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GNNs and Graph Generative models and applications

* Graph Generative models

* Generative models for Medical Graphs

* Large generative models

* Graph / LLMs

* Multi modality for molecule/protein generation

* Conclusions

13/06/2024



Graphs are ubiquitous

e Chemistry —
Bio/Pharma

* Space of

molecules:

1060

New
proteins,
molecules
generation

(A)

Primary amino
acid structure

Quaternary structure complex

Guided Folding of Life’s Proteins in Integrate Cells with

Existing research

Divide Molecule F o
A
Molecule c D El -
X8 ‘(/\’ &
\r \/\CI
el
e -
}\\‘ N [H§ -
o \ 0 vy N
’ i
Atom-level view Pharm-level view Junction-level view
¢ & Diras)d .\E W
%o0 9%90, ¢
¢ 0 %0 o '0(43) (5)‘000 °®
® 1) (816) F o%e .6 5%9, ¢

Heterogeneous Molecule Graph

Jiang, Y., Jin, S., Jin, X. et al. Pharmacophoric-

Holographic Memory and GM-Biophysical Steering, Dirk K F constrained heterogeneous graph transformer

Meijer, Hans J. H. Geesink, 2018, Open Journal of Biophysics model for molecular property prediction. Commun

8(03):117-154 DOI:10.4236/0jbiphy.2018.83010,
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Chem 6, 60 (2023). https://doi.org/10.1038/s42004-
023-00857-x

Multiplex Human HIV-1 protein-protein interaction network
https://commons.wikimedia.org/wiki/File:Multiplex_Human_H
IV-1_protein-protein_interaction_network_%28edge-
colored_visualization%29.png


https://www.researchgate.net/profile/Dirk-Meijer-5
https://www.researchgate.net/profile/Dirk-Meijer-5
https://www.researchgate.net/profile/Hans-Geesink
https://www.researchgate.net/journal/Open-Journal-of-Biophysics-2164-5396
http://dx.doi.org/10.4236/ojbiphy.2018.83010

Graphs are ubiquitous

e Social Networks
* Internet/Teleco
e Citation graphs

nous,

https://threatpost.com/researchers-graph-social-networks-spot-
spammers-061711/75346/

e
g

http://tar.weatherson.org/2017/05/04/citation-graphs-and-methodology/
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Graphs are ubiquitous

power/water distribution networks Transport/road networks

m Maritime Networks Logistical Networks
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doi.org/10.4324/9780429346323 https://doi.org/10.1371/journal.pone.0195727.g005
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Graphsin NLP

e Graph of Words

 Information retrievall!]
» Keyword extraction 2
e Event detection 4

* Summarization
* Document classification 311

information retrieval is the activity of obtaining
~— A

information resources relevant to an information need
=

—

— . .
from a collection of information resources
~ <

Bag of words: ((activity,1), (collection,1)
(information,4), (relevant,1),
(resources, 2), (retrieval, 1)..)

need  from

Captures: frequency, order
and distance, ...

Best paper mention award

A method for solution of systems of linear kind
algebraic equations with m-dimensional lambda ®)

matrices. 4 system of linear algebraic equations
with ~m-dimensional lambda matrices s
considered. The proposed method of searching
Jor the solution of this system lies in reducing it
to a numerical system of a special kind.

special
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[1] Graph-of-word and TW-IDF: new approach to ad hoc IR, F.Rousseau, Michalis Vazirgiannis - CIKM "13: https://doi.org/10.1145/2505515.2505671,

A system of lincar algebraic equations with m-dimensional lambda ma-
trices is considered. The proposed method of searching for the solution

A method for solution of systems of linear algebraic equations with
‘m-dimensional lambda matrices.
of this system lies in reducing it to a numerical system of a special kind.

Keywords manually assigned by human annotators
linear algebra equat; numer system; m-dimension lambda matric

sentence encoder doc encoder

MLP +
softmax

ﬂ readout

[2]Main Core Retention on Graph-of-words for Single-Document Keyword Extraction, F. Rousseau,M. Vazirgiannis. ECIR2015

[3]Text Categorization as a Graph Classification Problem, F Rousseau, E Kiagias, M Vazirgiannis, ACL 2015

[4] Degeneracy-based real-time sub-event detection in twitter stream, P Meladianos, et. al. AAAI - ICWSM 2015
[5]Message Passing Attention Networks for Document Understanding, G. Nikolentzos, A. Tixier, M.Vazirgiannis , AAAI2020,

https://doi.org/10.1609/aaai.v34i05.6376
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Why Graph ML is important & different than
sequential ML

* handles (graphs, networks, trees,
and hypergraphs) not easily represented by vectors or matrices
* capture and dependencies among nodes, and

capitalise on the graph structure and properties to enhance the
learning process — capture longer term dependencies

* can leverage GNNs to learn powerful/expressive graph
representations useful for downstream tasks: node classification, link
prediction, graph generation, and graph matching.

* Graph pretrained models than
traditional DL models, especially those based on transformers.



Graph Machine learning tasks

An attributed graph is a graph with attributes on vertices. Each vertex ve V @

is annotated with a feature vector h,

0.2,1.4,0.8]
[—0.4,0.3, —0.1]

[0.5,0.2, —0.9]

0.3,1.1,0.9]

G

h1,...,h5€R3

hy =[0.2,1.4,0.8]T h3=[-0.4,0.3,—0.1]T

13/06/2024

0.6,—1.1,1.4]

Node classification: given a graph with labels on some
nodes, provide a high quality labelling for the rest of
nodes

Graph clustering: given a graph, group its vertices into
clusters in such a way that there are many edges
within each cluster and relatively few between the
clusters (community detection)

Link Prediction: given a pair of vertices, predict if they
should be linked with an edge

Graph classification: given a set of graphs with known
class labels for some of them, decide to which class

the rest of the graphs belong.
Graph Regression...



Abundance of GNN methods

High-dimensional Weisfeiler-Lehman test of isomorphism — a generalization of

Graph Convolutional Network (GCN) the WL which colors tuples from V* instead of nodes

[Kipf and Welling, ICLR'17]

Graph attention networks (GAT) ® k-GNN [Morris et al., AAAI'19]
[Velitkovi¢ et al., ICLR'18] High-order neighborhoods
[Hamilton et al., NIPS'17] ] k-hOp [Nikolentzos et al., Neural Networks 130]

Approaches that consider the average of all possible permutations of nodes

@ RelationalPooling [Murphy et al., 1ICML'19]

Coloring schemes

@ CLIP [Dasoulas et al., 1JCAI'20]

Invariant and equivariant linear layers

@ k-order graph networks [Maron et al., ICLR'19]

13/06/2024 22



Need for Graph Generators

® Graph generator models can produce graphs with given properties or typology for
various applications

® Modeling and studying networks in biology, engineering, and social sciences.
® simulate the evolution of social networks,

® the structure of protein-protein interactions,
® topology of power grids.

® Discovering new graph structures and properties.
® generate novel chemical and molecular structures,
® design new materials,
®* explore the space of possible graphs with certain characteristics.

® Completing and enhancing existing graphs.
® fillin missing nodes and edges,
® add new features and attributes,
® improve the quality and diversity of graph data.

13/06/2024 23



Graph Generators — heuristic based models

® Erdds—Rényi Random Graph Model
® Barabasi Albert graph generator
® Kronecker graphs — pattern recursion

® Stochastic Block models
o ..

13/06/2024



Need for Deep Graph Generators

® Traditional graph generation models (i.e. Erdés-Rényi, Barabdsi-Albert model,
Kronecker graphs, Stochastic block models) based on assumptions / heuristics
oversimplifying the underlying distributions of graphs.

®* Deep models for graph-structured data enable effective complex graph
generation

, without relying on
hand-engineered processes or pre-defined statistical properties.

, and
generate realistic graphs that match the structural characteristics of the target
distribution.
incorporate various advanced methods: (i.e. attention mechanisms, reinforcement
learning) to enhance the quality and diversity of the generated graphs.



Graph Generative Models

Graph generation challenging task:
® higher-order (and non symmetric) relationships Q\b

® Sparsity and no deterministic order in processing
nodes,

® |ong-tailed distribution of relationships: some are
frequent others very rare in real-life graphs.

® dynamic and temporal: change over time,

different states with time.
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Overview of deep graph generation

Generation strategies

- 9 OH _ (}() 9 OH
Sampling strategies \Y d d ’

Sequential generation

Deep generative models

\VAE| Flow| Diffusion ...

Random 50
o+ [romna) » Fogon
z

One-hot generation

Controllable

— Q . Q
@_@H , | Encoder | __ ¢\ —,  Sampler , | Decoder , }BOH
fo(z| G) z ~p(2) fo(G | 2)

A Survey on Deep Graph Generation: Methods and Applications, Yangiao Zhu et al, LOG 2023

® encoder maps observed graphs into a stochastic distribution;

® sampler draws latent representations from that distribution;

® decoder receives latent codes and produces graphs

13/06/2024
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Overview of deep graph generation - Encoder

Generation strategies

- 9 OH _ (}() 9 OH
Sampling strategies \Y d d ‘

Sequential generation

Deep generative models

\VAE| Flow| Diffusion ...

J Random

Controllable

- Q.0
@_/(gH a Encoder —_ Q\ —> | Sampler > Decoder N }80H
fe(2]G) z ~p(2) f2(G | 2)

A Survey on Deep Graph Generation: Methods and Applications, Yangiao Zhu et al, LOG 2023

® Encoder - The encoding function fg(z | G) represent discrete graph objects as dense,

continuous vectors.

® employ probabilistic generative models (e.g., variational graph neural networks) as the

encoder.

® encoder function f g outputs the parameters of a stochastic distribution following a prior

distribution p(z).

13/06/2024



Overview of deep graph generation - Sampler

Generation strategies

Y] 9 OH _ /
Sampling strategies \Y d " d 1
Sequential gen

Random
Controllable

Deep generative models
\VAE| [Flow| [Diffusion}

. Neural Net
ne-hot generation
Q Q Q OH
Encoder AL Sampler Decoder ba d
folz|G) — P 2~ p(2) f2(@ ] 2)

A Survey on Deep Graph Generation: Methods and Applications, Yangiao Zhu et al, LOG 2023

® sample latent representations from learned distribution z ~ p(z).
® two sampling strategies: random sampling and controllable sampling.
® Random: randomly sampling latent codes from the learned distribution.

® controllable: sample latent code in an attempt to generate new graphs with desired
properties.

O In practice, controllable sampling usually depends on different types of deep generative models and requires
an additional optimization term beyond random generation.

13/06/2024 29



Overview of deep graph generation - Decoder

Generation strategies

- 9 OH _ (}() 9 OH
Sampling strategies \Y d d 1

Sequential generation

()( ()(H
- - (remva)- 940
z

One-hot generation

— Q .0
@_/(gH ; Encoder —_ Q\ —> | Sampler > Decoder N }(80H
fe(2]G) z~p(2) f2(G | 2)

A Survey on Deep Graph Generation: Methods and Applications, Yangiao Zhu et al, LOG 2023

Random
Controllable

Deep generative models
\VAE| Flow| Diffusion ...

