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Research Areas and Mission

Core Research 
Areas

▶ Hybrid ML

▶ Resource-aware ML

▶ Human-centered 
AI Systems

▶ Trustworthy AI

▶ Embodied AI

Interdisciplinary Research 
Areas

▶ Planning & Logistics

▶ Physics

▶ Industry & Production

▶ Life Sciences

▶ Natural Language 
Processing (NLP)

Knowledge

Data Context

AI³
Triangular AI



Outline

© Lamarr Institute for Machine Learning and Artificial Intelligence 4

• Generative Learning and Adversarial Training

• Active Learning

• Generative Adversarial Active Learning

• Concluding Remarks
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Generative Adversarial Networks
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Generative LearningDiscriminative 
Learning ≠

Generative Learning
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Generative LearningDiscriminative 
Learning ≠

Generative Learning

The goal is to model the conditional probability 
distribution 𝑃 𝑌|𝑋 directly

➢ Predict labels given input features.
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Generative LearningDiscriminative 
Learning ≠

Generative Learning

The goal is to model the conditional probability 
distribution 𝑃 𝑌|𝑋 directly

➢ Predict labels given input features.

The goal is to model the joint probability 
distribution  𝑃 𝑋, 𝑌 of input features 𝑋 and 
corresponding labels 𝑌. 

➢ Learn the underlying data distribution

➢ Capture the dependencies between 
input features and labels.

➢ Generate new samples from that 
distribution
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Generative Learning

Role of  Deep Learning in Generative Modelling:

➢ Representation Learning:

❑ Learning rich hierarchical representations of data

❑ Capturing patterns and structures in the data

❑ Modelling complex data distributions more effectively.
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Generative Learning

Role of  Deep Learning in Generative Modelling:

➢ Representation Learning:

❑ Learning rich hierarchical representations of data

❑ Capturing intricate patterns and structures in the data

❑ Modelling complex data distributions more effectively.

➢ Architectural Flexibility:

❑ A wide range of neural network architectures, such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and transformers.

❑ Suitable to different types of data and modelling objectives.
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Generative Learning

Role of  Deep Learning in Generative Modelling:

➢ Representation Learning:

❑ Learning rich hierarchical representations of data

❑ Capturing intricate patterns and structures in the data

❑ Modelling complex data distributions more effectively.

➢ Architectural Flexibility:

❑ A wide range of neural network architectures, such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and transformers.

❑ Suitable to different types of data and modelling objectives.

➢ Scalability:
❑ Advancements of deep learning frameworks and hardware for large-scale generative models on vast 

amounts of data efficiently.

❑ More powerful generative models that can capture diverse and high-dimensional data distributions.
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Generative Learning

Popular types of generative learning include:

➢ Variational Autoencoders (VAEs):

❑ Combine DNNs with variational inference to learn probabilistic latent representations of data.

❑ Generate new samples by sampling from the learned latent space
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Generative Learning

Popular types of generative learning include:

➢ Variational Autoencoders (VAEs):

❑ Combine DNNs with variational inference to learn probabilistic latent representations of data.

❑ Generate new samples by sampling from the learned latent space

➢ Transformer Models:

❑ Developed for natural language processing tasks

❑ Leverage self-attention mechanisms to capture long-range dependencies in data sequences, making 

them well-suited for tasks such as text generation, image generation, and sequence-to-sequence 

modelling.
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Generative Learning

Popular types of generative learning include:

➢ Variational Autoencoders (VAEs):

❑ Combine DNNs with variational inference to learn probabilistic latent representations of data.

❑ Generate new samples by sampling from the learned latent space

➢ Transformer Models:

❑ Developed for natural language processing tasks

❑ Leverage self-attention mechanisms to capture long-range dependencies in data sequences, making 

them well-suited for tasks such as text generation, image generation, and sequence-to-sequence 

modelling.

➢ Autoregressive Models:

❑ Model the conditional distribution of each feature given previous features in the sequence.

❑ Generate data sequentially, one feature at a time.
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Generative Learning

Popular types of generative learning include:

➢ Flow-Based Models:

❑ Parameterize complex data distributions through a series of invertible transformations.

❑ learn an explicit probability density function of the data, enabling efficient sampling and likelihood estimation.



Generative Learning and Adversarial Training

13-Jun-24© Lamarr Institute for Machine Learning and Artificial Intelligence 16

Generative Learning

Popular types of generative learning include:

➢ Flow-Based Models:

❑ Parameterize complex data distributions through a series of invertible transformations.

❑ learn an explicit probability density function of the data, enabling efficient sampling and likelihood estimation.

➢ Generative Moment Matching Networks (GMMNs):

❑ Learn to match the moments of the data distribution using a feedforward neural network.

❑ Optimize a similarity measure between the generated and real data distributions.
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Generative Learning

Popular types of generative learning include:

➢ Flow-Based Models:

❑ Parameterize complex data distributions through a series of invertible transformations.

❑ learn an explicit probability density function of the data, enabling efficient sampling and likelihood estimation.

➢ Generative Moment Matching Networks (GMMNs):

❑ Learn to match the moments of the data distribution using a feedforward neural network.

