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The standard model of particle physicsThe standard model of particle physics
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The standard model of particle physicsThe standard model of particle physics

● Condensed form ● Expanded version...
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The Large Hadron Collider (LHC)The Large Hadron Collider (LHC)
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The Large Hadron Collider (LHC)The Large Hadron Collider (LHC)

Collisions every 25 ns
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The Large Hadron Collider (LHC)The Large Hadron Collider (LHC)
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ATLAS
LHCb
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The ATLAS experimentThe ATLAS experiment
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The ATLAS experimentThe ATLAS experiment

● Designed for 24 simultaneous collisions, now ~60Designed for 24 simultaneous collisions, now ~60
→ → > 2.4 billion collisions per second> 2.4 billion collisions per second

● ~ 100 million channels~ 100 million channels
● Reject ~99,998 % of events onlineReject ~99,998 % of events online
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Interaction of particles with the detectorInteraction of particles with the detector
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ReconstructionReconstruction
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ReconstructionReconstruction
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Reconstructed event: H → ZZ∗ → eeµµ candidateReconstructed event: H → ZZ∗ → eeµµ candidate

Yann Coadou (CPPM) — AI in particle physics diiP Summer School 2024 7/48



CERNCERN
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CERNCERN

● Near Geneva, Switzerland
● 2500 employees
● 12 000 users in 500 institutes from 80 countries
● « Where the Web was born »
● CERN data center : 230 000 cores on 15 000 servers, 250 PB
● Raw data: lifetime storage → data and software conservation
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Computing gridComputing grid

● More than 800 000 cores
● 170 sites in 42 countries
● LHC: 50-70 

petabytes/year
 CERN: +25 PB

● 2 billion files
● > 250 000 simultaneous 

jobs
● 2 million jobs/day
● Typically > 2 PB 

accessed every day
● Typical transfer rates 

35 GB/s
● Total storage: ~ exabyte!
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Big dataBig data

● 40 MHz → petabyte/sec in each detector, zetabyte/year!

● Impossible → « online » filters: hardware+software trigger system, to 
reach ~1 kHz, ~1 MB/event

● Future challenge: HL-LHC
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Big dataBig data

● Requires hard thinking into how to handle such quantities
● Potential showstopper if trigger not fast enough to «digest» 

such a flow

● 40 MHz → petabyte/sec in each detector, zetabyte/year!
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Big dataBig data
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Big dataBig data

● Possible solutions
► Technical

● Better performing machines (GPU, 
FPGA, etc.)

● Better software (vectorisation, etc.)

► Operational
● Smaller data samples
● Avoid « reprocessings »

► Political
● Get more money
● Access to more ressources (HPC, 

volunteer, etc)

► Physics
● Take less data
● Cancel part of the pysics programme
● Delay processing

Yann Coadou (CPPM) — AI in particle physics diiP Summer School 2024 10/48



Modelling particle physics processesModelling particle physics processes
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Particle physics analysisParticle physics analysisMeasurement
● Typical analysis: event selection with requirements 

(« cuts ») on a few variables, maximising signal 
acceptance and rejecting as much background as 
possible

● Showing a peak (ideal) or a small distributed excess 
(typical...)
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Particle physics analysis with MLParticle physics analysis with ML
Améliorer le potentiel de 
découverte avec le ML

● Early 2000’s: a few analyses with neural 
networks

● A lot of reluctance in the community (black 
box)
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Particle physics analysis with MLParticle physics analysis with ML
Améliorer le potentiel de 
découverte avec le ML

● 2006: first use of Boosted 
decision trees in a particle 
physics analysis

● Very popular ever since, as 
«easy» to use, good results 
« out-of-the-box », «fast» 
training

● Numerous LHC results with 
BDT (classification and 
regression)

● Early 2000’s: a few analyses with neural 
networks

● A lot of reluctance in the community (black 
box)
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Research uncertaintiesResearch uncertainties
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HEP/ML terminologyHEP/ML terminology