® The decoder receives the latent representations sampled from the learned distribution and
generates graph structures.
® decoder is more complicated due to the discrete, non-Euclidean nature of graph objects.
® Decoder types:
* sequential generation: generating graphs in consecutive steps, one node/edge at a time.
* one-shot generation - generating node/edge feature matrices in single step.
o

not all methods include all components —i.e. (GANs) do not include a specific encoder

13/06/2024
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Graph generative models for deep graph generation

¢ auto-regressive models 4

Node ordering

o0 _»Enczodz - Decoder_)(}&d@
e variational autoencoders E@%] ) |1 = HU :J

— o |l Flow || _ | Inverse _ || o
X @ T e i

Training |
set i Real
1 D1sc;1n(1m)ator
p(x
Generator _ ||| | Fake
Forward: q(x: | ©:—1) fa(2) 5
H_ 7
Add noise
o 0 —_— —_— —_—
M)H Lnon B A

Denoise

Reverse: pg(T;i—1 | 1)

A Survey on Deep Graph Generation: Methods and Applications, Yanqgiao Zhu et al, LOG 2023
13/06/2024
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Deep Graph Generators -Auto-Regressive models

® AR models: Likelihood of a joint distribution over N random variables (nodes/edges) -
chain rule of probability.

® generation process: determines the next step action (add node/edge/stop)given the
current subgraph. The general formulation of AR models is as follows:

N N
p(G™) = [[p(GT | GT,G3,--- ,GT_y) = [ [ p(GT | GZ;)
=1 =1

® where GZ, = {GT,G5,--- ,GT_;} random variables in the previous N steps.

® constraint: AR - sequential generation, requires pre-specified ordering of nodes in the
graph.

® Many efforts [GraphRNN, 2018], [DeepGMG2018][Bacciu et al.2020], [Goyal et al.2020], MolecularRNN

[2021]...
13/06/2024 @@@—@@—@ 33
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Deep Generative Models of Graphs - DeepGMG [Li et al., 2018]

—> Autoregressive model for graph generation: No prior structural assumption
—> Generation process based on sequential decisions

€ Generate one node at a time

€ Connect node to graph at current state by creating edges (one by one)

—> Probability of new event depends on history of graph derivation

—> Graphs are modeled by GNN - T rounds of propagation < i fs

- j fr | B D

- - @

[ N= |

o dle o/ ‘
Learning Deep Generative Models of Graphs @& [ am r s
Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter | | -/ @ O / -
Battaglia, https://arxiv.org/abs/1803.03324 / O A =

13/06/2024
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DeepGMG - Method

N =

node to the selected node

hd

N

Return to (3)
Repeat until the model decides not to add another edge
Return to (1) to add subsequent nodes.

Check whether to add a new node of a particular type or terminate

If a node type is chosen, add that type node

3. Check if any further edges are needed to connect the new node to the
existing graph

4. If yes, select a node in the graph and add an edge connecting the new

<«— f add_node
— f add_edge

«— f nodes

Add node (0)? Add edge? Add node (1)? Add edge? Pick node (0) to
(yes/no) (yes/no) (yes/no) (yes/no) add edge (0.1)
] ik @ ® @29
1 ® —0
Generation steps
Add edge? Add node (2)? Add edge? Pick node (0) to Add edge?
® (yes/no) (yes/no) /no) ge (0.2) ® (yes/no)
o & o & —
® ® @
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Evaluation for DeepGMG

Synthetic Graphs with Certain Topological Properties

® Cycles, Trees and Barabasi—Albert graphs (power-law degree Dataset | Graph Model LSTM E-R Model
distribution) Cycles 84.4% 48.5% 0.0%

® Report portion of valid samples that satisfy the given Trees 96.6 % 30.2% 0.3%
characteristic B-A Graphs 0.0013 0.0537 0.3715

® Report the KL-divergence between the degree distributions
of samples and data for B-A graphs

Table 2. Molecule generation results. NV is the number of permu-

Molecule Generation tations for each molecule the model is trained on. Typically the

* ChEMBL molecule database (20 most heavy atoms) number of different SMILES strings for each molecule < 100.

R . . . Arch Grammar  Ordering | N NLL %valid  %onovel
RDKit: Convert SMILES string representations to Graph TSTM SMILES — Fixed , 148 9350 8177
representation of molecules LSTM  SMILES Random < 100  19.99 93.48 83.95

° . LSTM Graph Fixed | 22.06 85.16 80.14
Node/Edge ordering LSTM  Graph  Random | O(n!) 6325 9144 9126

° ; SR, . Graph Graph Fixed 1 20.55 97.52 90.01
FIX?d Orderlng' canonlc?l from SMILES . Graph Graph Random O(n!) 5836 95.98 95.54
* Uniform random ordering by permutation Table 3. Negative log-likelihood evaluation on small molecules
* Report Negative Log-Likelihood (NLL) with no more than 6 nodes. . .
e R t tion f l-form tted ( I.d) mol nd uni Arch Grammar  Ordering | N Fixed Best Marginal
éport potion ot we 0. a e . valld) sampies and unique LSTM  SMILES Fixed I 1728 1598 15.90
novel samples not seen in training set LSTM  SMILES  Random | <100 1595 1576 1567
. . oL LST™M Graph Fixed 1 1679  16.35 16.26
* Report estimated marginal likelihood on small molecules LSTM  Graph  Random | O(n!) 2057 1890 1596
H Graph Graph Fixed 1 16.19 15.75 15.64
(IntraCtabIe on Iarge mOIGCUIGS) Graph Graph Random O(n!) 20.18 18.56 15.32

13/06/2024
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Evaluation for DeepGMG

Conditional Graph Generation

—> A subset of previous ChEMBL database with contains molecules of 0, 1 and 3 aromatic rings

=> Report potion of well-formatted (valid) samples and unique novel samples not seen in
training set

—> Report portion of samples that have the number of atoms, bonds, rings, and all three that
match the given condition

Arch  Grammar Condition Valid Novel Atom Bond Ring All

LSTM SMILES Training 843 828 713 709 827 69.8
LSTM  Graph Training 65.6 649 633 627 503 482
Graph Graph Training  93.1  92.1 81.7 79.6 764 66.3
LSTM SMILES 2-rings 644 612 7.1 42 438 05
LSTM  Graph 2-rings 549 542 235 21.7 239 98
Graph Graph 2-rings 915 913 758 724 62.1 50.2
LSTM SMILES 4-rings 71.7 694  46.5 . 3 1.3 0.0
LSTM Graph 4-rings 429 421 164 10.1 34 1.8
Graph Graph 4-rings 848 84.0 487 409 17.0 133

13/06/2024 38



GraphRNN [You et al., 2018]

® Autoregressive model for graph generation

O Key insight: Graph G with node permutation 7 can be uniquely mapped into a sequence

of node and edge additions S™
O Model the generation process with two RNNs
B Node-level: generate a state for a new node

B Edge-level: generate edges for the new node based its hidden state

hq ho hs ha hs he
O—0B O—03
K s 36
SOS _ Jﬂ —%
B e ]

AT 1 ol |
3 1]
SE 1 ‘ 1 Sample + Edge-level Update
I —_—
4 ! Node-level Update

5
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec

13/06/2024
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GraphRNN - Method

=> Omitting symbol of node permutation i, Graph G~p(G) can be represented as a sequence of
adjacency vectors (S;, ..., Sn)

=> S;is a (i-1) dimensional vector represents edges between i and previous nodes: {0, 1}-1

=> p(G) is related to p(S) with p(S) = TT."*2p( Si | S, --» Si-1 ). This product can be modelled by a RNN
(node-level) with state transition possible modelled by another RNN (edge-level), which models

the distribution p( S I S<i) = 'I'I'li-l p( Si,j I Si,<j, ey S<i)
Node-level RNN

o) |; = fuans(hi-1,S7;)

hi hao hs hg
O—B O—OB
= 9.0 1

NN [949]-33pq

SOS

7T
S3

[

Sample + Edge-level Update

912 =i fout (hz)
ST ~ Pe,

1

Node-level Update
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Evaluation for GraphRNN

Visual comparison

=> First row: Training set
=> Third row: Kronecker graph, Mixed-Membership Stochastic Block model and Barabasi—
Albert graph

Grid Community
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Evaluation for GraphRNN

Community (160,1945) Ego (399,1071) Grid (361,684) Protein (500,1575)

Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit
E-R 0.021 1243 0.049 0508 1.288 0232 1.011 0018 0900 0.145 1779 1.135 9 . .
B-A 0268 032 0047 0275 0973 0095 1860 0 0720 1401 1706 0920  MMD(p|lg) = Ep yuplk(z,y)] + Bz yuglk(z,y)]
Kronecker 0259 1685 0.069 0.108 0975 0052 1.074 0.008 0.080 0.084 0441 0.288 : ' LA '
MMSB 0.166 159 0054 0304 0245 0048 1.881 0.131 1239 0236 0495 0.775 2]'4“z oy qlk(fr y)l

e Jy~ AL .
GraphRNN-S  0.055 0.016 0.041 0.090 0.006 0.043 0029 10 50011 0057 0102 0.037
GraphRNN 0.014 0.002 0039 0077 0316 0030 10°° 0 107% 0034 0935 0217
Community-small (20,83) Ego-small (18,69)
Degree  Clustering  Orbit  Train NLL. Test NLL. - Degree  Clustering  Orbit Train NLL.  Test NLL

GraphVAE 0.35 0.98 0.54 13.55 25.48 0.13 0.17 0.05 12.45 14.28
DeepGMG 0.22 0.95 0.40 106.09 112.19 0.04 0.10 0.02 21.17 22.40
GraphRNN-S  0.02 0.15 001 31.24 35.94 0.002 0.05 0.0009 8.1 9.88
GraphRNN 0.03 0.03 0.01 28.95 35.10 0.0003 0.05 0.0009 9.05 10.61

Maximum Mean Discrepancy (MMD)
—> Compare all moments of the empirical distributions using an exponential kernel with
Wasserstein distance
80% decrease of MMD over traditional baselines: E-R, B-A, Kronecker, MMSB
90% decrease of MMD over deep learning baselines
22% smaller average NLL gap compared to deep learning baselines

13/06/2024
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Graph generative models for deep graph generation

e auto-regressive models 4

Node ordering

o0 _»Enczodz - De::od:r_)(&d@
e variational autoencoders H@%] ) | = HU :J

L — o | [REIowEN B SInVErscHl | |1 o
X @ T e i

Training |
set i Real
1 D1sc;1n(1m)ator
p(x
Generator _ ||| | Fake
Forward: q(x: | ©:—1) fa(2) 5
H_ 7
Add noise
o 0 —_— —_— —_—
M)H Lnon B A

Denoise

Reverse: pg(T;i—1 | 1)

A Survey on Deep Graph Generation: Methods and Applications, Yanqgiao Zhu et al, LOG 2023
13/06/2024
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Graph Auto encoders

A — Encoder S, Je—_— Decoder
0.523 -1.012
2 11) 2 (1; 2.127  0.316 g ;
A=] 0 1 0 0 Z=| 0912 0.127 ilo {
1 0o o o -1.210  0.026 i
a - ::' .U
™Y e . “. »
. &9 . . -t ‘.o’é
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Graph Auto encoders

Graph Neural. Net. "

= (GNN) Encoder =i Decader i
Graph AE:
@ encoder: | Z = GNN(A, X) —

@ decoder: |A =o(ZZ")

i.e., for all node pairs (i,), 6 -4 -2 0 2 4 6

we have A; = o(z] z;)

Figure: Sigmoid activation:

o(x) = 1+:_»—X

Reconstruction Loss': capturing the similarity between A and A
° eg., cross-entropy loss: —> ", > (A; log(A;) + (1 — Aj)log(1 — Ay))

e or MSE loss: .7, Z}’II(AU = Aij)2

13/06/2024



Graph Variational Auto Encoders

Generation strategies

- 9 OH _ (}() 9 OH
Sampling strategies \Y d d ’

Sequential generation

Deep generative models

\VAE| Flow| Diffusion ...

