^{c}, \\ \hline \Psi_{21} \supset q_{L} + l_{R}^{c} \\ \hline \Psi_{21} \supset \eta_{1} \\ \hline \Psi_{21$	$\mathcal{G}_{4D} = \mathcal{G}_{SM}$ $\mathcal{G}_{4D} = \mathcal{G}_{SM}$ $\mathcal{G}_{4D} = \mathcal{G}_{SM}$ $\mathcal{G}_{4D} = \mathcal{G}_{SM}$ $\mathcal{G}_{5U(5)} \begin{array}{c} \Psi_{5} \supset d_{R}, \ \Psi_{5} \supset l_{L}, \\ \Psi_{10} \supset q_{L}, \ \Psi_{10} \supset u_{R} + e_{R} \end{array}$ $\mathcal{G}_{5U(5)} \begin{array}{c} \Psi_{5} \supset d_{R}, \ \Psi_{5} \supset l_{L}, \\ \Psi_{15} \supset q_{L}, \ \Psi_{10} \supset u_{R} + e_{R} \end{array}$ $\mathcal{G}_{4D} = \mathcal{G}_{SM} \times U(\mathcal{G})$ $\mathcal{G}_{4D} = \mathcal{G}_{5D} + \mathcal{G}_{4D} + \mathcal{G}_{4D} = \mathcal{G}_{5D} + \mathcal{G}_{4D} + \mathcal{G}_{4D} = \mathcal{G}_{5D} + \mathcal{G}_{4D} + \mathcal{G}_{5D} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Minimal SU(N) models (not final)

Name	$\mathcal{G}_{ ext{bulk}}$	Fermions	Scalars	Yukawas	n_g bulk	Higgs sector	Minimal?			
	Yukawa Landau Poles									
		$\Psi_5 \supset d_R, \ \Psi_5 \supset l_L,$								
		$\Psi_{10} \supset q_L , \ \Psi_{\bar{10}} \supset u_R + e_R$	23 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
5S	SU(5)	$\Psi_5 \supset d_R$, $\Psi_5 \supset l_L$,	$\Phi_5 \supset \varphi_H$	All bulk	1	2HDM	No			
00	00(0)	$\Psi_{15} \supset q_L$, $\Psi_{\bar{10}} \supset u_R + e_R$	$\Phi_{\bar{45}} \supset \varphi'_H + \dots$	7 III D UIK	1	Type-II or flip				
			$\mathcal{G}_{4\mathrm{D}} = \mathcal{G}_{\mathrm{SM}} \times \mathrm{U}($	$(1)_Z$						
6A	SU(6)	$\Psi_{15} \supset q_L + d_R$,	$\operatorname{Adj} \supset \varphi_H$	d, e GHU	≤ 3	2HDM	Yes			
	50(0)	$\Psi_{1\bar{5}} \supset l_L + u_R + e_R$	$\Phi_{15} \supset \varphi'_H$	<i>u</i> bulk	23	Type-II	105			
6A flip	SI 1(6)	$\Psi_{20}\supset q_L+u_R+e_R,$	$\operatorname{Adj} \supset \varphi_H$	u GHU	≤ 3	2HDM	Yes			
on mp	50(0)	$\Psi_6 \supset d_R, \ \Psi_{\bar{6}} \supset l_L + \nu_R$	$\Phi_{15} \supset \varphi'_H$	<i>d,e</i> bulk	20	Type-II	ies			
6S	SU(6)	$\Psi_{21} \supset q_L + d_R$,	Adj $\supset \varphi_H$	d, e GHU	1	2HDM	No			
05	30(0)	$\Psi_{1\overline{5}} \supset l_L + u_R + e_R$	$\Phi_{105} \supset \varphi'_H + \dots$	<i>u</i> bulk	T	Type-II	INU			
6A'	SU(6)	$\Psi_{15} \supset q_L + l_L^c$,	$\Phi_{15} \supset \varphi_H$	u bulk	< 3	SM-like	No			
UA	30(0)	$\Psi_{\bar{15}} \supset u_R + e_R + d_R^c$	$\Psi_{15} \supset \varphi_H$	<i>u</i> Duik	<u> </u>	JIVI-IIKe	INU			
6S'	SU(6)	$\Psi_{21}\supset q_L+l_L^c,$	$\Phi_{105} \supset \varphi_H + \dots$	11 bulk	1	SM-like	No			
05	30(0)	$\Psi_{\bar{15}} \supset u_R + e_R + d_R^c$	$\Psi_{105} \rightarrow \Psi_H + \cdots$	<i>u</i> bulk	1	JIVI-IIKe	INU			