❑ Optimize a similarity measure between the generated and real data distributions.

➢ Probabilistic Graphical Models (PGMs):

❑ Represent the joint distribution of random variables using graphical structures.

❑ Provide a principled framework for modelling complex dependencies between variables.
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Generative Learning

Popular types of generative learning include:

➢ Flow-Based Models:

❑ Parameterize complex data distributions through a series of invertible transformations.

❑ learn an explicit probability density function of the data, enabling efficient sampling and likelihood estimation.

➢ Generative Moment Matching Networks (GMMNs):

❑ Learn to match the moments of the data distribution using a feedforward neural network.

❑ Optimize a similarity measure between the generated and real data distributions.

➢ Probabilistic Graphical Models (PGMs):

❑ Represent the joint distribution of random variables using graphical structures.

❑ Provide a principled framework for modelling complex dependencies between variables.
➢ Generative Adversarial Networks (GANs):

❑ Consists of two neural networks, a generator and a discriminator, which are trained adversarially to generate 
realistic samples.

❑ Demonstrated impressive performance in generating images, audio, text, and other types of data.
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Generative Learning

Advantages of Generative Learning

➢ Data Generation:

❑ Generate new data samples that resemble the original training data.

❑ Image synthesis, text generation, and data augmentation, etc.
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Generative Learning

Advantages of Generative Learning

➢ Data Generation:

❑ Generate new data samples that resemble the original training data.

❑ Image synthesis, text generation, and data augmentation, etc.

➢ Unsupervised Learning:

❑ Learn representations of data without requiring labelled training examples

❑ Capture underlying patterns and structures in the data without explicit supervision.
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Generative Learning

Advantages of Generative Learning

➢ Data Generation:

❑ Generate new data samples that resemble the original training data.

❑ Image synthesis, text generation, and data augmentation, etc.

➢ Unsupervised Learning:

❑ Learn representations of data without requiring labelled training examples

❑ Capture underlying patterns and structures in the data without explicit supervision.
➢ Anomaly Detection:

❑ Learning the normal data distribution and identifying instances that deviate significantly from this 
distribution.

❑ Detecting rare or abnormal data points in various domains.
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Generative Learning

Advantages of Generative Learning

➢ Data Generation:

❑ Generate new data samples that resemble the original training data.

❑ Image synthesis, text generation, and data augmentation, etc.

➢ Unsupervised Learning:

❑ Learn representations of data without requiring labelled training examples

❑ Capture underlying patterns and structures in the data without explicit supervision.
➢ Anomaly Detection:

❑ Learning the normal data distribution and identifying instances that deviate significantly from this 
distribution.

❑ Detecting rare or abnormal data points in various domains.

➢ Representation Learning:

❑ Capture important features and characteristics.

❑ Improve downstream tasks such as classification, clustering, and retrieval.



Generative Learning and Adversarial Training

13-Jun-24© Lamarr Institute for Machine Learning and Artificial Intelligence 23

Generative Learning

Advantages of Generative Learning

➢ Data Imputation:

❑ Fill in missing or corrupted data values.
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Generative Learning

Advantages of Generative Learning

➢ Data Imputation:

❑ Fill in missing or corrupted data values.

➢ Domain Adaptation:

❑ Adapt to new domains by capturing the underlying data distribution and generating data samples

❑ Transfer learning
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Generative Learning

Advantages of Generative Learning

➢ Data Imputation:

❑ Fill in missing or corrupted data values.

➢ Domain Adaptation:

❑ Adapt to new domains by capturing the underlying data distribution and generating data samples

❑ Transfer learning

➢ Parameterizing Complex Distributions:

❑ Parameterize complex data distributions through a series of invertible transformations.

❑ Allow to model highly non-linear and multi-modal distributions.
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Adversarial Training

➢ Improve the robustness of machine learning models, particularly neural 
networks, against adversarial examples.

Xu, Xiaojun, et al. "Can you fool ai with adversarial examples on a visual turing test." arXiv preprint 

arXiv:1709.08693 3 (2017).
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Adversarial Training

➢ Improve the robustness of machine learning models, particularly neural 
networks, against adversarial examples.

✓ Small Changes.

✓ Most often imperceptible changes to humans.

✓ Cause a model to make incorrect predictions.
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Adversarial Training

➢ Improve the robustness of machine learning models, particularly neural 
networks, against adversarial examples.

✓ Small Changes.

✓ Most often imperceptible changes to humans.

✓ Cause a model to make incorrect predictions.

Xu, Xiaojun, et al. "Can you fool ai with adversarial examples on a visual turing test." arXiv preprint 

arXiv:1709.08693 3 (2017).
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Adversarial Training

Generating Adversarial Examples:

➢ Fast Gradient Sign Method (FGSM): 

Perturbs the input 𝑥 in the direction of the gradient of the loss with respect to the 
input

where 𝑥′ is the adversarial example, 𝜖 is the perturbation magnitude, 𝐽 is the loss 
function, 𝜃 represents the model parameters, and 𝑦 is the true label.
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Adversarial Training

Generating Adversarial Examples:

➢ Fast Gradient Sign Method (FGSM): 

Perturbs the input 𝑥 in the direction of the gradient of the loss with respect to the 
input

where 𝑥′ is the adversarial example, 𝜖 is the perturbation magnitude, 𝐽 is the loss 
function, 𝜃 represents the model parameters, and 𝑦 is the true label.