Random

9 o 9 OH
® | Neural Net | > 7d
z

One-hot generation ‘

Controllable

@—/(EH — Encoder — ’\ . Sampler —_— Decoder —_— }801{
fe(z | G) z ~p(2) fe(G | 2)

A Survey on Deep Graph Generation: Methods and Applications, Yangiao Zhu et al, LOG 2023
@ VAE!lestimates the distributions of graphs p(G) by maximizing the Evidence Lower Bound (ELBO):

Lyag = Eng,(216)108(Po(G | 2)) — Dxi(qs(2 | G) || po(2)))
R

%
@ reconstruction loss between the input G and the reconstructed graph, distance among decoder
q4(z/G) and the prior distribution py(z) — usually Gaussian.

@® The encoder p(z/G) and decoder ¢(Glz) are typically GNNs (i.e. GCN, GAT...).

e}

[1] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In ICLR, 2014.
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Junction Tree Variational AutoEncoder — JTVAE
[Jin et al., 2018]

=> GraphVAE [Simonovsky and Komodakis, 2017]
€ Generate a probabilistic fully-connected graph
® Model node/edge with Bernoulli distribution
® Model node/edge features using multinomial
distribution
@ Loss: Similarity (KL divergence) between 90(2|G) and prior
distribution (normal) P(2) + similarity (likelihood) between
generated graph G and input graph G .

(/‘;)(z!G)

po(G|z)

DEE
| ]

b4

o ‘

=]
=]
=]

=> Junction Tree VAE: molecule generation leveraging
; ; o} O COA COF @
chemical domain knoyvledge R ) 2{'3;2
@ Instead of generating graph node by node, generate group /NV 5 ;‘I - “;I 5 “;I - ’j/v ms
(structure) by group (structure): functional groups by tree
decomposition of molecular graphs
@ Less than 800 groups given 250K molecules Q 9 0
g PSE N>_ W N%@""’N% shorter action sequence
v/ Valid Vv Valid v/ Valid
MoleculeS ‘ Cluster graph . |%] Junction tree | Motivations;
— .\{v‘ N — , — * i e ® Not every VAE- generated graph is
q .\, = L chemically valid
\ ‘ ) ® |ong action sequence (intermediate
custoriobel NN K X 0 B 6 ] & states) are hard to validate and difficult
Vocabulary E@,} @ @ > O L~ s s 0 1 1 to train (DeepGMG, [Li et al., 2018])
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JTVAE - Method

Molecule o Molecular o
S
- ~ Encode H/
e =t O
Cl Cl

!

Tree 0 Junction

Decomposition | Tree T | C
s 3 v.
‘_Q : C; Encode
@, Clusters
-

Graph & Tree encoder: graph message passing networks [Dai et al., 2016]
® Graph encoder output: average pooling
® Tree encoder output: embedding of the root node

Decoder?

|

Decode T

|
Decode ” \/
—
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//////////

JTVAE - Tree Decoding
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JTVAE - Tree Decoding

Label Prediction @ @
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JTVAE - Tree Decoding

1. Topological Prediction @

Message vector IET HCH

S
2. Label Prediction @

Topological Prediction: Whether to add a child node or backtrack?

Label Prediction: What is the label of the new node?
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JTVAE - Tree Decoding

(D)

Topological Prediction

Backtrack

Topological Prediction: Whether to add a child node or backtrack?

Label Prediction: What is the label of the new node?
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JTVAE - Tree Decoding

Label Prediction

(T TTT M ITT]

T

Feedforward
NN

E

/ \E

hi; = GRU(Xi, {Bi} ke, (i)\s) hi
4 I~
Encodes the entire subtree Functional group features

of current state
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Evaluation for JTVAE

—> Molecule Reconstruction on ZINC [Sterling
and Irwin, 2015]

€ Reconstruct input molecules from latent
representations

€ 100 montecarlo trials [Kusner et al.,
2017] per molecule

€ Report portion of decoded molecules
identical to input

=> Molecule Validity
€ Decode valid molecules when sampling
from prior distribution
€ 100 monte-carlo trials per latent z
sampled from prior distribution
€ Report portion of decoded molecules
chemically valid (RDKit)

Method

Reconstruction Validity
CVAE 44.6% 0.7%
GVAE 53.7% 7.2%
SD-VAE 76.2% 43.5%
GraphVAE 13.5%
JT-VAE (w/o check) 76.4% 93.5%
JT-VAE (full) 76.7 % 100.0%
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GNNs and Graph Generative models for biomedical
applications

* Graph Generative models

* Generative models for Medical Graphs
* Large generative models

* Graph / LLMs

* Multi modality for molecule generation

* Conclusions
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GVAE for Generating Synthetic Patient Trajectories

Synthetic electronic health records generated with variational graph autoencoders,
G. Nikolentzos, M. Vazirgiannis, C. Xypolopoulos, M. Lingman, E. G. Brandt NATURE DIGITAL MEDICINE 2023,
https://www.nature.com/articles/s41746-023-00822-x

13/06/2024
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Health data - constraints

In many fields, open access data sets lead to significant progress, e. g.,

e Computer vision — Imagenet
e Natural language processing — Wordnet

However, in the case of healthcare data:
@ Lack of high-quality healthcare data

@ Strict regulations for data access:

e The use of patient data leads to privacy concerns

e Regulations like HIPAA prohibit the unauthorized use and disclosure of
protected health information

e Patient data cannot be freely shared

The above impedes machine learning research in healthcare!

-
13/06/20.

Healthcare Data

Machine Learning Community



Synthetic Data Generation

@ Approaches that generate synthetic data could help the research community
deal with those challenges

@ Neural networks are recently used to generate synthetic data
< Real data is fed into the model which learns to produce synthetic data
that very closely resembles the real dataset

@ The neural network model is designed to produce synthetic data that does
not violate data privacy regulations

@ Once the synthetic dataset has been created

e it can be used to train machine learning models (develop analytics, data
augmentation, increase robustness of models)

e it can be shared across research teams and institutions facilitating
reproducibility of different models and collaboration

E—

Healthcare Data
13/06/202.

Synthetic
data
generation

Synthetic Data Machine Learning Community o



Shaarpeec graph model for patient trajectories

8)
Cun g
Docus4te Bodium Furd@@nide (a3
= v
a‘ MethylPREDNIS0lgne Sodium Succ
(43 MédReq ®
o) MédReq MER di
Sodium ChidfidgQ.9% Cofa
m@
AR
&) B @
@ @

- | Diskus (250/50) @
s G e |2.] = 13980 node labels
@SHAARPEC graph data model |2:/= 6 edge labels.
— patient trajectories
represented as graphs
https://shaarpec.com/

mmmmmmm
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GVAE architecture

We use a variational autoencoder:
e The encoder maps input DAGs into d-dimensional gaussian distributions

e The decoder reconstructs the input DAGS given vectors sampled from the
gaussian distributions

Patient Trajectory AY:::::::::r Patient Trajectory
- latent g
Encoder Decoder
q9(zlG) p(Glz)
e e s Z \\-\‘\\.
p(z) =N(O0.D)
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MIMIC dataset

Statistics on the patient
trajectories calculated
from the atrial
fibrillation cohort from
the MIMIC-IV database.

13/06/2024

After
Raw .
Pre-processing

Max # nodes 18,947 2,112
Min # nodes 10 10
Average # nodes 1,044.1 221:.2
Max # edges 36,811 5,162
Min # edges 9 9
Average # edges 1,867.3 294.7
# node labels (|Zv]) | 13,980 944
# edge labels (|XEg|) 6 6
# graphs 6,535 6,535
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Quality of graph reconstruction

WL kernel SP kernel
2500
2500
2000
2000
€ 1500 1=
=1 3 1500
o o
o (6
1000 1000
500 500
0 0
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
similarity similarity

@ Real graph input to encoder - decoder produces a reconstructed version

@ Histogram of similarities between input graphs and reconstructed graphs
using the Weisfeiler Lehman subtree (WL) kernel and the shortest path (SP)
kernel.

13/06/2024
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Graph generation — similarity to real graphs

WL kernel SP kernel
1750 1400
1500 1200
1250 1000
4 1 )
£ 1000 S 800
o o
O 750 Y 600
500 400
250 200
0 0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
similarity similarity

@ Generated graph: Sample from the learned distribution and feed the decoder

@ Similarity histogram between input and generated graphs using the
Weisfeiler-Lehman subtree (WL) kernel and the shortest path (SP) kernel.

@ |ower similarity => privacy

13/06/2024
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Graph generation — similarity to real graphs

1.00
-
c 0.95
)
-+t
o
g 0.90
@]
(8}
g 0.85
I
o
2 0.80

0.75

0 1 2 3 4
path length (n)

(

Pearson’s r between frequency
of different structures in training
trajectories and generated
trajectories.

1-paths (node labels), 2-paths,
and 3-paths

13/06/2024

HF Real Data
HF,S/TIA s Synthetic Data

HF,DM
HF,DM,S/TIA
HF,H
HF,H,S/TIA
HF,H,DM
HF,H,DM,S/TIA

0 500 1000 1500 2000 2500
count

* Comorbidities for real and synthetic
atrial fibrillation cohorts.

* comorbidities: HF heart failure, S/TIA
stroke/TIA, DM diabetes mellitus, H
hypertension.
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Privacy concerns

=
o
o
3

0]

¢
®

(o]

% novel samples
© o o o
O (o] (o] O
@) ~ (o] ((e]

o
©
)

0.94

0.0 0.1 0.2 0.3 0.4 0.5 0.6
o

% novel trajectories vs standard deviation of
the Gaussian noise.

mean Gaussian = 0 vector.

noise added to Encounters.

o €{0.0,0.1,0.2,0.3, 0.4, 0.5, 0.6}, 20000
trajectories generated, compared to real

13/06/2024

Table 3. Classification accuracy of the two experimental scenarios in
two separate downstream analytics tasks.