Yukawa running

The bulk ERG for Yukawa couplings read:

$$2\pi \frac{d}{d\ln\mu} \tilde{\alpha}_{y} = \left(2\pi + \sum_{y'} c_{yy'} \tilde{\alpha}_{y'} - d_{y} \tilde{\alpha}\right) \tilde{\alpha}_{y},$$
$$\tilde{\alpha}_{y} = R \mu \frac{y^{2}}{4\pi}$$

Fixed points exist iff the solutions

$$\tilde{\alpha}_{y}^{*} = \sum_{y'} c_{yy'}^{-1} \left(d_{y'} \tilde{\alpha}^{*} - 2\pi \right),$$

are all positive! 13

Yukawa running

64	6A SU(6)	$\Psi_{15}\supset q_L+d_R,$	Adj $\supset \varphi_H$	d, e GHU	< 3	2HDM	Yes
6A	50(0)	$\Psi_{1\bar{5}}\supset l_L+u_R+e_R$	$\Phi_{15} \supset \varphi'_H$	<i>u</i> bulk	20	Type-II	105

$$\mathcal{L}_{Yuk} = -Y_u \,\overline{\Psi}_{1\bar{5}} \Psi_{15} \Phi_{15} - Y_\nu \,\overline{\Psi}_1 \Psi_{1\bar{5}} \Phi_{15} - Y_\chi \,\overline{\Psi}_{15} \Psi_{1'} \Phi_{15} + \text{h.c.}$$

We added two singlets: one for right-handed neutrinos, and the other for Indalo DM.

The other Yukawas (d and e) inherit the gauge fixed point thanks to GHU.

$$\tilde{\alpha}^* = \frac{6 \, \pi}{13} \,, \ \ \tilde{\alpha}^*_u = \frac{415 \, \pi}{5538} \,, \ \ \tilde{\alpha}^*_v = \tilde{\alpha}^*_\chi = \frac{122 \, \pi}{923} \,.$$

Complete FPs found for $n_g = 3$!

Yukawa running

6A flip SU(6)	$\Psi_{20}\supset q_L+u_R+e_R,$	Adj $\supset \varphi_H$	u GHU	< 3	2HDM	Yes	
or mp	30(0)	$\Psi_6 \supset d_R,\ \Psi_{\bar{6}} \supset l_L + \nu_R$	$\Phi_{15} \supset \varphi'_H$	<i>d,e</i> bulk	20	^{≤ 3} Type-II	105

$$\mathcal{L}_{Yuk} = -Y_d \,\overline{\Psi}_{20} \Psi_6 \Phi_{15} - Y_l \,\overline{\Psi}_{\bar{6}} \Psi_{20} \Phi_{15} + \text{h.c.}$$

Singlets (right-handed neutrinos Indalo DM) embedded in the 6's.

The other Yukawas (u and v) inherit the gauge fixed point thanks to GHU.

$$\tilde{\alpha}^* = \frac{6 \, \pi}{13} \,, \ \tilde{\alpha}^*_d = \frac{235 \, \pi}{156} \,, \ \tilde{\alpha}^*_l = \frac{235 \, \pi}{5616} \,.$$

Complete FPs found for $n_g \leq 3$!