Event All information collected during a collision inside a detector, or reproduced from
a Monte Carlo simulation of such collisions (equivalent to sample in ML)

Sample Collection of events, dataset

Variable (or discriminating variable) Property of the event or of one of its constituents
(feature in ML)

Cut Cut on variable ≡ apply threshold on this variable and keep only events satisfying
this condition

Event weight From number of generated events (process cross section, luminosity) and
various corrections applied to simulations to account for differences between data
and Monte Carlo predictions. Can be negative. Usually weight = 1 for all events
in ML
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Machine learning and particle physicsMachine learning and particle physics

Reduce data dimensionality to allow analysis

Losing information at each simplification step

Improve each step with ML?

Skip one or more steps with ML?
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Machine learning and particle physicsMachine learning and particle physics

LHC Computing Grid 
200k cores pledge to 
CMS over ~100 sites

CMS Detector 
1PB/s

CMS L1 & High-
Level Triggers 

50k cores, 1kHz

Large Hadron Collider 
40 MHz of collision

CERN Tier-0
 Computing Center 

20k cores

CERN Tier-0/Tier-1
 Tape Storage 
200PB total

LHC  Grid 
Remote Access 
to 100PB of data

Rare Signal 
Measurement 
~1 out of 106

AI

AI

AI

AI

AI

AI

Role of AI: accelerator control, data acquisition, 
event triggering, anomaly detection, new physics 
scouting, event reconstruction, event generation, 
detector simulation, LHC grid control, analytics, signal 
extraction, likelihood free inference, background 
rejection, new physics searches, ...

AI AI

©J.-R. Vlimant
machine learning or deep learning or multivariate in InspireHEP

Up-to-date review of papers

https://github.com/iml-wg/HEPML-LivingReview
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https://inspirehep.net/literature?q=machine learning or deep learning or multivariate
https://github.com/iml-wg/HEPML-LivingReview


(Boosted) Decision trees(Boosted) Decision trees
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BDT in HEPBDT in HEP

ATLAS b-tagging in Run 2 Eur. Phys. J. C 79 (2019) 970

Run 1 MV1c: NN trained from output of other taggers

Run 2 MV2c20: BDT using feature variables of underlying
algorithms and pT, η of jets

Run 2: introduced IBL (new innermost pixel layer)
⇒ explains part of the performance gain, but not all

ATLAS tt̄tt̄ production evidence
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Eur. Phys. J. C 80 (2020) 1085 arXiv:2007.14858 [hep-ex]

BDT output used in final fit to measure cross section

Constraints on systematic uncertainties from profiling
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http://dx.doi.org/10 .1140/epjc/s10052-019-7450-8
http://dx.doi.org/10.1140/epjc/s10052-020-08509-3
http://arxiv.org/abs/2007.14858


BDT in HEP: CMS H → γγ resultBDT in HEP: CMS H → γγ result

CMS-PAS-HIG-13-001

Hard to use more BDT in an analysis:

vertex selected with BDT
2nd vertex BDT to estimate probability to be within 1cm of interaction point
photon ID with BDT
photon energy corrected with BDT regression
event-by-event energy uncertainty from another BDT
several BDT to extract signal in different categories
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http://cds.cern.ch/record/1530524


BDT in HEP: reducing combinatoricsBDT in HEP: reducing combinatorics

tt̄H(bb̄) reconstruction

Match jets and partons in high-multiplicity final state

BDT trained on all combinations

New inputs to classification BDT

Access to Higgs pT, origin of b-jets

Phys. Rev. D 97, 072016 (2018) arXiv:2111.06712 [hep-ex]
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https://dx.doi.org/10.1103/PhysRevD.97.072016
https://arxiv.org/abs/2111.06712
http://www.theses.fr/s189750
http://www.theses.fr/s189455