Scenario Task 1 Task 2
Train on real, test on real 64.02% + 2.93 73.04% + 1.35
Train on synthetic, test on real 63.85% + 2.57 73.32% + 2.90

Both tasks are variants of predicting the onset of heart failure in patients. In
the first scenario, the classifier is trained on real data and is evaluated on
real data, while in the second scenario, the classifier is trained on synthetic
data and is evaluated on real data.

® Realdataare barely distinguishable by the synthetic
ones.
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GVAEs for medical graph generation - Conclusions

Real Trajectories

the model generates novel
synthetic patient trajectories,

sufficiently different to preserve
patient privacy,

yet retains the characteristics of
the real-world data. Thus data
exchange and ML is feasible

® nmost significant feature:
capacity to learn long-range
correlations between trajectory
nodes.
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GNNs and Graph Generative models for biomedical
applications

® Graph Generative models

® Generative models for Medical Graphs
® Large generative models

® Graph & LLMs

® Multi modality for molecule generation
® Conclusions
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G

Digress i1 % f/ OHf’O % .4’0 .?OI

Cross-entropy

® Diffusion process: &) Po(CIG")
O Inspired by statistical physics — uncertainty of particles position
O Noising model: g progressively corrupts a data point x to create a sequence of
increasingly noisy data points (z;, ..., zr )
m Markovian structure g(7/, . .., z" /x) q(# 1|:1:) - 5 (22" L)

O Denoising ¢y is trained to invert the noising process by predicting z-/ from Z.
O Inference:

m generate new samples: noise is sampled from a prior distribution
m inverted by iterative application of the denoising network. ,

[1]DIGRESS: DISCRETE DENOISING DIFFUSION FOR GRAPH GENERATION Clement Vignac et al, ICLR23, https://arxiv.org/pdf/2209.14734
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Digress - Discrete diffusion

@® Continuous diffusion: Gaussian is poor noise model for 4
graphs: destroys sparsity as well as graph theoretic
notions such as connectivity.

@® Discrete diffusion more appropriate to graph
generation tasks.
O Recent works have considered the discrete diffusion

problem for text, image and audio data [Hooge-
boom et al., 2021; Johnson et al., 2021; Yang et al., 2022]

® data x € R (one-hot encoding, d: classes), noise
represented by transition matrices (Q/, ..., QT ) such
that
O [Q']; : probability state i => j: g(z'Iz'~!) = 27O
O as process is Markovian; Qt = Q...Q" the noisy state 7/
can be built from x: q(Zt|w) = iI?Qt _
O posterior distribution g(z'~!/Z/, x) - closed-form Bayes rule q(zt_1|zt, T) 2! (Qt)’ o)/ Qt_l

[1]DIGRESS: DISCRETE DENOISING DIFFUSION FOR GRAPH GENERATION Clement Vignac et al, ICLR23, https://arxiv.org/pdf/2209.14734
13/06/2024

72


https://arxiv.org/pdf/2209.14734

Overvievv of Digress

9 Gt 1 G
o JO/. Oo—g o o : o .? °
Cross-entropy
t » AB-c
Pl(&) Po(GIG")

® Discrete noising process for node/edge (XY/E?) labels, Q noising matrix.

¢(G'|G*1) = (X'Q%,E"7'Q%) and ¢(G'|G) = (XQ%,EQ%)
® Discrete noising process for node/edge (XYE") labels, O noising matrix.
® DiGress denoising neural network ¢ parametrized by 6.
O Input: noisy graph G’ = (X!, E'): aims to predict the “clean” graph G,

O To train ¢?, optimize cross-entropy loss: between the predicted probabilities ﬁG = (ﬁX,ﬁE) for each node
and edge and the true graph G:

(%, Q) = Z cross-entropy (z;, i ) + A Z cross-entropy (e;;, ﬁg)
1<i<n 1<i,j<n

[1]DIGRESS: DISCRETE DENOISING DIFFUSION FOR GRAPH GENERATION Clement Vignac et al, ICLR23, https://arxiv.org/pdf/2209.14734

13/06/2024 73


https://arxiv.org/pdf/2209.14734

Digress - Experiments

Method NLL Valid Unique  Training time (h)
Dataset — 99.3 100 -
Set2GraphVAE — 59.9 93.8 —
SPECTRE E 87.3 35.7 —
GraphNVP - 83.1 99.2 —
GDSS — 95.7 98.5 —
ConGress (ours) — 98.9+.1  96.8+.2 7.2
DiGress (ours) 69.6+1.5 99.0+.1 96.2+.1 1.0

® Molecule generation - QM9.
® Training time: time to reach 99% validity.
® DiGress achieves similar results to the continuous model but faster to train.
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Digress - Experiments

Unconditional generation on SBM and planar graphs. VUN: valid, unique & novel graphs.

Model Deg| Clus] Orb] V.UN.?T
Stochastic block model

GraphRNN 6.9 17 3.1 5%
GRAN 14.1 1.7 2.1 25%
GG-GAN 4.4 2l 2.3 25%
SPECTRE 1.9 1.6 1.6 53%
ConGress 34.1 3.1 4.5 0%
DiGress 1.6 1.5 1.7 74%
Planar graphs

GraphRNN 24.5 9.0 2508 0%
GRAN 3.5 1.4 1.8 0%
SPECTRE 2.5 25 2.4 25%
ConGress 23.8 8.8 2590 0%
DiGress 1.4 1.2 1.7 75%

® Martinkus et al. (2022):i. 200 graphs drawn from stochastic block model ii. 200 planar graphs.

® \We evaluate ability

O correctly model various properties of these graphs,
O generated graphs are statistically distinguishable from the SBM model or if they are planar and connected.

13/06/2024
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Digress - Experiments

Table 3: Molecule generation on MOSES. DiGress is the first one-shot graph model that scales
to this dataset. While all graph-based methods except ours have hard-coded rules to ensure high
validity, DiGress outperforms Graphlnvent on most other metrics.

Model Class Val1T Uniquet Novelf FiltersT FCDJ| SNNt Scaft
VAE SMILES 97.7 99.8 69.5 99.7 0.57 0.58 59
JT-VAE Fragment 100 100 99.9 97.8 1.00 0.53 10
GraphINVENT Autoreg. 96.4 99.8 - 95.0 1.22 0.54 12.7
ConGress (ours)  One-shot 83.4 99.9 96.4 94.8 1.48 0.50 16.4
DiGress (ours) One-shot 85:7 100 95.0 07.1 1.19 0.52 14.8

Table 4: Molecule generation on GuacaMol. We report scores, so that higher is better for all metrics.
While SMILES seem to be the most efficient molecular representation, DiGress is the first general
graph generation method that achieves correct performance, as visible on the FCD score.

Model Class Valid? UniqueT Novelt KL divf FCDft
LSTM Smiles 95.9 100 o012 99.1 91.3
NAGVAE One-shot 92.9 95.5 100 38.4 0.9
MCTS One-shot 100 100 95.4 82.2 1.5
ConGress (ours) One-shot 0.1 100 100 36.1 0.0
DiGress (ours) One-shot 85.2 100 99.9 92.9 68.0

13/06/2024
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Neural Graph Generator (NGG)

a novel graph generative model which leverages latent diffusion for conditional graph generation.

represents a significant shift from traditional graph generation methods, focusing on prompting with a vector that
includes a set of diverse properties of the graph.

introduce a large-scale dataset of synthetic graphs that covers several different types of graphs on which our
model was trained. This dataset can be used for pre-training any graph generative model in the future.

extensively evaluate our model across various graph generation tasks, demonstrating its effectiveness in capturing
specific graph properties, generalizing to larger graphs, and generating graphs from subsets of properties.

release the pre-trained autoencoder, the pre-trained latent diffusion model, and the synthetic dataset of 1M
graphs to be useful for both practitioners and the scientific community.

1. Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models, Evdaimon et.
al, https://arxiv.org/pdf/2403.01535.pdf
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Neural Graph Generator (NGG)

& N

Latent Space N\ Conditioning

edges

o - Z7
Denoising model g4 Clustering coefficient
Q
Maximum
degree

Number of
Diffusion Process y—)l | nodes

y

Concat

Figure 1: Overview of the proposed architecture. The variational graph autoencoder is respon-
sible for generating a compressed latent representation for each graph. Those representations
are fed to the diffusion model which operates in that latent space. The denoising process is
conditioned on a vector that contains the graph’s properties. The output of the diffusion model
is passed on to the decoder which generates a graph.

13/06/2024
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Neural Graph Generator (NGG) - conditioning

® Dataset: 1M synthetic graphs (<=100 nodes).
® use different types of graph generators.

® 17 families of graphs: (1) paths (2) cycles (3) wheels (4) stars (5)
ladders; (6)lollipops (7) Erdos-Renyi random graphs; (8)
Newman—Watts—Strogatz small-world graphs; (9) Watts—
Strogatz small-world graphs, (10) random d-degree regular
graphs (11) Barabasi—Albert graphs; (12) dual Barabasi—Albert
graphs (13) extended Barabasi—Albert graphs (14) graphs
generated using the Holme and Kim algorithm (15) random
lobsters (16) stochastic block model graphs and (17) random
partition graphs.

The generated graphs are devoid of self-loops, isolated nodes,
and multigraphs are also excluded.

® NGG model: 3.6M parameters

13/06/2024 82



Neural Graph Generator (NGG) — exp results

Within distribution
performance

13/06/2024

P | VGAE | NGG
roperty
| MAE SMAPE | MAE SMAPE

# nodes 24.22 25.18 2.63 3.09
# edges 701.99 66.48 62.33 8.44
Density 0.32 52.13 0.04 7.23
Min. degree 13.95 64.52 11.61 49.46
Max. degree 14.59 22.32 1.59 3.55
Avg. degree 18.99 58.60 1.64 6.68
Assortativity coefficient 0.30 61.32 0.11 39.10
# triangles 10,356.20 99.91 1,026.44 24.38
Avg. # triangles formed by an edge 8.85 66.52 9.44 68.32
Max. # triangles formed by an edge 539.03 83.97 49.26 16.66
Avg. local clustering coefficient 0.29 35.04 0.08 15.42
Global clustering coeflicient 0.36 58.12 0.05 14.07
Max. k-core 15.07 54.51 1.66 8.61
# communities 1.74 21.86 0.96 12.34
Diameter 3.73 31.31 2.40 15.96
All 0.80 55.96 0.23 21.05
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Neural Graph Generator (NGG) — exp results

Performance Comparison
of NGG and Baseline
Model :

*  Out-of-Distribution
Performance (trained
on graphs with up to
50 nodes and
evaluated on larger
graphs)

*  Within-Distribution
Performance with
Masking Applied to
some Condition Vector
Elements.