Minimal SU(N) models (final)

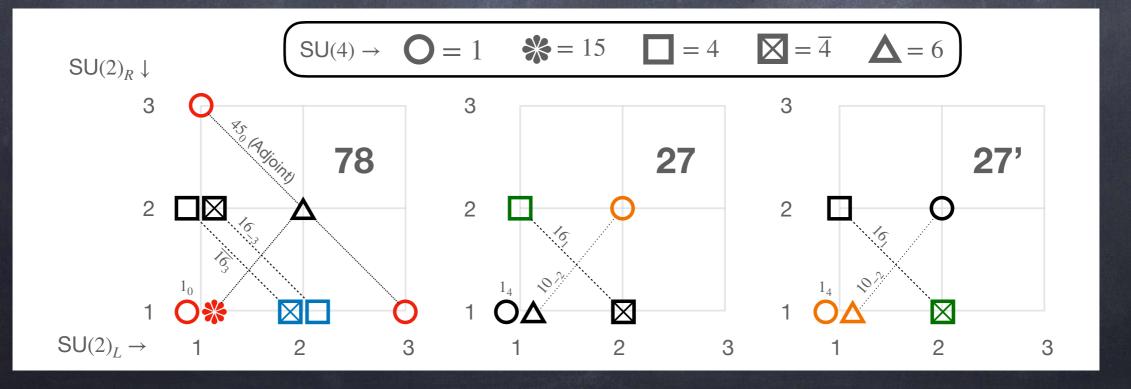
Name	$\mathcal{G}_{ ext{bulk}}$	Fermions	Scalars	Yukawas	n_g bulk	Higgs	UV fixed points ($n_g = 3$)
$\mathcal{G}_{4\mathrm{D}} = \mathcal{G}_{\mathrm{SM}} \times \mathrm{U}(1)_Z$							
6A	SU(6)	$\Psi_{15}\supset q_L+d_R, \Psi_1\supset\nu_R,$	$\operatorname{Adj} \supset \varphi_H$	d, e GHU		2HDM	$\tilde{\alpha}^* = \tilde{\alpha}^*_d = \tilde{\alpha}_l = \frac{6 \pi}{13}$
		$\Psi_{1\overline{5}} \supset l_L + u_R + e_R$, $\Psi_{1'}$	$\Phi_{15} \supset \varphi'_H$	<i>u,v</i> bulk		Type-II	$\tilde{lpha}_{u}^{*} = rac{415 \ \pi}{5538}$, $\ ilde{lpha}_{v}^{*} = ilde{lpha}_{\chi}^{*} = rac{122 \ \pi}{923}$
6A flip	SU(6)	$\Psi_{20}\supset q_L+u_R+e_R,$	$\operatorname{Adj} \supset \varphi_H$	u, v GHU	≤ 3	2HDM	1 <i>u v</i> 1.5 1
		$\Psi_6 \supset d_R, \ \Psi_{\bar{6}} \supset l_L + \nu_R$	$\Phi_{15} \supset \varphi'_H$	<i>d,e</i> bulk		Type-II	$\tilde{\alpha}_d^* = 36 \ \tilde{\alpha}_l^* = \frac{235 \ \pi}{156}$

only two viable models found!