Why are BDT still so popular in HEPWhy are BDT still so popular in HEP

Close to optimal performance out-of-the-box

Often outperform or similar to other techniques

Typical situation for boosted decision trees w.r.t. overtraining:

e
rr

o
r 

ra
te

number of trees/epochs

train

test
best

“bad” overtraining (overfitting) / “good” overtraining (still underfitting)
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Machine learning and particle physicsMachine learning and particle physics

http://opendata.cern.ch
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Machine learning and particle physicsMachine learning and particle physics

see backup
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Machine learning and particle physicsMachine learning and particle physics
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Machine learning and particle physicsMachine learning and particle physics

https://sites.google.com/site/trackmlparticle

TrackML Challenge: Grand Finale 1-2 July 2019
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https://sites.google.com/site/trackmlparticle
https://indico.cern.ch/e/TrackMLFinale


Neural network zooNeural network zoo
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Many possible network structures
Moving away from feature engineering (hand-crafted variables, e.g. with physics
knowledge) to model design (data representation and structure of network)
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https://www.asimovinstitute.org/


Using convolutional neural network in HEPUsing convolutional neural network in HEP

Distinguish highly boosted W jets from QCD jets arXiv:1511.05190

CNN really appropriate with images ⇒ transform inputs into images
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https://arxiv.org/abs/1511.05190


Using CNN in HEPUsing CNN in HEP

Pileup mitigation to measure Emiss
T

ATL-PHYS-PUB-2019-028
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https://cds.cern.ch/record/2684070


RNN for b-jet tagging in ATLAS experimentRNN for b-jet tagging in ATLAS experiment

ATL-PHYS-PUB-2017-003
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https://cds.cern.ch/record/2255226


RNN for combinatorics (tt̄H(→ bb̄) analysis) thesisRNN for combinatorics (tt̄H(→ bb̄) analysis) thesis

Previous strategy: best recoBDT+LLH ⇒ classBDT

Limitations: not all combinations/not all correlations

RNN: keep both, in one step

Equivalent performance. . .
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Graph neural networksGraph neural networks

Data structure not always “simple” sequence

May have more complex structure

Google trends and InspireHEP for “graph neural network”
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GNN in HEP arXiv:2007.13681 [hep-ex]GNN in HEP arXiv:2007.13681 [hep-ex]

hits to tracks calorimeter cells clustering

event classification jet classification

Object classification, event classification, node classification, edge classification, etc.
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https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2007.13681


GNN for b-jet tagging in ATLAS experimentGNN for b-jet tagging in ATLAS experiment

Transformer-based GN2 tagger FTAG-2023-01

Continued enhanced sensitivity
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


Autoencoder for anomaly detectionAutoencoder for anomaly detection

EPJ Web Conf. 214, 06008 (2019)

Assessing data quality at CMS
Usually done by human experts, comparing many distributions
Instead, take 401 histograms, from each extract seven numbers (five quantiles, mean and
RMS), for each luminosity section
Train autoencoder on good ones only
Test on good and bad ones
Monitor reconstruction error to single out misbehaving features

Good samples Anomalous samples

More advanced: AutoDQM
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https://doi.org/10.1051/epjconf/201921406008
https://autodqm.github.io/autodqm_ml.github.io/


New physics as anomaly detectionNew physics as anomaly detection

LHC Olympics 2020

Common training sample with dijet QCD and
Z ′ → XY new physics

Tested on unknown black box

Similar to training set but with different
Z ′/X/Y masses
or background only
or QCD + different signal

Report as complete description of new physics
as possible (masses, decay modes, number of
signal events, etc) arXiv:2101.08320 [hep-ph]

Recently released: Anomaly detection for new
physics searches in dijet events at CMS