13/06/2024

Out of Distribution Masked
Property VGAE NGG VGAE NGG
MAE SMAPE | MAE SMAPE | MAE SMAPE| MAE SMAPE

# nodes 15.48 18.76 6.68 6.66 25.70 26.05 27.30 27.54
# edges 355.79 60.12 99.09 11.31 785.20 49.83 832.26 52.90
Density 0.28 48.10 0.07 10.74 0.27 34.04 0.29 36.65
Min. degree 12.59 67.12 7.95 41.49 13.96 57.71 13.36 57.50
Max degree 4.46 7.95 2.93 4.64 23.97 35.17 26.04 38.06
Avg. degree 14.34 51.23 3.11 9.27 18.83 40.84 20.17 43.77
Assortativity coefficient 0.29 65.66 0.72 47.57 0.46 60.98 0.43 65.18
# triangles 3,913.93 83.79 1,482.23 27.21 15,101.24 74.92 15,956.96 79.93
Avg . # triangles formed by an edge 7.78 54.99 17.93 74.95 9.11 49.11 17.73 77.18
Max . # triangles formed by an edge | 278.36 64.51 83.15 17.71 709.65 66.55 762.29 71.23
Avg. local clustering coefficient 0.26 26.01 0.09 15.91 0.33 40.78 0.36 44.69
Global clustering coefficient 0.27 46.16 0.07 14.44 0.32 41.89 0.34 44.34
Max k-core 11.39 52.05 2.28 9.99 16.93 42.96 17.99 45.76
# communities 2.64 27.47 1.02 12.32 1.86 22.98 1.96 23.40
Diameter 3.52 29.98 2.55 16.61 3.40 23.82 3.31 24.19
All 0.96 56.13 0.54 28.89 0.77 42.14 0.78 42.88
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Neural Graph Generator (NGG) — exp results
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GNNs and Graph Generative models for biomedical
applications

* Graph Generative models

* Generative models for Medical Graphs
* Large generative models

* Graph / LLMs

* Multi modality for molecule generation

* Conclusions
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Graphs & LLMs (1]

® Despite not being explicitly designed for graph-structured data, LLMs are increasingly
leveraged for graph machine learning tasks.

® Are LLMs capable of mapping textual descriptions of graphs and structures to
grounded conceptual spaces and solving graph algorithm problems explicitly with
natural language?

® NLGraph' constructs 29,370 problems, 8 graph reasoning tasks - varying complexity
O simple tasks: connectivity, shortest path
O complex problems: maximum flow, simulating graph neural networks.

® Conclusion:
O LLMs do possess preliminary graph reasoning abilities.
O The benefit of advanced prompting methods diminishes with complex problems.
O Few shot learning does not help on complex graph reasoning problems.

1) Wang, Heng, et al. "Can language models solve graph problems in natural language?." Advances in Neural
Information Processing Systems 36 (2024).
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Determine if there is a path between
two nodes in the graph. Note that (i,j)
means that node i and node j are
connected with an undirected edge.
Graph: (0,1) (1,2) 34) (4.5)

Q: Is there a path between node 1 and

\node 4? )

(-l 2. Cycle } ~
0— @

In an undirected graph, (i,j) means that
node i and node j are connected with an
undirected edge.

The nodes are numbered from 0 to 5,
and the edges are: (34) (3,5) (1,0) (2,5)
(2,0)

3. Topological Sort %

In a directed graph with 5 nodes
numbered from 0 to 4:

node 0 should be visited before node

4, ...

Q: Can all the nodes be visited? Give the

\Q: Is there a cycle in this graph?

/J

solution.

NLGraph Benchmark - eight tasks, varying complexity

(1)
€ O m

In an undirected graph, the nodes are
numbered from 0 to 4, and the edges are:
an edge between node 0 and node 1 with
weight 2, ...

Q: Give the shortest path from node 0 to
node 4.

J

In a directed graph, the nodes are
numbered from 0 to 3, and the edges

,(s. Bipartite Graph Mmh'mg)—

job applicants Q @ z'
e
NcXofefcxe
There are 4 job applicants numbered

from 0 to 3, and 5 jobs numbered from
0 to 4. Each applicant is interested in

Q»e
e

In an undirected graph, (i,j) means that
node i and node j are connected with

In an undirected graph, the nodes are
numbered from 0 to 4, and every node has an

are: : : directed edae. embedding. (ij) means that node i and node j
: some of the jobs. Each job can only an unaire 9 p :

an edge from node 1 to node 0 with accept one applicant and a job The nodes are numbered from 0 to 4, are conngcted with an undirected edge.

capacity 10, g applicant can be appointed for only one | | and the edges are: (4,2) (04) 4,3) (0,1) | | Embeddings: node 0: [1,1], -

an edge from node 0 to node 2 with job. 0,2 4,1) (2.3 The e_dges are: (0,1) ... )

capacity 6, ) Applicant 0 is interested in job 4, ... Q: Is there a path in this graph that Ina sllmple graph cgnvolutlon layer, each

an edge from node 2 to node 3 with Q: Find an assignment of jobs to visits every node exactly once? If yes, 'node's embedding is u'pdated by the sum of

capacity i applicants in such that the maximum give the path. Note that in a path, its neighbors’ embeddings.

Q: What is the maximum flow from node number of applicants find the job they adjacent nodes must be connected Q: What's the embedding of each node after

1 to node 3? are interested in with edges. one layer of simple graph convolution layer?
X 7 N >, 7 N 2N J
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NLGraph Benchmark

® random graph generator to generate graphs and structures while controlling for the network
size, graph sparsity, and more.

@® adopting generated graphs as bases to synthetically generate problems for eight graph-
based reasoning tasks with varying algorithmic difficulties

Subset \ Connect. Cycle Topo. Sort Shortest Path Max. Flow Bipartite Graph Hamilton Path GNNs
# EASY 352 /730 150 / 300 180/ 360 180 /360 150 /300 300/600 150 /300 100 /200
SPEC. n: 5-10 n: 5-10 n: 5-10 n: 5-10 n: 5-10 n: 6-20 n: 5-10 n: 5-8

# Mepium | 1,200/8,580 600/1,800 150/ 1,350 / / / / /
SPEC. n: 11-25 n: 11-25 n: 11-25 / / / / /
# HARD 680/7,090 400/2,000 200/1,200 200/ 1,200 200/ 1,200 210/1,260 200/600 140/ 840
SPEC. n: 26-35 n: 26-35 n: 26-35 n: 11-20 n: 11-20 n: 17-33 n: 11-20 n: 9-15

@ Statistics of the NLGraph benchmark. A / B indicates that there are A and B problems in the standard and
extended set of NLGraph. SPEC. denotes difficulty specifications.
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Results

Method Connectivity Cycle Shortest Path
Easy Medium Hard Avg. Easy Medium Hard Avg. Easy Hard Easy(PC) Hard(PC) Avg.
RANDOM 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 6.07 6.69 14.73 13.81 17.81
ZERO-SHOT 83.81 7275 63.38 71.31 50.00 50.00 50.00 50.00 29.40 21.00 46.00 26.76 30.79
FEW-SHOT  93.75 83.83 76.61 8473 80.00 70.00 61.00 70.33 31.11 26.00 49.19 35.73 35.51
CoT 94.32 8217 77.21 8457 84.67 6333 5325 66.75 63.89 29.50 76.84 35.79 51.51
0-CoT 7955 65.83 6853 71.30 5533 57.67 49.00 54.00 889  7.50 62.39 43.95 32.03
CoT+SC 93.18  84.50 8279 86.82 8200 63.67 5350 66.39 68.89 29.00 80.25 38.47 54.15

Table: Model performance on the connectivity, cycle, and shortest path tasks. PC denotes partial credit. Large

language models with COT or CoT+SC prompting greatly outperforms the random baseline by 37.33% to
57.82%, indicating that LLMs have preliminary graph reasoning abilities.

Method PC(1t) Acc(t) RE ()
ZERO-SHOT 13.61 0.00 20.04
FEW-SHOT  20.04  0.00 37.83
coT 64.55 31.00 14.34
0-CoT 13.85  0.00  44.55
CoT+SC 63.92 28.00  13.28

Table: Model performance on the task of simulating graph neural networks. PC and RE are two partial credit metrics.

Chain-of-thought prompting significantly improves the model performance across all metrics.

* CoT+SC: Construct multiple chains of thought, evaluate each one, and ultimately select the most effective and coherent chain.

13/06/2024
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Results

Figure:

Figure:

70.6

54.4 B easy 15.3 B easy
50 51.7 50.5 12.0
S 36.1 37.8 S 10 9.3 10.0
<
25 . a0
0 0
zero-shot few-shot 0-CoT CoT CoT+SC M zero-shot few-shot 0-CoT CoT CoT+SC
20 18.4 10
3 medium 23 hard
g0 gs 4.0
5.1 2.5 2.0 2.0
1,1 0.9 1.6 0.2 1.0
o. ~ 4
zero-shot few-shot  0-CoT CoT CoT+SC M zero-shot few-shot 0-CoT CoT CoT+SC

topological sort

maximum flow

(left) Model performance on the topological sort task. COT, LTM, and self-consistency are mostly ineffective
on this problem. (right) Model performance on the maximum flow task. FEW-SHOT prompting outperforms
CoT+SC prompting on both easy and hard subsets, suggesting that LLMs fall short of generating valid
intermediate steps to solve the more complex graph reasoning problem. Together these results demonstrate
that advanced prompting is ineffective for advanced graph reasoning.

60 B easy [Z3 hard 60 B easy [ZZ hard
493 46.7 46.0 45.0 48, 47.0
40.0 40.7
40 40
Y 34.7 Y
& < 27.6 27.1
20 17.1
13.3 1.4
0.
zero-shot few-shot 0-CoT CoT CoT+SC zero-shot few-shot 0-CoT CoT CoT+SC

Hamilton path bipartite graph matching

(left) Model performance on the Hamilton path task. ZERO-SHOT prompting consistently outperforms all other
prompting techniques. (right) Model performance on the bipartite graph matching task. The effect of in-context
learning and advanced prompting is also mostly marginal in this complex graph reasoning problem. Together
these results demonstrate that in-context learning can be counterproductive in advanced graph reasoning
problems.
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LLMs for graph generation

® Graph generation requires the LLM to generate graphs with given
properties

® valuable real-world applications such as drug discovery = more
challenging than graph reasoning.

® first work' towards this direction investigated the questions regarding:

O LLMs’ understanding of different graph structure rules.

O Their ability to capture structural type distributions.
O Their utilization of domain knowledge for property-based graph generation.

® Conclusion:
O LLMs exhibit preliminary abilities in graph generation tasks.
O LLMs show potential in generating molecules with specific properties.
O Popular prompting methods do not consistently enhance performance.

1) Yao, Yang, et al. "Exploring the Potential of Large Language Models in Graph Generation." arXiv preprint
arXiv:2403.14358 (2024).
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Overview

A =
( Prompt ‘

Task

Input information

Output format

i

LLM @ 9,\)
R
\ Graphs @ m |

(a) General

Figure: LLM4GraphGen designs a prompt tailored to each graph generation task, which is subsequently used as the
input to the LLM to generate the desired graphs. Each prompt encompasses both the task description and
the required output format. In the case of rule-based generation, the prompt contains the description of the
rule. For distribution-based generation, a collection of graphs is provided to facilitate the LLM’s learning of
the underlying distribution. For property-based generation, a collection of molecules is included to enable the

Task

Give me 10 examples of

graphs which is a tree with
6 nodes. The graphs should
be distinct from each other.