➢ Projected Gradient Descent (PGD): 

An iterative method that applies multiple small perturbations while projecting the 
perturbed example back onto a feasible set.

where 𝛼 is the step size, and ℬ(𝑥, 𝜖) denotes the 𝜖-ball around 𝑥.
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Adversarial Training

Adversarial Training Process:

➢ Step 1: Generate Adversarial Examples:

During each iteration of training, generate adversarial examples from the current 
training data.
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Adversarial Training

Adversarial Training Process:

➢ Step 1: Generate Adversarial Examples:

During each iteration of training, generate adversarial examples from the current 
training data.

➢ Step 2: Training

Train the model on both the original and the adversarial examples. 

Where 𝛿 represents the perturbation, 𝒮 is the set of allowed perturbations, and 𝒟 is 
the data distribution.
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Adversarial Training

Benefits of Adversarial Training:

➢ Improved Robustness:

❑ Makes models more robust to adversarial attacks.

❑ Helps the model to learn to correctly classify perturbed inputs.
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Adversarial Training

Benefits of Adversarial Training:

➢ Improved Robustness:

❑ Makes models more robust to adversarial attacks.

❑ Helps the model to learn to correctly classify perturbed inputs.

➢ Generalization:

❑ Improve the generalization ability of the model.

❑ Learns to handle a broader range of inputs.
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Adversarial Training

Benefits of Adversarial Training:

➢ Improved Robustness:

❑ Makes models more robust to adversarial attacks.

❑ Helps the model to learn to correctly classify perturbed inputs.

➢ Generalization:

❑ Improve the generalization ability of the model.

❑ Learns to handle a broader range of inputs.

➢ Security:

❑ Enhances the security of machine learning models (e.g., autonomous 
driving, medical diagnosis).
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Adversarial Training

Challenges of Adversarial Training:

➢ Computationally Intensive:

❑ Generating adversarial examples and including them in the training is

computationally expensive.
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Adversarial Training

Challenges of Adversarial Training:

➢ Computationally Intensive:

❑ Generating adversarial examples and including them in the training is

computationally expensive.

➢ Trade-off with Accuracy:

❑ trade-off between robustness and accuracy on clean (non-adversarial) 
data.
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Adversarial Training

Example :

Adversarial training algorithm using FGSM:

1. Generate Adversarial Example:

2. Training Objective:

In this setup, the model is trained to minimize the loss on both the original data 𝑥 and the adversarial 
examples 𝑥′. This helps the model learn to be more resilient to adversarial perturbations, improving its 
robustness and security.
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Generative Adversarial Networks 

Concept:

Two Players
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Generative Adversarial Networks 

Concept:

Two Players

Generator G

Discriminator D
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Generative Adversarial Networks 

Concept:

Two Players Two Objectives≠
Generator G

Discriminator D
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Generative Adversarial Networks 

Concept:

Two Players Two Objectives≠
Generator G

Discriminator D

G aims to create realistic data 
to fool the discriminator  D
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Generative Adversarial Networks 

Concept:

Two Players Two Objectives≠
Generator G

Discriminator D

The generator G aims to 
create realistic data to fool 
the discriminator D

The discriminator D aims to 
distinguish between real and 
generated data
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Generative Adversarial Networks 

Concept:

Two Players Two Objectives≠

Min-Max 
Game

Generator G

Discriminator D
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Generative Adversarial Networks 

Concept:

The training process of GANs can be formulated as the following min-max game:

➢ 𝑝𝑑𝑎𝑡𝑎(𝑥) represents the distribution of the real data.

➢ 𝑝𝑧(𝑧) is the prior distribution of the noise vector 𝑧, often chosen to be a 

simple distribution like Gaussian or uniform.

➢ 𝐺(𝑧) represents the generated data from the noise vector 𝑧.

➢ 𝐷(𝑥) is the discriminator's estimate of the probability that 𝑥 is real.
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Generative Adversarial Networks 

Concept:

The training process of GANs can be formulated as the following min-max game:

▪ Maximize the log probability for 
real data 𝑥.

▪ Maximize the log probability for 
fake data 𝐺 𝑧 .
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Generative Adversarial Networks 

Concept:

The training process of GANs can be formulated as the following min-max game:

▪ Maximize the log probability for 
real data 𝑥.

▪ Maximize the log probability for 
fake data 𝐺 𝑧 .

▪ Minimize the log probability 
that generated data 𝐷(𝐺 𝑧 ) is 
classified as fake.
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Generative Adversarial Networks 

Training Process:

The minimax game is solved by alternating optimization steps for 𝐷 and 𝐺:

Discriminator Training:

▪ Sample a batch of real data {𝑥(𝑖)}𝑖=1
𝑚  from the true data distribution 𝑝𝑑𝑎𝑡𝑎 .