CMS-EXO-22-026 CMS-NOTE-2023-013

CERN seminar 20/03/24

3 Unsupervised

3.1 Anomalous Jet Identification via Variational Recurrent Neural Network

3.2 Anomaly Detection with Density Estimation

3.3 BuHuLaSpa: Bump Hunting in Latent Space

3.4 GAN-AE and BumpHunter

3.5 Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly

Detection through Conditional Density Estimation

3.6 Latent Dirichlet Allocation

3.7 Particle Graph Autoencoders

3.8 Regularized Likelihoods

3.9 UCluster: Unsupervised Clustering

4 Weakly Supervised

4.1 CWoLa Hunting

4.2 CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods

for Resonant Anomaly Detection

4.3 Tag N’ Train

4.4 Simulation Assisted Likelihood-free Anomaly Detection

4.5 Simulation-Assisted Decorrelation for Resonant Anomaly Detection

5 (Semi)-Supervised

5.1 Deep Ensemble Anomaly Detection

5.2 Factorized Topic Modeling

5.3 QUAK: Quasi-Anomalous Knowledge for Anomaly Detection

5.4 Simple Supervised learning with LSTM layers
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https://arxiv.org/abs/2101.08320
https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-22-026
https://cds.cern.ch/record/2881089
https://indico.cern.ch/event/1392054/


LHC Olympics resultsLHC Olympics results

Recent AISSAI Anomaly Detection Workshop 4–7 March 2024
This event brings together scientists from a range of scientific fields including computer science, statistics, particle physics and astrophysics, as well as
cross-cutting areas such as the development of anomaly detection algorithms, medical image analysis, accelerator physics, and others.
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https://indico.in2p3.fr/e/AISSAI2024


Fast simulation with generative modelsFast simulation with generative models

Heavy CPU cost of simulation (> 50% of grid
resources)

MC stats becoming limiting factor in analyses

Replace “full simulation” with approximation

already routinely done, using parameterisation of
showers or library of pre-simulated objects
use GAN to simulate medium-range hadrons in
ATLFAST3 arXiv:2109.02551 Comput Softw Big Sci 6 (2022) 7

Now also photons arXiv:2210.06204

Comput Softw Big Sci 8 (2024) 7

also tested VAE ATL-SOFT-PUB-2018-001
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https://arxiv.org/abs/2109.02551
https://doi.org/10.1007/s41781-021-00079-7
https://arxiv.org/abs/2210.06204
https://doi.org/10.1007/s41781-023-00106-9
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001/


Using more basic informationUsing more basic information

Discriminating variables coming from feature engineering: physics motivation for
particular combinations (invariant mass, pT, etc.)
What if ML algorithm smarter?
Go to lower level features
Example charged Higgs analysis arXiv:1402.4735

7 hi-level features: invariant masses of jj , ℓν, bb, Wbb,
WWbb, bjj , blν
21 low-level features: momentum of each particle, Emiss

T ,
b-tagging

b
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http://arxiv.org/abs/1402.4735


Using low level features in tt̄H(→ bb̄) thesisUsing low level features in tt̄H(→ bb̄) thesis

c1 c2 ... c12

tree/FC DNN

RNN

classifier

output

evt-level input

...
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Parameterised NNParameterised NN

Looking for new physics scenario with unknown mass
⇒ one NN for each mass point

Parameterised NN EPJC (2016) 76:235 arXiv:1601.07913

mass as training parameter
as good as dedicated training
generalises better
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generalises better
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Domain adaptation and adversarial trainingDomain adaptation and adversarial training

Typical training arXiv:1409.7495

signal and background from simulation arXiv:1505.07818

results compared to real data to make measurement

Requires good data–simulation agreement

Possibility to use adversarial training and domain adaptation to account for
discrepancies/systematic uncertainties
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Decorrelating variablesDecorrelating variables

Phys. Rev. D 96, 074034 (2017) (see also arXiv:2211.02486 )