Rule description

A tree is an undirected
graph in which any two
vertices are connected
by exactly one path------

Output format

Answer 1: <graph>
Answer 2: <graph>

(b) Rule-based

LLM to understand molecular properties.

Task

Your task is to infer the
value of p and dgenerate
10 graphs using the same
rules.

Input graphs

Graph 1: (6, [(1, 4), (1, 5),
(2,4),(2,6),(3,5),3,6)])
Graph 2: (5, [(1, 2), (1, 3),
(2,4),3,5),4,5)

Output format

Answer 1: <graph>
Answer 2: <graph>

(c) Distribution-based

Task

You are given some
molecules that are
experimentally measured
to inhibit HIV replication.

Input molecules

Molecule 1:
NNP(=S)(NN)clccceel
Molecule 2:
S=c1[nH][nH]c(=S)s1

Output format

Answer 1: <molecule>
Answer 2: <molecule>

(d) Property-based

1) Yao, Yang, et al. "Exploring the Potential of Large Language Models in Graph Generation." arXiv preprint

arXiv:2403.14358 (2024).
13/06/2024
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Rule-based generation

Can LLMs understand the rules of different types of graph structures?
@® Task: generating graphs of basic structure types, given rules describing the

desired structures, e.g., trees, cycles, wheel graphs, etc.

® Observations:

Providing examples has inconsistent impact

0000

most rules, except for simple cases such as cycles.

GPT-4 has reasonably good abilities for rule-based graph generation.

CoT prompt has diverse impacts on different evaluation metrics for graph generation.
As the graph size increases, the performance of LLM in graph generation decreases for

Prompt Trees Cycles Components Planar k-regular Wheel Bipartite k-color
Zero-shot 100.0+0.0 913433 304 +5.1 473+42 640+68 13.0+53 603+74 503+55
Few-shot 98.0+09 850433 63.2+5.3 43+13 86.1+31 888+74 571+86 623451

Zero-shot+CoT 100.0+0.0 869+36 38.0+5.1 53.3+6.0 827+86 923+47 927+44 432+49
Few-shot+CoT 976+1.7 97.0+19 40.0+6.7 200+43 915+16 90.7+51 982+18 585+59

Table: The valid rate for rule-based graph generation with GPT-4. The metric measures the fraction of generated
graphs that are valid under the specified rules. Values after = denote standard errors.
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Distribution-based generation

Can LLMs understand the distribution of different types of graph structures?

@® Task: generating graphs following a structural type distribution p, given a set of

example graphs with the same distribution.
O Trees or cycles: Exploring the distribution of graphs.
O Union of components: Exploring the distribution of subgraph combinations within a graph.
O Motif graph: Exploring the distribution of subgraph combinations within the graph for more complex situations.

® Observations:
O LLMs perorm well for simple distributions, but perform poorly in complex situations.
O Detailed examples and CoT are helpful for distribution-based graph generation.

Prompt Tree+Tree Cycle+Cycle  Tree+Cycle

Zero-shot 43.0 +- 8.3 39.0 + 6.1 38.0+11.9
Few-shot 81.0+6.2 13.01+6.5 48.0 +-11.8
CoT 100.0 £ 0.0 100.0 £ 0.0 89.0+44

Table: The valid rate of two-component graph generation.
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Property-based generation

Can LLMs understand domain knowledge of graph generation?

® Task: generating molecule structures with specific properties, given example
molecules (SMILES format).

® Observations: LLMs show preliminary abilities in generating molecules with
certain properties.

Prompt Cm(G) C(G) Novel Unique

Few-shot 26.4+75 3481165 79.1+109 91.8+6.1
Few-shot+CoT 32.7+4.7 488+102 655+109 92.7+6.0

Table: Results of property-based graph generation. Cyy(G) is the classifier's predicted probability of having the de-
sired properties for the generated molecules, while C(G) is the rectified probability. “Novel” denotes generated
molecules that are not the same as the input molecules, while “Unique” denotes molecules that are not dupli-

cated with other generated molecules.

13/06/2024
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GNNs and Graph Generative models for biomedical
applications

* Graph Generative models

* Generative models for Medical Graphs

* Large generative models

* Graph / LLMs

* Multi modality for molecule generation
* Conclusions

13/06/2024
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Multimodal graph pretrained models

* Modality m;in {text, image, sound, ...}
* Pretrain {m;}+graph => graph/ m;
Recent efforts:

* Multimodal learning with graphs [Ektefaie et
al, 2023] — guidelines and applications

* Investigating Pretrained Language Models for
Graph-to-Text Generation[Ribeiro et al, 2021]

 Structural Information Preserving for Graph-to-
Text Generation[Song et al, 2021] — linearised
graph; transformer encoder decoder — no
graph encoding/generation

* ProtNLM: Model-based Natural Language
Protein [Gane et al, 2022] — does merely
classification

13/06/2024
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Prot2Text: Multimodal Protein’s Function
Generation with GNNs and Transformer

* Understanding proteins’ function is a central challenge in
the field of biological sciences

 essential for: drug discovery, enabling identify and target
specific proteins that play critical roles in disease pathways.

* Traditionally, proteins’ functions prediction is assigning

predefined labels based on their characteristics [Kulmanov
and Hoehndorf 2019].

* To address this limitation, we propose a novel method that
given an unknown protein produces a free text predicting its
function

Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers, H. Abdine, M. Chatzianastasis, C.
Bouyioukos, M. Vazirgiannis, AAAI 2024
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Prot2Text: Multimodal Protein’s Function
Generation with GNNs and Transformer

Contributions

* a novel multimodal framework, that generate detailed and
accurate descriptions of proteins’ functions in free text

* first time - integrate GNNs and Large Language Models
(LLMs), to encompass both structural (protein’s 3D structure)
and sequential (amino acid’s sequence) information

* propose various baselines for protein text generation

* demonstrate integration of both graph and sequence protein
information leads to better generation capabilities.

* release a comprehensive multimodal protein dataset - 256,
690 protein structures, sequences, and textual function
descriptions.
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Prot2Text: Multimodal Protein’s Function
Generation with GNNs and Transformer

Encoder- Decoder framework forms the
backbone of the model

encoder component

* Relational graph convolution network
(RGCN) [Schlichtkrullet al. 2018] to
process the protein graphs,

* ESM protein language model (Lin et al.
2023a)) to encode the protein’s sequence.

cross-attention mechanism facilitates
exchange of relevant information between the
graph-encoded and the sequence-encoded
vectors => a fused representation synthesizing
structural and textual aspects.

Decoder component: pre-trained GPT-2
generates detailed and accurate protein
descriptions from fused protein
representation.

13/06/2024

Protein Description Generation T
(CLM Training Objective) Is associated with a
nding
i

d

Language Modeling Head: L
MLP+Softmax characier ed cis-acting

DNA ref

Protein ENCODER

’ Multi-Head Cross Attention + MLP '

T T T T Text DECODER

Modified GPT-2 Model

ﬁu =

r xt Tokenizer + Right Shifting

Is associated with a DNA binding complex that binds
to the G box, a well-characterized cis-acting DNA
regulatory element found in plant genes

Protein Description
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Prot2Text: Multimodal Protein’s Function
Generation with GNNs and Transformer

* Graph Construction - obtaining the 3D

proteins’ from AlphaFold T B
* Protein graph G = (V, E, R), where [ e | e
e V=[N]:={I, ..., N }is the set of =— ‘[ ‘{ ] I 1
nodes/amino-acids of the proteins, i' P b Ll e
« E €V xVisthe set of edges/interactions e - ! T'T 17 1 reoecomen
between the nodes  Medmeacermes |
* R: set of different edge interactions. %&l% £
* Each node u is associated with a feature EX[EN EN ENERES

13/06/2024

Text Tokenizer + Right Shifting

vector x,, € R4, with attributes: local
structural features, physico-chemical
properties of amino-acids.

Is associated with a DNA binding complex that binds
to the G box, a well-characterized cis-acting DNA
regulatory element found in plant genes

Protein Description
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Prot2Text: Multimodal Protein’s Function
Generation with GNNs and Transformer

Graph Construction — 3D graphs from AlphaFold

Protein graph G = (V, E, R), where

* V=[N]:={1,.., N }isthe set of nodes/amino-acids
of the proteins,

* E €V xVisthe set of edges/interactions between the
nodes

* R: set of different edge interactions.

 Each node u is associated with a feature vector x, ERY,
with attributes: local structural features, physico-
chemical properties of amino-acids.

Graph Encoding. employ a RGCN: effectively treats edge
types in the message-passing mechanism.

In layer k of the GNN, update node representations

zf=a< et P )

reR jEN,.(

N
Final graph representation: 1 .
Inal graph rep ! Fivs i Zmb
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Protein Description Generation ... .
(CLM Training Objective) Is associated with a DNA_
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Language Modeling Head: ] to the G box, a well
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DNA regulatory element

[ inplantgenes
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[ Multi-Head Cross Attention + MLP

|
T T T T T , Text DECODER

Modified GPT-2 Model

*5%%% I

Toxt Tokenizer + Right Shifting

Protein ENCODER I

RGCN Encoder

Is associated with a DNA binding complex that binds
to the G box, a well-characterized cis-acting DNA
regulatory element found in plant genes
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Prot2Text: Multimodal Protein’s Function
Generation with GNNs and Transformer

* Sequence Encoding. used ESM2-35M (Lin et al. 2023a) as
our base model. H_O i ES]W(PS)WP

+ transforms the individual amino-acid representations,
derived from the ESM embedding dimension, into the graph
embedding dimension dgt.

* Multimodal Fusion.

+ obtain the final protein encoding,
with a fusion block combining the two representations:

HE = (HS + 1,haWE) Wi

* Text Generation transformer decoder architecture for
generating protein descriptions.

* initialize decoder components (text embedding matrix, self-
attention, and language modelling head), with the pre-trained
weights of GPT-2.

* forward the protein representation obtained from the protein
encoder as input to the multihead cross-attention module within
the transformer decoder.

* enabled to effectively incorporate context from the protein
representation, to generate coherent and meaningful protein
descriptions.
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Protein ENCODER I

Ml

—
i T E—

RGCN Encoder
ESM2

e

I ESM Tokenizer
. T Convert to graph

Protein Sequence

Protein Description Generation
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Is associated with a DNA binding complex that binds
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Prot2Text: Multimodal Protein’s Function
Generation with GNNs and Transformer

Dataset.

build a multimodal dataset with 256, 690 proteins.

For each protein: sequence, the AlphaFold accession ID

and the textual description.

To build this dataset, we used the SwissProt dababase

(Bairoch and Apweiler 1996)

Apply CD-HIT clustering algorithm (Li and Godzik 2006)
to create a train/validation/test scheme (248.215/ 4.

172/4, 023 proteins respectively).

maximum similarity threshold between the (train,
validation test)
sets used in the CD-HIT algorithm is 40%.

13/06/2024

Metrics

evaluate the performance of the model in the text
generation task.

BLEU Score (Papineni et al.2002): similarity
between generated and reference text based onn-
grams.