▪ Sample a batch of noise vectors {𝑧(𝑖)}𝑖=1
𝑚  from a prior noise distribution 𝑝𝑧  (e.g., a Gaussian or uniform 

distribution).

▪ Generate fake data using the generator {𝐺(𝑧(𝑖); 𝜃𝐺)}𝑖=1
𝑚 .

▪ Compute the discriminator loss function:

▪ Update the discriminator parameters 𝜃𝐷 using gradient descent:
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Generative Adversarial Networks 

Training Process:

The minimax game is solved by alternating optimization steps for 𝐷 and 𝐺:

Generator Training:

▪ Sample a batch of noise vectors {𝑧(𝑖)}𝑖=1
𝑚  from the noise distribution 𝑝𝑧.

▪ Generate fake data {𝐺(𝑧(𝑖); 𝜃𝐺)}𝑖=1
𝑚 .

▪ Compute the generator loss function:

▪ Update the generator parameters 𝜃𝐺 using gradient descent:
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Generative Adversarial Networks 

Convergence:

The game reaches a Nash equilibrium when the generator produces data that is indistinguishable from 

real data, making the discriminator's predictions equally likely to be real or fake. At this point:
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Generative Adversarial Networks 

Challenges:

➢ Mode Collapse:  Occurs when the generator produces a limited variety of outputs, failing to capture 

the diversity of the data distribution.

limits the utility of GANs in applications requiring diverse outputs, as the generated samples do 

not represent the full range of possible data points.
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Generative Adversarial Networks 

Challenges:

➢ Mode Collapse:  Occurs when the generator produces a limited variety of outputs, failing to capture 

the diversity of the data distribution.

limits the utility of GANs in applications requiring diverse outputs, as the generated samples do 

not represent the full range of possible data points.

➢ Training Instability: The training process of GANs can be highly unstable due to the adversarial nature 

of the two networks. Small changes in parameters can lead to large variations in the results.

Instability can cause the generator or discriminator to overpower the other, leading to poor 

quality generated samples and difficulty in achieving convergence.
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Generative Adversarial Networks 

Challenges:

➢ Mode Collapse:  Occurs when the generator produces a limited variety of outputs, failing to capture 

the diversity of the data distribution.

limits the utility of GANs in applications requiring diverse outputs, as the generated samples do 

not represent the full range of possible data points.

➢ Training Instability: The training process of GANs can be highly unstable due to the adversarial nature 

of the two networks. Small changes in parameters can lead to large variations in the results.

Instability can cause the generator or discriminator to overpower the other, leading to poor 

quality generated samples and difficulty in achieving convergence.

➢ Vanishing Gradients: When the discriminator becomes too accurate, the gradients passed to the 

generator can become very small, leading to slow or stalled updates in the generator.

This makes it challenging for the generator to improve and learn to produce better samples.
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Generative Adversarial Networks 

Challenges:

➢ Mode Dropping:  Occurs when the generator produces a limited variety of outputs, failing to capture the 

diversity of the data distribution.

This results in the generated data not fully representing the variety present in the real data 

distribution.
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Generative Adversarial Networks 

Challenges:

➢ Mode Dropping:  Occurs when the generator produces a limited variety of outputs, failing to capture the 

diversity of the data distribution.

This results in the generated data not fully representing the variety present in the real data 

distribution.

➢ Evaluation Metrics: Evaluating GAN performance is difficult due to the lack of universally accepted metrics. 

Commonly used metrics like Inception Score (IS) and Frechet Inception Distance (FID) have limitations.

The difficulty in evaluation makes it challenging to objectively compare different GAN models and 

improvements.
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Generative Adversarial Networks 

Challenges:

➢ Mode Dropping:  Occurs when the generator produces a limited variety of outputs, failing to capture the 

diversity of the data distribution.

This results in the generated data not fully representing the variety present in the real data 

distribution.

➢ Evaluation Metrics: Evaluating GAN performance is difficult due to the lack of universally accepted metrics. 

Commonly used metrics like Inception Score (IS) and Frechet Inception Distance (FID) have limitations.

The difficulty in evaluation makes it challenging to objectively compare different GAN models and 

improvements.

➢ Hyperparameter Sensitivity: GANs are highly sensitive to hyperparameters such as learning rate, batch size, 

and network architecture.

This requires extensive experimentation and tuning, making the training process resource-intensive 

and time-consuming.
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Generative Adversarial Networks 

Challenges:

➢ Lack of Theoretical Understanding: The theoretical underpinnings of GANs are not fully understood, 

particularly regarding why certain architectures or training regimes work better than others. 

This limits the ability to design more effective and stable GAN models based on theoretical insights.
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Generative Adversarial Networks 

Challenges:

➢ Lack of Theoretical Understanding: The theoretical underpinnings of GANs are not fully understood, 

particularly regarding why certain architectures or training regimes work better than others. 

This limits the ability to design more effective and stable GAN models based on theoretical insights.

➢ Computational Cost: Training GANs, especially with large models and datasets, requires substantial 

computational resources.

This limits accessibility for researchers and practitioners with limited resources and can slow down 

the experimentation process. 
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Generative Adversarial Networks 

Challenges:

➢ Lack of Theoretical Understanding: The theoretical underpinnings of GANs are not fully understood, 

particularly regarding why certain architectures or training regimes work better than others. 