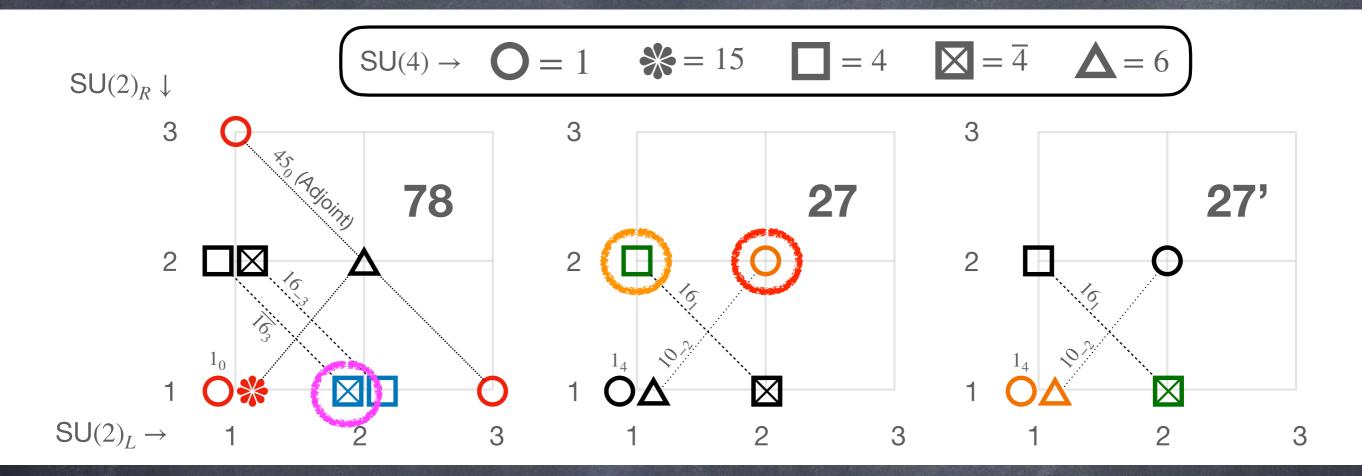
- Both have two Higgs doublets, one of which of gauge origins.
- Both models allow for 3 bulk generations with Baryon number conservation and Indalo DM!
- However, issue with gauge Higgs potential... see Anca's talk!

A more ambilious model

- Supersymmetry allows to generate
 fermions as gauge fields (gauginos)
- In E6, the adjoint 78 contains the
 right states (but in vector-like pairs)


see Kobayashi, Raby, Zhang, Nucl. Phys. B704, 3 (2005)

The exceptional case


Cacciapaglia et al, 2302.11671

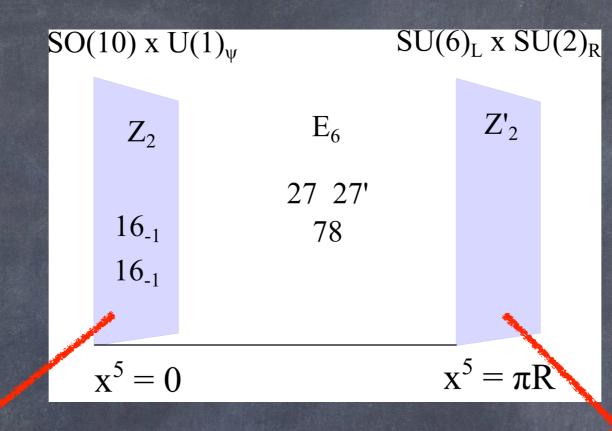
 $SO(10) \times U(1)_{\psi}$ $SU(6)_L \times SU(2)_R$ $E_6 \rightarrow PS \times U(1)_w$ Z'_2 E_6 \mathbb{Z}_2 The zero modes generate an anomaly 0 for the U(1) gauge symmetry: 27 27' 16_1 78 $\mathscr{A}_{16_1} - \mathscr{A}_{10_{-2}+1_4} = 2\mathscr{A}_{16_1}$ 16_1 Add exactly two generations on the 0 $x^5 = \pi R$ $x^{5} = 0$

SO(10) boundary!