DNN tagger for jet substructures

Problem: result depends on jet mass ⇒ shaping of distributions

Solution: adversarial training to decorrelate result from mass

Decorrelation

● DNN tagger for jet substructures
● Problem: result depends on jet mass

→ shaping of distributions
● Solution: adversarial training to decorrelate result 

from mass

Phys. Rev. D 96, 074034 (2017)
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Improving inputsImproving inputs

arXiv:1406.7690 JINST 9 (2014) P09009

Better measure track properties

10 NN to decide:

number of tracks
impact point
associated uncertainties
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Classification without labelling CWoLaClassification without labelling CWoLa

arXiv:1708.02949 JHEP 10 (2017) 174
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Foundation models: masked particle modelingFoundation models: masked particle modeling

arXiv:2401.13537
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Quantum machine learningQuantum machine learning

44

The promise of quantum computing

Exponential speedup  ßà surpassing the limits of scaling
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QML H → γγ classificationQML H → γγ classification
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QML H → γγ classificationQML H → γγ classification

��������

� ��	
����
��������������
��������������� ��!
�"

��

.��?���
�������
.�������

� 6�����
�����
#�	
�����
	��������
 D*E
���
������
�����
� !�����
���?�������
�	�
	��������
��#����
�	�
������
 ��������
 

�

� ����*�������	+��
2
#�	
�
���#
��������
��
�	�
������&
�	�
�����
�����
�
�	�
������
������

	����233��1�����3�?�3>������	3***++*(

	����233��1�����3�?�3>������	3*+*4+)B

Yann Coadou (CPPM) — AI in particle physics diiP Summer School 2024 45/48



QML H → γγ classificationQML H → γγ classification
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ChatGPT and ML algorithms biasesChatGPT and ML algorithms biases

Typical answer about advantage of machine over human being: unbiased, does not care about
gender, religion, skin colour, etc.

Repeatedly shown to be utterly false (see e.g. Weapons of Math Destruction by Cathy O’Neil)

Why?

data scientist biases in coding algorithm
training data

Example: ChatGPT

175 billion parameters network, trained
on large fraction of all available texts on
the web (300G tokens)
ChatGPT-4: 1.8T parameters, 13T
tokens, trained on 25k Nvidia A100
GPUs for ∼90 days
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Typical answer about advantage of machine over human being: unbiased, does not care about
gender, religion, skin colour, etc.

Repeatedly shown to be utterly false (see e.g. Weapons of Math Destruction by Cathy O’Neil)

Why?

data scientist biases in coding algorithm
training data

Example: ChatGPT

175 billion parameters network, trained
on large fraction of all available texts on
the web (300G tokens)
ChatGPT-4: 1.8T parameters, 13T
tokens, trained on 25k Nvidia A100
GPUs for ∼90 days

LLM being investigated in HEP

Also keep in mind environmental cost of ML algorithm training and usage
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ConclusionConclusion

HEP generates enormous amounts of data: curse and blessing
LHC = big data (exascale)
only possible thanks to computing grid
upcoming HL-LHC challenge (bigger datasets, end of Moore’s law)

Machine learning in particle physics:
new ML algorithms took time before adoption in HEP (10 years for BDT or DNN)
now producing original ML work
. . . despite (residual) reluctance towards advanced tools

Large part of LHC results depend on ML:
a lot of BDT
now partially switching towards DNN of all flavours

Non-negligible extra computing cost (but also better exploitation of data)

Do not underestimate the necessary time for:
having a good idea of ML use case
. . . then proving its viability on test samples
. . . then on more realistic data, to scale
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Reference book (March 2022)Reference book (March 2022)

Artificial Intelligence for High Energy Physics https://doi.org/10.1142/12200
Sample Chapter(s)

Chapter 1: Introduction

Contents:

• Introduction (Paolo Cala�ura, David Rousseau and Kazuhiro Terao)

• Discriminative Models for Signal/Background Boosting:

◦ Boosted Decision Trees (Yann Coadou)

◦ Deep Learning from Four Vectors (Pierre Baldi, Peter Sadowski and Daniel Whiteson)

◦ Anomaly Detection for Physics Analysis and Less Than Supervised Learning (Benjamin Nachman)

• Data Quality Monitoring:

◦ Data Quality Monitoring Anomaly Detection (Adrian Alan Pol, Gianluca Cerminara, Cecile Germain and

Maurizio Pierini)

• Generative Models:

◦ Generative Models for Fast Simulation (Michela Paganini, Luke de Oliveira, Benjamin Nachman, Denis

Derkach, Fedor Ratnikov, Andrey Ustyuzhanin and Aishik Ghosh)

◦ Generative Networks for LHC Events (Anja Butter and Tilman Plehn)

• Machine Learning Platforms:

◦ Distributed Training and Optimization of Neural Networks (Jean-Roch Vlimant and Junqi Yin)

◦ Machine Learning for Triggering and Data Acquisition (Philip Harris and Nhan Tran)

• Detector Data Reconstruction:

◦ End-to-End Analyses Using Image Classi�cation (Adam Aurisano and Leigh H Whitehead)

◦ Clustering (Kazuhiro Terao)

◦ Graph Neural Networks for Particle Tracking and Reconstruction (Javier Duarte and Jean-Roch

Vlimant)

• Jet Classi�cation and Particle Identi�cation from Low Level:

◦ Image-Based Jet Analysis (Michael Kagan)

◦ Particle Identi�cation in Neutrino Detectors (Ralitsa Sharankova and Taritree Wongjirad)

◦ Sequence-Based Learning (Rafael Teixeira de Lima)

• Physics Inference:

◦ Simulation-Based Inference Methods for Particle Physics (Johann Brehmer and Kyle Cranmer)

◦ Dealing with Nuisance Parameters (T Dorigo and P de Castro Manzano)

◦ Bayesian Neural Networks (Tom Charnock, Laurence Perreault-Levasseur and François Lanusse)

◦ Parton Distribution Functions (Stefano Forte and Stefano Carrazza)

• Scienti�c Competitions and Open Datasets:

◦ Machine Learning Scienti�c Competitions and Datasets (David Rousseau and Andrey Ustyuzhanin)

• Index

Readership: Graduate students and physicists interested in AI/ML applications to HEP; data scientists and ML

researchers interested in "big science" data analysis and simulation.

We recommend

Chapter 5: Data Quality Monitoring Anomaly Detection

Adrian Alan Pol et al., World Scientific Book

ULTRA-FAST TIMING AND THE APPLICATION OF

HIGH ENERGY PHYSICS TECHNOLOGIES TO

BIOMEDICAL IMAGING

World Scientific Book

Oxygen Consumption and Metabolite Flux of Bovine

Portal-Drained Viscera and Liver

Gerald B. Huntington et al., The Journal of Nutrition,

1987
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Beyond the standard slidesBeyond the standard slides

Backup
HiggsML Kaggle challenge
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HiggsML Kaggle challengeHiggsML Kaggle challenge

Center for Data Science

Paris-Saclay

the HiggsML challenge
May to September 2014

When High Energy Physics meets Machine Learning

Joerg Stelzer - Atlas-CERN
Marc Schoenauer - INRIA

Balázs Kégl - Appstat-LAL
Cécile Germain - TAO-LRI

David Rousseau - Atlas-LAL
Glen Cowan - Atlas-RHUL

Isabelle Guyon - Chalearn
Claire Adam-Bourdarios - Atlas-LAL

Thorsten Wengler - Atlas-CERN  
Andreas Hoecker - Atlas-CERN 

Organization committee Advisory committee

info to participate and compete : https://www.kaggle.com/c/higgs-boson

HiggsML challenge

Put ATLAS Monte Carlo samples on the web (H → ττ analysis)

Compete for best signal–bkg separation

1785 teams (most popular challenge ever)

35772 uploaded solutions

See Kaggle web site and more information

12 

Final leaderboard 

David Rousseau, Higgs ML, Weekly,   2nd December 2014 

7000$ 

4000$ 

2000$ 

HEP meets ML award 

Free trip to CERN 

TMVA expert, with TMVA 

improvements 
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