Rouge-* (Lin 2004): uni/bi/longest common
subsequence between generated and reference
text.

BERT Score (Zhanget al. 2020): measures the
similarity between the generated text and the
reference text using contextualized word
embeddings from a transformer-based model.
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Prot2Text: Experimental Results (ongoing)

Model #Params | BLEU Score | Rouge-1 | Rouge-2 | Rouge-L. | BERT Score
vanilla-Transformer 225M 15.75 27.80 19.44 26.07 75.58
ESM2-35M 225M 32.11 47.46 39.18 45.31 83.21
RGCN 220M 21.63 36.20 28.01 34.40 78.91
RGCN + ESM2-35M 255M 30.39 45.75 37.38 43.63 82.51
RGCN x vanilla-Transformer 283M 27.97 42.43 3491 40.72 81.12
Prot2Textpask 283M 35.11 50.59 42.71 48.49 84.30

* Test set results encoder models,

* unimodal encoders: vanilla-Transformer, ESM2-35M,and RGCN,

* multimodal encoders: RGCN x vanilla-Transformer, RGCN + ESM2-35.
* All models share the same GPT-2 decoder.
» Structure increases performance (cross attention)
* Prot2TextBASE achieves the highest performance across all evaluation metrics

13/06/2024

107



Prot2Text: Experimental Resutls (ongoing)

Model # Params | BLEU Score | Rouge-1 | Rouge-2 | Rouge-L | BERT Score | Inference Time
Prot2Textsyarr 256M 30.01 45.78 38.08 43.97 82.60 1,225
Prot2Textp sk 283M 35.11 50.59 42.71 48.49 84.30 1,379
Pl'OtZTeXtMEDIUM 398M 36.51 52.13 44.17 50.04 84.83 1,334
Prot2Text; srce 898M 36.29 53.68 45.60 51.40 85.20 1,667

13/06/2024

Test set results for different size variations of Prot2Text.

Larger models outperform their smaller counterparts across most evaluation metrics,
indicating the benefits of employing larger language models in the Prot2Text framework.

The Prot2TextBASE model, strikes an optimal balance between performance and
computational efficiency. This configuration demonstrates improved performance compared
to the smaller model while still maintaining reasonable computational costs.
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Prot2Text: Experimental Resutls (ongoing

Protein Labeled Text Generated Text
Required for the sorting and concentration of proteins resulting Probable peripherally associated component of the endosomal sorting required for
in the entry of these proteins into the invaginating vesicles of transport complex Il (ESCRT-1Il) which is involved in multivesicular bodies (MVBs)
- the multivesicular body (MVB). Acts a component of the formation and sorting of endosome-derived cargo proteins into MVBs. MVBs contain
P ESCRT-IIl complex, which appears to be critical for late steps intraluminal vesicles (ILVs) that are generated by invagination and 1 from the
'."‘ ““‘(‘\A in MVB sorting, such as membrane invagination and final limiting membrane of the cell and mostly are delivered to lysosomes enabling
Y

P36108

cargo sorting and recruitment of late-acting components of the
sorting machinery. The MVB pathway requires the sequential
function of ESCRT-O, -I,-1l and -lll complex assemblies. Can
directly stimulate VPS4 ATPase activity. The DID4/VPS2-
VPS24 subcomplex is required for the VPS4-dependent
dissociation of ESCRT-IIL

degradation of membrane proteins, such as stimulated growth factor receptors,
lysogenic enzymes and lipids. The MVB pathway appears to require the sequential
function of ESCRT-O, -I,-1l and -lll complexes. ESCRT proteins mostly dissociate
from the invaginating membrane before the ILV is released. The ESCRT machinery
also functions in topologically equivalent membrane fission events, such the terminal
stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other
lentiviruses). ESCRT |, -1l and Ill proteins mostly mediate the sorting of proteins into
lysosphingolipids, primarily cytoplasmic membrane vesicle-derived proteins. ESCR-III
proteins are believed to mediate a specialized role in the final stages

Q8NGO08

5'-3' DNA helicase involved in DNA damage response by
acting as an inhibitor of DNA end resection. Recruitment to
single-stranded DNA (ssDNA) following DNA damage leads to
inhibit the nucl talyzing r 1, such as EXO1,
BLM and DNAZ2, possibly via the 5'-3' ssDNA translocase
activity of HELB. As cells approach S phase, DNA end
resection is promoted by the nuclear export of HELB following
phosphorylation. Acts independently of TP53BP1. Unwinds
duplex DNA with 5'-3" polarity. Has single-strand DNA-
dependent ATPase and DNA helicase activities. Prefers ATP
and dATP as substrates. During S phase, may facilitate
cellular recovery from replication stress.

DNA-dependent ATPase and 5-3' DNA helicase required for the maintenance of
genome stability. Involved in various processes such as transcription-coupled
nucleotide excision repair, mitotic spindle bly, DNA ge response and DNA
repair. During DNA double-strand break (DSB) repair, involved in limiting the number
of single-stranded DSBs through DNA end resection by promoting the recruitment of
RADS51 to sites of DNA damage. In addition to DNA end reannealing, also promotes
the resumption of DNA synthesis from the new 3'-tail end of the existing DNA ends.
Acts as a regulator of telomerase by inhibiting telomeric silencing: binds to
telomeromyosin, and is required for telomeronucleolytic silencing of endogenous
small interfering RNAs (endo-siRNAs) and their targeting to the telomere. Involves
also DNA damage signaling via the 5'-5' helicase and DNA helicases activities,
preventing disintegration of the DNA duplex and subsequent resection of the
damaged DNA strand. In vitro able to unwind 5-overhanging flap DNA and catalyzes
ATP-dependent unwinding of 5-DNA ends. Also plays a role in

P35713

Transcriptional activator that binds to the consensus
sequence 5-AACAAAG-3' in the promoter of target genes and
plays an essential role in embryonic cardiovascular
development and lymphangiogenesis. Activates transcription
of PROX1 and other genes coding for lymphatic endothelial
markers. Plays an essential role in triggering the differentiation
of lymph vessels, but is not required for the maintenance of
differentiated lymphatic endothelial cells. Plays an important
role in postnatal angiogenesis, where it is functionally
redundant with SOX17. Interaction with MEF2C enhances
transcriptional activation. Besides, required for normal hair
development.

Transcriptional activator that binds to the consensus sequence 5-AACAAAG-
3'. Plays an essential role in cellular differentiation, proliferation and survival.
Plays a critical role in macrophage differentiation, migration and invasion,
particularly in the gut. Required for normal gene expression in the
macrophages, which are activated by biglycan-producing bacteria and fungi.
Also required for normal chemotaxis. Plays important roles in the
development of the central nervous system, where it is required for proper
proliferation and migration of progenitor cells.
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Demonstration

Prot2Text

Overview

Protein function prediction plays a crucial role in understanding the intricate workings of biological systems. In recent years, significant progress has been
made in this field through the development of various machine learning approaches. However, most existing methods formulate the task as a classification
problem, aiming to assign predefined labels to proteins. In contrast, we propose a novel approach, Prot2Text, which predicts protein function descriptions in

free text, moving beyond the ional binary or By combining Graph Neural Networks and Large Language Models, in the

der-decod our model ively integrates diverse data types, including protein sequence, structure, and textual annotations. This
multimodal approach allows for a holistic representation of protein function, enabling the generation of detailed and accurate protein descriptions. Our
extensive experi results on thSwi dataset, the i of Prot2Text in ing detailed and accurate protein descriptions.

Our findings underscore the immense potential of transformer-based multimodal models in the biological sciences, offering a valuable contribution toward
advancing protein understanding and analysis.
In this page, you can test our multi-modal model Prot2Text-BASE and our Seq2Seq model Esm2Text-BASE.

Prot2Text Base

Prot2Text model is multi-modal model that combines Graph Neural Networks and Large Language Models, it takes as input a protein ID that exists in
AlphaFoldDB to download the PDB file of the protein and construct the graph input for the GNN, then query the amino-acid sequence from UniProt and
finally outputs a protein description. Examples:

« P93259

« QBUFZ8

THE INFORMATION PROVIDED IS THEORETICAL MODELLING ONLY AND CAUTION SHOULD BE EXERCISED IN ITS USE. IT IS PROVIDED "AS-IS" WITHOUT
ANY WARRANTY OF ANY KIND, WHETHER EXPRESSED OR IMPLIED. NO WARRANTY IS GIVEN THAT USE OF THE INFORMATION SHALL NOT INFRINGE THE
RIGHTS OF ANY THIRD PARTY. THE INFORMATION IS NOT INTENDED TO BE A SUBSTITUTE FOR PROFESSIONAL MEDICAL ADVICE, DIAGNOSIS, OR
TREATMENT, AND DOES NOT CONSTITUTE MEDICAL OR OTHER PROFESSIONAL ADVICE.

11 Error! the ID does not exist in
AlphaFoldDB
PRKCA N

http://nlp.polytechnique.fr/

13/06/2024
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Multimodal Gen Al for molecules

* Task: Generate or modify the structure of

molecules based on text descriptions.

* Motivation:

* Discovery in medicine and science is

expensive.

* huge amount of time and money for experts
to design new molecules with the desired

functionality every year.

* deep learning tools are essential for

facilitating molecule discovery.

* “Water is an oxygen hydride
consisting of an oxygen atom
that is covalently bonded to

two hydrogen atoms” =>

H-O-H

* Molecule representations

e SMILES(Simplified Molecular Input Line
Entry System): string of compact encoding
of molecular structures, making it easy to
share and search.

e Graph: each atom in the molecule
corresponds to a node in the graph, bonds
between atoms are represented as edges,
where some attributes can be applied to
nodes and edges.

 else: SELFIES, 3-D structure, fingerprints..
O * SMILES: clcccccl
Benzene: (C6H6)

* Graph: as adjacency matrix:

0 0 01

_ o O O -
OO O = O =
SO = O =
O = O = OO
_= o = O O
O = O OO



MolT5,;

* self-supervised learning framework for pre-training models on un-labeled natural
language text and molecule strings.

* First pre-train MolT5 on both SMILES string and natural language using the

“replace corrupted spans” objective. Fine-tuned for task of molecule captioning

or generation.