The exceptional case

$$g \ \Phi_{27}^c \Phi_{78} \Phi_{27} \supset rac{g}{\sqrt{2}} (\mathbf{1}, \mathbf{2}, \mathbf{2})_2 (\bar{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{-3} (\mathbf{4}, \mathbf{2}, \mathbf{1})_1$$

 $g \ \Phi_{27'}^c \Phi_{78} \Phi_{27'} \supset -rac{g}{\sqrt{2}} (\mathbf{1}, \mathbf{1}, \mathbf{1})_{-4} \ (\mathbf{4}, \mathbf{1}, \mathbf{2})_3 \ (\bar{\mathbf{4}}, \mathbf{1}, \mathbf{2})_1$


$$egin{aligned} & g_{27'} \, \Psi_{78} \Psi_{27'} \, \supset \, - \, \overline{\sqrt{2}} \, ({f 1},{f 1},{f 1})_{-4} \,\, ({f 4},{f 1},{f 2})_3 \,\, ({f 4},{f 1},{f 1},{f 1},{f 2})_3 \,\, ({f 4},{f 1},{f 1},{f 2})_3 \,\, ({f 1},{f 1},{f$$

-> SM Yukawa couplings!

-> Gives mass to unwanted Chiral states via U(1) breaking

Bulk interactions preserve Baryon number!

Two model avenues:

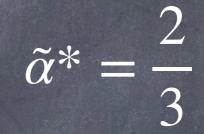
One gen in (15,1)+(6,2)

Model 2 :

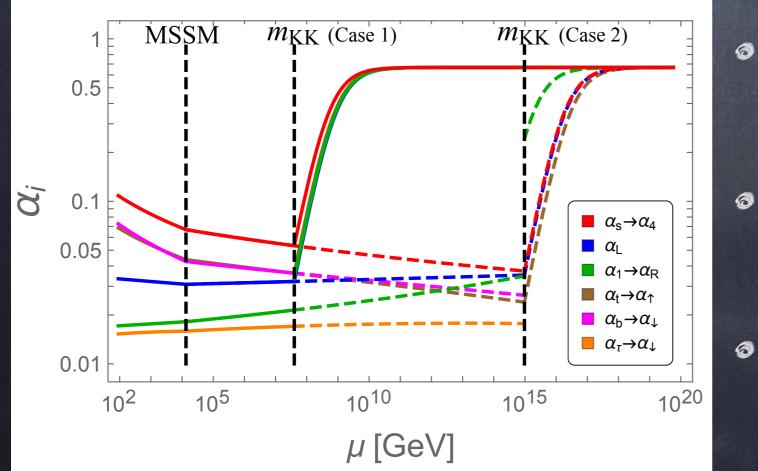
Predicts 2 generations

SO(10) gens

Model 1 :


- "Usual" SO(10) model building
 allowed
- Scale pushed high by proton decay

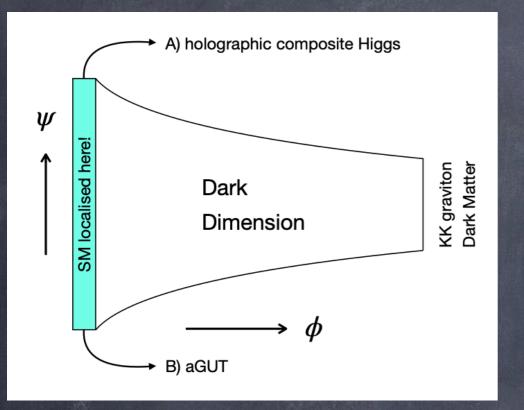
- Light generations preserve
 baryon number
- Number of generations not
 predicted
- Scale can be lowered (1000's
 TeV) from PS breaking 20


The fixed point

$$b_5 = -\frac{\pi}{2} \left(C(G) - \sum_i T_i(R_i) \right) = -3\pi$$

C(G) = 12 T(27) = 3

No more than <u>one generation</u> allowed in the bulk!