This limits the ability to design more effective and stable GAN models based on theoretical insights.

➢ Computational Cost: Training GANs, especially with large models and datasets, requires substantial 

computational resources.

This limits accessibility for researchers and practitioners with limited resources and can slow down 

the experimentation process. 

➢ Bias and Fairness : GANs can inadvertently learn and amplify biases present in the training data.

This can lead to biased and unfair generated samples, posing ethical concerns and limiting the 

applicability of GANs in sensitive domains.
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Generative Adversarial Networks 

Challenges:

➢ Adversarial Attacks: GANs are vulnerable to adversarial attacks where small perturbations in the input can 

lead to significant changes in the output.

This can compromise the robustness and reliability of GAN-generated data in practical applications.
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Generative Adversarial Networks 

Popular GAN-based models and architectures

➢ DCGAN (Deep Convolutional GAN): 

▪ Architecture: Uses convolutional layers in the generator and discriminator.

▪ Contributions: Introduced stable architectures for GANs and demonstrated the ability to generate 

realistic images from random noise.
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional 
Generative Adversarial Networks. arXiv preprint arXiv:151 1 .06434.



Generative Learning and Adversarial Training

13-Jun-24© Lamarr Institute for Machine Learning and Artificial Intelligence 62

Generative Adversarial Networks 

Popular GAN-based models and architectures

➢ DCGAN (Deep Convolutional GAN): 

▪ Architecture: Uses convolutional layers in the generator and discriminator.

▪ Contributions: Introduced stable architectures for GANs and demonstrated the ability to generate 

realistic images from random noise.
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional 
Generative Adversarial Networks. arXiv preprint arXiv:151 1 .06434.

➢ CGAN (Conditional GAN):

▪ Architecture: Adds extra information (e.g., class labels) to both the generator and discriminator.

▪ Contributions: Allows control over the output generation process, making it possible to generate 

specific types of images.

Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784.
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Generative Adversarial Networks 

Popular GAN-based models and architectures

➢ DCGAN (Deep Convolutional GAN): 

▪ Architecture: Uses convolutional layers in the generator and discriminator.

▪ Contributions: Introduced stable architectures for GANs and demonstrated the ability to generate 

realistic images from random noise.
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional 
Generative Adversarial Networks. arXiv preprint arXiv:151 1 .06434.

➢ CGAN (Conditional GAN):

▪ Architecture: Adds extra information (e.g., class labels) to both the generator and discriminator.

▪ Contributions: Allows control over the output generation process, making it possible to generate 

specific types of images.

Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784.

➢ WGAN (Wasserstein GAN):

▪ Architecture: Introduces a new loss function based on the Wasserstein distance.

▪ Contributions: Improves training stability and provides a meaningful loss metric for GANs.

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.



Generative Learning and Adversarial Training

13-Jun-24© Lamarr Institute for Machine Learning and Artificial Intelligence 64

Generative Adversarial Networks 

Popular GAN-based models and architectures

➢ WGAN-GP (Wasserstein GAN with Gradient Penalty):

▪ Architecture: An improvement over WGAN, WGAN-GP introduces a gradient penalty term to enforce the 

Lipschitz constraint.

Contributions: Stabilizes GAN training and improves the quality of generated samples.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved Training of Wasserstein GANs. arXiv preprint 

arXiv:1704.00028.
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Generative Adversarial Networks 

Popular GAN-based models and architectures

➢ WGAN-GP (Wasserstein GAN with Gradient Penalty):

▪ Architecture: An improvement over WGAN, WGAN-GP introduces a gradient penalty term to enforce the 

Lipschitz constraint.

Contributions: Stabilizes GAN training and improves the quality of generated samples.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved Training of Wasserstein GANs. arXiv preprint 

arXiv:1704.00028.

➢ Pix2Pix:

▪ Architecture: Uses conditional GANs for paired image-to-image translation.

▪ Contributions: Demonstrates high-quality image transformation tasks such as converting sketches to photos.

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. arXiv preprint  

arXiv:1611.07004.
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Generative Adversarial Networks 

Popular GAN-based models and architectures

➢ WGAN-GP (Wasserstein GAN with Gradient Penalty):

▪ Architecture: An improvement over WGAN, WGAN-GP introduces a gradient penalty term to enforce the 

Lipschitz constraint.

Contributions: Stabilizes GAN training and improves the quality of generated samples.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved Training of Wasserstein GANs. arXiv preprint 

arXiv:1704.00028.

➢ Pix2Pix:

▪ Architecture: Uses conditional GANs for paired image-to-image translation.

▪ Contributions: Demonstrates high-quality image transformation tasks such as converting sketches to photos.

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. arXiv preprint  

arXiv:1611.07004.

➢ BigGAN

▪ Architecture: Scales up the GAN model architecture to improve the quality and diversity of generated images.

▪ Contributions: Demonstrates the ability to generate images of unprecedented quality and diversity.