[1] Translation between Molecules and Natural Language, Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke,

Initialized from a public
Pre-training 15.1.1 checkpoint

ON=CCC1=C[NH1]C2= <1 K
T % MolTS T
Lissamine fast yellow(2-) is an

<} resulting 84]
removal of a proton

[X] cC=CC=C12

[X] organcsulfonate oxoanion [Y] from the

- 3 A
o gtatete® 35 20 20 an -
S
Molecule The molecule is a siderophore C(CC(=O)NCCNC(=0O)CC(CC
Py composed from L-2,3- (=O)NCC(C(=O)O)N)
e diaminopropionic acid, ... (C(=0)O)O)C(=O)C(=0)O
- MolT5
> ox’° [——> =
Sosecutn et IC) aLh:iMl - :::;:»: acd in wf:;\
Captioning NC2=CC=CC=C2C(=0)0)C!

one of the hydrogens attached 1o

Kyunghyun Cho, Heng Ji, https://arxiv.org/abs/2204.11817
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MolT5,,

BLEUT ExactT Levenshtein] MACCS FTIST RDKFTST Morgan FTST FCD| Text2MolT Validity?T

Ground Truth 1.000 1.000 0.0 1.000 1.000 1.000 0.0 0.609 1.0
RNN 0.652 0.005 38.09 0.591 0.400 0.362 4.55 0.409 0.542
Transformer 0.499 0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906
TS5-Small 0.741 0.064 27.703 0.704 0.578 0.525 2.89 0.479 0.608
MolT5-Small | 0.755 0.079 25.988 0.703 0.568 0517 2.49 0.482 0.721
TS5-Base 0.762 0.069 24950 0.731 0.605 0.545 2.48 0.499 0.660
MolT5-Base 0.769 0.081 24.458 0.721 0.588 0.529 2.18 0.496 0.772
TS5-Large 0.854 0.279 16.721 0.823 0.731 0.670 1.22 0.552 0.902
MolT5-Large 0.854 0311 16.071 0.834 0.746 0.684 1.20 0.554 0.905
Input RNN Transformer TS
l z:;olealleu.::fwuedx;;h:: = 2 A . q éﬂk .= ‘)}ON
and emission wavelength 591 nm. It has ¥ ¢
a role as a fluorochrome. '

2 mm:.mnw

polypeptide comprising the sequence
Lys-Gly-Lys-Gly-Lys-Gly-Lys-Gly-Lys-
Gly-Glu-Asn-Pro-Val-Val-His-Phe-Phe-

Tyr-AmJb\‘il—Th Pro-Arg-Thr-Pro. > . g
ponds to the seq of the Invalid Invalid S . - i
nyeh bmc m 83—99 (MBPS83-99) “ “

pitope with the lysyl
sduc at position 91 replaced by tyrosyl

[MBPS3-99(Y(91))] and with an (L-

Iysylglycyl)S [((KGS)] linker attached to

the glutamine(33) (E(S3)) residue. . Mn2+ v .
3 The molecule is a hydrate that s the © (I B M M

dihydrate form of manganese(Il) chloride. 1.0 : 3 Cl o i
It has a role as a MRI contrast agent and a .0 . -
nutraccutical. It is a hydrate, an inOrganic 14 oM OH.OHO  Na® /&C@H?OFBO Cl H?O"IQO HQ()":O

chlonde and 2 manganese coordination
entity.
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Text+Chem T5;

@® first multi-domain, multi-task LM for chemical and natural language domains

® Key Ideas:

O Multi-tasking across multiple domains.
O Weight sharing and information sharing across domains(encoders) .
O efficient training strategy without the need for costly pre-training on large dataset and task-specific fine-tuning.

The reaction mixture was stirred at the same
temperature ... The previous procadure describes
the following actions:

The molecule is a siderophore composed from ...
Given the above description generate the described
molecule in SMILES.

C{CC{=0)NCCNC(=0))CC(CC(=0)NCC(C(=0)O)N)
(C(=0)0)0)C(=0)C(=0)0. Generate a caption for th
given molecule.

COc1ceec2e1C(=0)C2.CO.[BH4-) [Na+]>>

Multi-task & Multi-domain Language Model

«’/ Input \-
Domain
Multi-domain Muiti-domain
Encoder Decoder
Text
T5 Encoder H TS Decoder ]
1 ‘/

Tasks

text2text text2mol mol2text mol2mol

STIR for 30 minutes.

C{CC{=0)NCCNC(=0))CC(CC{=0)NCC(C(=0)O)N)
(C(=0)0)0)C(=0)C(=0)C

The molecule is a siderophore composed from ...
Given the above description generate the described
molecule in SMILES.

COc1cccc2c1C(0)C2

Unifying Molecular and Textual Representations via Multi-task Language Modelling, https://arxiv.org/abs/2301.12586
Dimitrios Christofidellis, Giorgio Giannone, Jannis Born, Ole Winther, Teodoro Laino, Matteo Manica

Demo: https://huggingface.co/spaces/GT4SD/multitask-text-and-chemistry-t5
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https://arxiv.org/abs/2301.12586
https://arxiv.org/search/cs?searchtype=author&query=Christofidellis,+D
https://arxiv.org/search/cs?searchtype=author&query=Giannone,+G
https://arxiv.org/search/cs?searchtype=author&query=Born,+J
https://arxiv.org/search/cs?searchtype=author&query=Winther,+O
https://arxiv.org/search/cs?searchtype=author&query=Laino,+T
https://arxiv.org/search/cs?searchtype=author&query=Manica,+M

Text+Chem T5

Results(all):

Domain mol2mol cross-domain text2text
Task Size | forward retrosynthesis textZmol mol2text paragraph-actions

TS (fine-tuned) (Raffel et al., 2020) small 0.603 0.245 0.499 0.501 0.953
TS (fine-tuned) (Raffel et al., 2020) base 0.629 - 0.762 0.511 -
RXN-forward (Toniato et al., 2021) - 0.685 - - - -
RXN-retrosynthesis (Toniato et al., 2021) - - 0.733 - - -

RXN-paragraph2actions (Vaucher et al., 2020) - - - - - 0.850
MolITS (Edwards et al., 2022) small - - 0.755 0.519 -
MolITS (Edwards et al., 2022) base - - 0.769 0.540 -

Text+Chem TS5 (ours) small 0412 0.249 0.815 0.553 0.929

Text+Chem T5 (ours) base 0.459 0478 0.750 0.580 0.935

Text+Chem T5-augm (ours) small 0413 0.405 0.815 0.560 0.926

Text+Chem T5-augm (ours) base 0.594 0.372 0.853 0.625 0.943

Results(text2mol):

Size BLEU score T Accuracy T Levenshtein | MACCS FTST RDK FTST Morgan FTST FCDJ) Validity?

Transformer (Edwards et al., 2022) - 0.499 0 57.66 0.480 0.320 0.217 11.32 0.906
TS (fine-tuned) (Raffel et al,, 2020) small 0.741 0.064 27.7 0.704 0.578 0.525 2.89 0.608
MolTS (Edwards et al., 2022) small 0.755 0.079 2599 0.703 0.568 0.517 2.49 0.721
Text+Chem TS (ours) small 0.739 0.157 28.54 0.859 0.736 0.660 0066 0776
Text+Chem T5-augm (ours) small 0.815 0.191 2178 0.864 0.744 0.672 0.060 0951
TS (fine-tuned) (Raffel et al,, 2020) base 0.762 0.069 2495 0.731 0.605 0.545 2.48 0.660
MolITS (Edwards et al., 2022) base 0.769 0.081 24.49 0.721 0.588 0.529 0.218 0.772
Text+Chem TS (ours) base 0.750 0.212 27.39 0.874 0.767 0.697 0.061 0.792
Text+Chem TS5-augm (ours) base 0.853 0322 16.87 0.901 0816 0.757 0.050 0943
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Bio T5y

® BioT5 uses T5 model to incorporate modalities, in pre-training it uses:

® modality including molecule SELFIES, and general text independently.
® wrapped text from scientific corpus.

® Bidirectional translation for the molecule SELFIES-text pairs.

Task ID

1 <bom>[C][=C][C)<M1>[C][=C][Ring1][=Br
anchl)[Clj<eom>

#2 <bop><p>M<p>Y<p>Q<M1><p>C..<eop>

#3 In addition, a variety of <M1> are
involved in the <M2> folding pathway.

Effect of <bom>[C][C]<M1>[Ringl]
[C)...<eom> on cultured fibroblasts:
#a <M2> (the related amino acid sequence
is <bop><p>M<M3><p>L<p>G...<eop>
and inhibition of their uptake.

#5 <bom>[Cl][C][Branch1][C][Cl}[Cl]<eom>

PROTEIN NAME: Protein FAM170A...
FUNCTION: Acts as a nuclear
transcription factor... Binds to heat
shock promoter elements (HSE).
SUBCELLULAR LOCATION: Nucleus.
PROTEIN FAMILIES: FAM170 family

#e

<M1>[=C][Branch1][Branch1l]

<M1><p>A<p>l<p>N<p>P

<M1>co-chaperones, immunophilins,
and other proteins <M2>Hsp90-
mediated protein

<M1>[N][Branchl] <M2> release of
lysosomal hydrolases
<M3><p>K<p>M<p>R<p>F

MOLECULE NAME: Chloroform.

_ DESCRIPTION: Chloroform is a colorless
liquid with a pleasant, nonirritating odor
and a slightly sweet taste...

_ <bop><p>M<p>K<p>R<p>R<p>Q<p>K<p
>Re<p>K<p>H<p>L<p>E<p>N<p>E...<eop>

[1] BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge and Natural Language Associations,

https://arxiv.org/pdf/2310.07276.pdf
13/06/2024

Modality

Molecule
SELFIES

Protein FASTA

General Text

Wrapped
Sentences

Molecule-text
Pair

Protein-text
Pair
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Bio T5

® Text2mol task

Model #Params. BLEU?T Exact? Levenshtein] MACCS FIStT RDKFIST Morgan FIST FCDJ Text2ZMolt Vahdityt
RNN 56M 0.652  0.005 38.09 0.591 0.400 0.362 4.55 0.409 0.542
Transformer 76M 0499  0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906
T5-small TIM 0.741 0.064 27.703 0.704 0.578 0.525 2.89 0.479 0.608
T5-base 248M 0.762  0.069 24.950 0.731 0.605 0.545 248 0.499 0.660
TS-large 783M 0854 0279 16.721 0.823 0.731 0.670 1.22 0.552 0.902
MolT5-small TIM 0.755 0.079 25.988 0.703 0.568 0.517 249 0.482 0.721
MolT5-base 248M 0.769  0.081 24.458 0.721 0.588 0.529 2.18 0.496 0.772
MolT5-large T83M 0854 0311 16.071 0.834 0.746 0.684 1.20 0.554 0.905
GPT-3.5-turbo (zero-shot) >175B 0489  0.019 52.13 0.705 0.462 0.367 2.05 0.479 0.802
GPT-3.5-turbo (10-shot MolReGPT)  >175B 0790  0.139 2491 0.847 0.708 0.624 0.57 0.571 0.887
MolXPT 350M - 0.215 - 0.859 0.757 0.667 045 0.578 0.983
BioT5S 252M 0.867 0413 15.097 0.886 0.801 0.734 0.43 0.576 1.000
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Conclusions

® Graph Generative Al

O High potential topic with crucial applications: Power grid/telecoms, VLSI, social networks,
chemistry/proteins/pharma

O via LLMs — not promising currently — only for graph reasoning
O Need for neural graph generators

® Graph Pretrained models

O Different challenges
* pretraining tasks are diverse, masking may not be enough
* Decoder architecture — permutation invariance
* Graph data loaders scaling
* Prompting ? Domain depentent
* Multimodality with graphs — architectural challenges

® Tasks for evaluation — potential
o Variety of domain dependent metrics
o genenerated graphs similarity is non trivial (graph kernels/embeddings)
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