PS breaking due to a gauge-scalar

U(1) breaking by singlet in
 27'

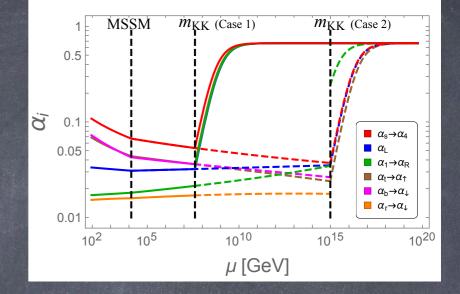
SUSY breaking to be studied

a GUT out of the Swampland

- The Dark Dimension conjecture
 relates the Cosmological constant
 (cc) to an meV extra dimension.
- By warping the DD, we can compute
 the SD cc to be:

$$\Lambda_5 = -24 \, k^3 \, M_{Pl}^2 \sim (100 \, GeV)^5$$

Hence, Λ_5 can be related to a 6th warped extra dimension, with parameters of the order of the fundamental scale ~ 10^{10} GeV.


$$ds_{6}^{2} = e^{-2\tilde{k}\tilde{r}_{c}|\psi|} \left(e^{-2kr_{c}|\phi|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + r_{c}^{2} d\phi^{2} \right) + \tilde{r}_{c}^{2} d\psi$$

Double-warped extra dimensions.

$$m_5 = {\lambda'}^{-1} \sqrt[5]{\Lambda_5} \sim {\lambda'}^{-1} {\lambda}^{-3/5} {\Lambda}^{3/20} M_{\rm Pl}^{2/5}$$

TeV scale naturally emerging from the cc And Planck! 22

Conclusions and perspectives

- Asymptotic GUT is a novel paradigm, avoiding many shortcomings of traditional GUTs
- SD models are very constrained and successful cases can be classified
- The SU(N) kinship only allows for two minimal models
- SO(N), Sp(N) and exceptional groups under way
- Non-minimal cases also interesting: e.g. SUSY E6
 model with complete unification for one generation

BOMUS tracks

The Yukawa sector runs

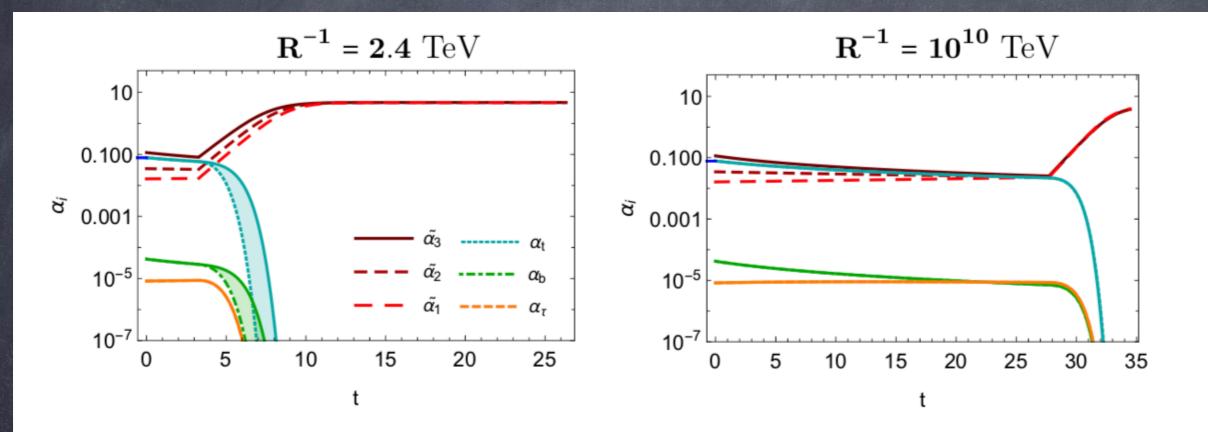


Figure 3. Running of the localized Yukawa couplings compared to the bulk gauge ones for two sample values of the compactification scale. The bands indicate the uncertainty related to KK gauge couplings (see text). The largest value of t corresponds to the 5D Planck mass value.

Localised Yukawas - SU(S) brane