Brock, A., Donahue, J., & Simonyan, K. (2018). Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv preprint 

arXiv:1809.11096
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General Definition:

Active learning is an iterative process designed to improve a machine learning model 

by strategically selecting the most informative data points to be labeled by an oracle 

(e.g., a human annotator). The goal is to achieve high model performance with fewer 

labeled examples than traditional learning methods.
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Process:

Initial Training Set Model Training Query Strategy

Oracle Labelling

Model Retraining

Evaluation and Iteration

Stop if performance is 
satisfactory, or  repeat 
process

Begin with a small set of
labelled data. This initial
set is used to train a
preliminary model.
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Process:
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satisfactory, or  repeat 
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Begin with a small set of
labelled data. This initial
set is used to train a
preliminary model.

Train a machine learning model
using the initial labelled dataset.

Select the most informative
unlabelled data points

The selected data points are sent to an
oracle (e.g., human annotator) for labeling.
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Popular Query Strategies:

➢ Uncertainty Sampling:

Description: 

▪ Selects samples for which it is least confident about the output. Various metrics are used to measure 

uncertainty, such as:

✓ Margin Sampling: Chooses the sample where the difference between the first and second most probable 

classes is smallest.

✓ Entropy: Measures the uncertainty in the probability distribution output by the model.

✓ Least Confident Sampling: Selects the sample with the lowest predicted probability for the most likely 

class.
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Popular Query Strategies:

➢ Uncertainty Sampling:

Description: 

▪ Selects samples for which it is least confident about the output. Various metrics are used to measure 

uncertainty, such as:

✓ Margin Sampling: Chooses the sample where the difference between the first and second most probable 

classes is smallest.

✓ Entropy: Measures the uncertainty in the probability distribution output by the model.

✓ Least Confident Sampling: Selects the sample with the lowest predicted probability for the most likely 

class.

Limitations: 

▪ Can focus too much on outliers or noisy data.

▪ Can overlook representative samples.
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Popular Query Strategies:

➢ Query by Committee (QBC) (1/2):

Description: 

▪ Uses an ensemble of models (the committee) trained on the current labeled dataset. The samples about which the 

committee members disagree the most are selected for labeling.

✓ Vote Entropy: Measures the entropy of the votes cast by each committee member for a particular sample. Higher entropy 

indicates more disagreement.

Where  𝑣𝑐 𝑥 is the number of votes for class c for sample 𝑥, and 𝑁 is the total number of committee members.

✓ Kullback-Leibler (KL) Divergence: Measures the divergence between the probability distributions predicted by the 

committee members for a particular sample.

Where 𝑃 and 𝑄 are the probability distributions predicted by two different committee members.
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Popular Query Strategies:

➢ Query by Committee (QBC) (2/2):

Description: 

✓ Disagreement Ratio: Measures the proportion of committee members that disagree with the majority vote for a particular 

sample.

Where  𝑣𝑐 𝑥 is the number of votes for class c for sample 𝑥, and 𝑁 is the total number of committee members.

✓ Variance: Measures the variance of the predicted probabilities for a particular sample across the committee members.

Where 𝑝𝑖(x) is the probability predicted by the 𝑖 − 𝑡ℎ committee member for sample 𝑥, and ҧ𝑝(x) is the average predicted 

probability for sample 𝑥.



Active Learning

13-Jun-24© Lamarr Institute for Machine Learning and Artificial Intelligence 78

Popular Query Strategies:

➢ Query by Committee (QBC) (2/2):

Description: 

✓ Disagreement Ratio: Measures the proportion of committee members that disagree with the majority vote for a particular 

sample.

Where  𝑣𝑐 𝑥 is the number of votes for class c for sample 𝑥, and 𝑁 is the total number of committee members.

✓ Variance: Measures the variance of the predicted probabilities for a particular sample across the committee members.

Where 𝑝𝑖(x) is the probability predicted by the 𝑖 − 𝑡ℎ committee member for sample 𝑥, and ҧ𝑝(x) is the average predicted 

probability for sample 𝑥.

Limitations: 

▪ Computationally expensive due to maintaining multiple models.

▪ Requires a diverse committee to be effective, which can be challenging to achieve.
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Popular Query Strategies:

➢ Expected Model Change:

Description: Selects samples that would result in the greatest change to the current model if labeled and 

added to the training set. 

1. Compute the Probability Distribution: Use the current model to compute p(y∣x,θ), the probability distribution over 

possible labels for each candidate sample x.

2. Estimate Parameter Updates: For each possible label y, estimate the updated parameters θ′ by performing a 

hypothetical training step using the sample (x,y).

3. Calculate the Change: Measure the change in the parameters ∥θ′−θ∥.

4. Compute the Expectation: Average the measured changes weighted by their probabilities p(y∣x,θ).
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Popular Query Strategies:

➢ Expected Model Change:

Description: Selects samples that would result in the greatest change to the current model if labeled and 

added to the training set. 

1. Compute the Probability Distribution: Use the current model to compute p(y∣x,θ), the probability distribution over 

possible labels for each candidate sample x.

2. Estimate Parameter Updates: For each possible label y, estimate the updated parameters θ′ by performing a 

hypothetical training step using the sample (x,y).

3. Calculate the Change: Measure the change in the parameters ∥θ′−θ∥.

4. Compute the Expectation: Average the measured changes weighted by their probabilities p(y∣x,θ).

Limitations: 

▪ Computationally intensive as it requires estimating the impact of each candidate sample on the model.

▪ Assumes that the model change will always lead to performance improvement, which may not always 

be the case.
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Popular Query Strategies:

➢ Expected Error Reduction:

Description: Chooses samples that are expected to most reduce the overall prediction error of the model.
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Popular Query Strategies:

➢ Expected Error Reduction:

Description: Chooses samples that are expected to most reduce the overall prediction error of the model.

Limitations: 

▪ Requires estimating the error reduction for each candidate, which is computationally expensive.

▪ The estimation process itself might be prone to errors, affecting the sample selection quality.
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Popular Query Strategies:

➢ Expected Error Reduction:

Description: Chooses samples that are expected to most reduce the overall prediction error of the model.

Limitations: 

▪ Requires estimating the error reduction for each candidate, which is computationally expensive.

▪ The estimation process itself might be prone to errors, affecting the sample selection quality.

➢ Diversity Sampling:

Description: Selects samples that are not only uncertain but also diverse, ensuring that the labeled dataset 

covers different regions of the data space.
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Popular Query Strategies:

➢ Expected Error Reduction:

Description: Chooses samples that are expected to most reduce the overall prediction error of the model.

Limitations: 

▪ Requires estimating the error reduction for each candidate, which is computationally expensive.

▪ The estimation process itself might be prone to errors, affecting the sample selection quality.

➢ Diversity Sampling:

Description: Selects samples that are not only uncertain but also diverse, ensuring that the labeled dataset 

covers different regions of the data space.

Limitations: 

▪ Balancing between uncertainty and diversity can be challenging.

▪ Computationally intensive due to the need for measuring diversity.
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Popular Query Strategies:

➢ Density-Weighted Methods:

Description: Selects samples based on a combination of uncertainty and their representativeness within the 

data distribution, often measured using density estimates.
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Popular Query Strategies:

➢ Density-Weighted Methods:

Description: Selects samples based on a combination of uncertainty and their representativeness within the 

data distribution, often measured using density estimates.

Limitations: 

▪ Requires Calculating density estimates can be computationally expensive.

▪ Density estimation might not always be accurate, leading to suboptimal sample selection.
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Limitations of Active Learning:

➢ Computational Cost:

Many active learning methods require extensive computations, such as multiple model training (in QBC) or 
error estimations (in Expected Error Reduction), which can be resource-intensive and time-consuming.
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Limitations of Active Learning:

➢ Computational Cost:

Many active learning methods require extensive computations, such as multiple model training (in QBC) or 
error estimations (in Expected Error Reduction), which can be resource-intensive and time-consuming.

➢ Scalability:

Active learning methods might struggle to scale with large datasets or high-dimensional data due to the 
computational demands.
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Limitations of Active Learning:

➢ Computational Cost:

Many active learning methods require extensive computations, such as multiple model training (in QBC) or 
error estimations (in Expected Error Reduction), which can be resource-intensive and time-consuming.

➢ Scalability:

Active learning methods might struggle to scale with large datasets or high-dimensional data due to the 
computational demands.

➢ Dependency on Initial Labelled Data:

The performance of active learning can be heavily influenced by the initial set of labelled data. Poor initial 
samples can lead to suboptimal model performance and poor sample selection.
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Limitations of Active Learning:

➢ Computational Cost:

Many active learning methods require extensive computations, such as multiple model training (in QBC) or 
error estimations (in Expected Error Reduction), which can be resource-intensive and time-consuming.

➢ Scalability:

Active learning methods might struggle to scale with large datasets or high-dimensional data due to the 
computational demands.

➢ Dependency on Initial Labelled Data:

The performance of active learning can be heavily influenced by the initial set of labelled data. Poor initial 
samples can lead to suboptimal model performance and poor sample selection.

➢ Noisy Data Sensitivity:

Active learning can sometimes focus too much on uncertain or noisy data, leading to poor generalization 
if not properly managed.
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Limitations of Active Learning:

➢ Diversity-Accuracy Trade-off:

Balancing the trade-off between selecting highly uncertain samples and maintaining diversity in the 
dataset is challenging and crucial for effective learning.
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Limitations of Active Learning:

➢ Diversity-Accuracy Trade-off:

Balancing the trade-off between selecting highly uncertain samples and maintaining diversity in the 
dataset is challenging and crucial for effective learning.

➢ Annotation Effort:

While active learning aims to minimize labelling effort, the annotation process can still be time-
consuming, especially for complex tasks requiring expert knowledge.
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Limitations of Active Learning:

➢ Diversity-Accuracy Trade-off:

Balancing the trade-off between selecting highly uncertain samples and maintaining diversity in the 
dataset is challenging and crucial for effective learning.

➢ Annotation Effort:

While active learning aims to minimize labelling effort, the annotation process can still be time-
consuming, especially for complex tasks requiring expert knowledge.

➢ Model Dependency:

The effectiveness of an active learning strategy can be highly dependent on the underlying model. Some 
models may not show significant performance gains with active learning compared to random sampling.
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▪ The main idea is to use active learning to  guide the generator to generate synthetic examples that are 
the most informative.
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▪ The main idea is to use active learning to  guide the generator to generate synthetic examples that are 
the most informative.

GAAL

Active Learning query after generation
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▪ The main idea is to use active learning to  guide the generator to generate synthetic examples that are 
the most informative.

GAAL

Active Learning query after generation Active Learning query before generation
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Active Learning query after generation

1. Generate Synthetic Data using the adversarial training procedure
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Active Learning query after generation

1. Generate Synthetic Data using the adversarial training procedure

2. Compute Informativeness Score

Where 𝛼 and 𝛽 are weights, and 𝑆(𝑥) combines uncertainty and diversity measures.
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Active Learning query after generation

1. Generate Synthetic Data using the adversarial training procedure

2. Compute Informativeness Score

Where 𝛼 and 𝛽 are weights, and 𝑆(𝑥) combines uncertainty and diversity measures.

3.    Select Samples for Labeling:

where 𝒰 is the pool of unlabelled real samples and 𝐺(𝒵) is the set of synthetic samples generated by 
the GAN.
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Active Learning query before generation

Main Idea:  Guiding the generator produce samples that are likely to be the most informative.
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Active Learning query before generation

Main Idea:  Guiding the generator produce samples that are likely to be the most informative.

Example:  Generate training examples that are likely to be on the decision boundary for an SVM classifier.



Generative Adversarial Active Learning (GAAL)

13-Jun-24© Lamarr Institute for Machine Learning and Artificial Intelligence 102

Active Learning query before generation

Main Idea:  Guiding the generator produce samples that are likely to be the most informative.

Example:  Generate training examples that are likely to be on the decision boundary for an SVM classifier.

Zhu, Jia-Jie, and José Bento. "Generative adversarial active learning." arXiv preprint arXiv:1702.07956 (2017).
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Advantages

➢ Sample Efficiency:

By generating and selecting the most informative samples, GAAL reduces the amount of labeled  and 
generated data needed to achieve high performance.
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Advantages

➢ Sample Efficiency:

By generating and selecting the most informative samples, GAAL reduces the amount of labeled  and 
generated data needed to achieve high performance.

➢ Improved Learning:

The generated samples can cover regions of the data space that are underrepresented, leading to a more 
robust model.



GAAL Impact:

13-Jun-24© Lamarr Institute for Machine Learning and Artificial Intelligence 105

Advantages

➢ Sample Efficiency:

By generating and selecting the most informative samples, GAAL reduces the amount of labeled  and 
generated data needed to achieve high performance.

➢ Improved Learning:

The generated samples can cover regions of the data space that are underrepresented, leading to a more 
robust model.

➢ Dynamic Adaptation:

GAAL can adapt to changes in the data distribution over time, improving its applicability in real-world 
scenarios.
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Limitations

➢ Training Complexity:

Training GANs is computationally intensive and can be unstable. The integration with active learning adds 
further complexity.
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Limitations

➢ Training Complexity:

Training GANs is computationally intensive and can be unstable. The integration with active learning adds 
further complexity.

➢ Quality of Generated Samples:

The effectiveness of GAAL heavily depends on the quality of the samples generated by �G. Poor quality 
samples can negatively impact the learning process.
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Active Learning and GANs Synergy

✓ Active learning and Generative Adversarial Networks (GANs) form a powerful 

combination, enabling efficient model training with fewer labeled examples.

✓ Active learning prioritizes the most informative samples, enhancing the effectiveness 

of GANs in various tasks.
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Important Considerations for Future Work:

1. Resource Consumption:

➢ Future research should prioritize optimizing resource consumption to make active learning and 
GANs more scalable and accessible.

➢ Efficient algorithms and models can significantly reduce computational costs and energy 
consumption.



Concluding Remarks:

13-Jun-24© Lamarr Institute for Machine Learning and Artificial Intelligence 110

Important Considerations for Future Work:

1. Resource Consumption:

➢ Future research should prioritize optimizing resource consumption to make active learning and 
GANs more scalable and accessible.

➢ Efficient algorithms and models can significantly reduce computational costs and energy 
consumption.

2. Trustworthiness and Robustness:

➢ Ensuring the trustworthiness of models is crucial, especially in sensitive applications like 
healthcare and finance.

➢ Robust models that can withstand adversarial attacks and input variations are essential for 
reliable performance.
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Important Considerations for Future Work:

1. Resource Consumption:

➢ Future research should prioritize optimizing resource consumption to make active learning and 
GANs more scalable and accessible.

➢ Efficient algorithms and models can significantly reduce computational costs and energy 
consumption.

2. Trustworthiness and Robustness:

➢ Ensuring the trustworthiness of models is crucial, especially in sensitive applications like 
healthcare and finance.

➢ Robust models that can withstand adversarial attacks and input variations are essential for 
reliable performance.

3. Explainability:

➢ Explainability is a key factor in gaining user trust and understanding model decisions.

➢ Developing methods to interpret and explain the decisions of active learning models and GANs 
will enhance their adoption and transparency.
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