
Graph Generative models and 
some applications

Michalis Vazirgiannis
Ecole Polytechnique, IPP, France 

http://www.lix.polytechnique.fr/dascim

June 2024

13/06/2024 1

http://www.lix.polytechnique.fr/dascim


GNNs and Graph Generative models and applications

• Graph Generative models
• Generative models for Medical Graphs
• Large generative models 
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Graphs are ubiquitous
• Chemistry –

Bio/Pharma
• Space of 

molecules: 
1060

• New 
proteins,  
molecules 
generation
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Multiplex Human HIV-1 protein-protein interaction network
https://commons.wikimedia.org/wiki/File:Multiplex_Human_H
IV-1_protein-protein_interaction_network_%28edge-
colored_visualization%29.png

Jiang, Y., Jin, S., Jin, X. et al. Pharmacophoric-
constrained heterogeneous graph transformer 
model for molecular property prediction. Commun
Chem 6, 60 (2023). https://doi.org/10.1038/s42004-
023-00857-x

Guided Folding of Life’s Proteins in Integrate Cells with 
Holographic Memory and GM-Biophysical Steering, Dirk K F 
Meijer, Hans J. H. Geesink, 2018, Open Journal of Biophysics
8(03):117-154 DOI:10.4236/ojbiphy.2018.83010, 

https://www.researchgate.net/profile/Dirk-Meijer-5
https://www.researchgate.net/profile/Dirk-Meijer-5
https://www.researchgate.net/profile/Hans-Geesink
https://www.researchgate.net/journal/Open-Journal-of-Biophysics-2164-5396
http://dx.doi.org/10.4236/ojbiphy.2018.83010


Graphs are ubiquitous

• Social Networks
• Internet/Telecom
• Citation graphs
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https://threatpost.com/researchers-graph-social-networks-spot-
spammers-061711/75346/

http://tar.weatherson.org/2017/05/04/citation-graphs-and-methodology/



Graphs are ubiquitous

power/water distribution networks Transport/road networks
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https://doi.org/10.1371/journal.pone.0195727.g005doi.org/10.4324/9780429346323

https://doi.org/10.4324/9780429346323


Graphs in NLP

• Graph of Words 
• Information retrieval[1]

• Keyword extraction [2]

• Event detection [4]

• Summarization
• Document classification [3][1]
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[1] Graph-of-word and TW-IDF: new approach to ad hoc IR, F.Rousseau, Michalis Vazirgiannis - CIKM '13: https://doi.org/10.1145/2505515.2505671, 
Best paper mention award
[2]Main Core Retention on Graph-of-words for Single-Document Keyword Extraction, F. Rousseau,M. Vazirgiannis. ECIR2015
[3]Text Categorization as a Graph Classification Problem, F Rousseau, E Kiagias, M Vazirgiannis, ACL 2015 
[4] Degeneracy-based real-time sub-event detection in twitter stream, P Meladianos, et. al. AAAI - ICWSM 2015
[5]Message Passing Attention Networks for Document Understanding, G. Nikolentzos, A. Tixier, M.Vazirgiannis , AAAI2020, 
https://doi.org/10.1609/aaai.v34i05.6376 

https://doi.org/10.1145/2505515.2505671
https://scholar.google.gr/citations?view_op=view_citation&hl=el&user=DNTPrccAAAAJ&citation_for_view=DNTPrccAAAAJ:u5HHmVD_uO8C
https://doi.org/10.1609/aaai.v34i05.6376


Why Graph ML is important & different than 
sequential ML

• handles complex and rich data structures (graphs, networks, trees, 
and hypergraphs) not easily represented by vectors or matrices 
• capture relational information and dependencies among nodes, and 

capitalise on the graph structure and properties to enhance the 
learning process – capture longer term dependencies
• can leverage GNNs to learn powerful/expressive graph 

representations useful for downstream tasks: node classification, link 
prediction, graph generation, and graph matching.
• Graph pretrained models tend to have fewer parameters than 

traditional DL models, especially those based on transformers.
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Graph Machine learning tasks
• Node classification: given a graph with labels on some 

nodes, provide a high quality labelling for the rest of 
nodes

• Graph clustering: given a graph, group its vertices into 
clusters in such a way that there are many edges 
within each cluster and relatively few between the 
clusters (community detection)

• Link Prediction: given a pair of vertices, predict if they 
should be linked with an edge

• Graph classification: given a set of graphs with known 
class labels for some of them, decide to which class 
the rest of the graphs belong. 

• Graph Regression…

9

Graph Machine Learning
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Abundance of GNN methods

22

Graph Machine Learning – graph embeddings
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Graph Convolutional Network (GCN)

Graph attention networks (GAT)

GraphSAGE



Need for Graph Generators

• Graph generator models can produce graphs with given properties or typology for 
various applications

• Modeling and studying networks in biology, engineering, and social sciences. 
• simulate the evolution of social networks, 
• the structure of protein-protein interactions, 
• topology of power grids.

• Discovering new graph structures and properties. 
• generate novel chemical and molecular structures, 
• design new materials, 
• explore the space of possible graphs with certain characteristics.

• Completing and enhancing existing graphs. 
• fill in missing nodes and edges, 
• add new features and attributes, 
• improve the quality and diversity of graph data.
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Graph Generators – heuristic based models

● Erdős–Rényi Random Graph Model 
● Barabasi Albert graph generator 
● Kronecker graphs – pattern recursion
● Stochastic Block models
● ….

2413/06/2024



Need for Deep Graph Generators

2513/06/2024

• Traditional graph generation models (i.e. Erdős-Rényi, Barabási-Albert model, 
Kronecker graphs,  Stochastic block models) based on assumptions / heuristics
oversimplifying the underlying distributions of graphs.

• Deep models for graph-structured data enable effective complex graph 
generation
• can learn the generative model directly from observed data, without relying on 

hand-engineered processes or pre-defined statistical properties. 
• capture the complex joint probability of all nodes and edges in the graph, and 

generate realistic graphs that match the structural characteristics of the target 
distribution.

• incorporate various advanced methods: (i.e. attention mechanisms, reinforcement 
learning) to enhance the quality and diversity of the generated graphs.



Graph Generative Models

Graph generation challenging task: 
● higher-order (and non symmetric) relationships
● Sparsity and no deterministic order in processing 

nodes, 
● long-tailed distribution of relationships: some are 

frequent others very rare in real-life graphs.
● dynamic and temporal: change over time, 

different states with time.
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Overview of deep graph generation

● encoder maps observed graphs into a stochastic distribution; 
● sampler draws latent representations from that distribution; 
● decoder receives latent codes and produces graphs

2713/06/2024

A Survey on Deep Graph Generation: Methods and Applications, Yanqiao Zhu et al, LOG 2023



Overview of deep graph generation - Encoder

● Encoder - The encoding function fΘ(z | G) represent discrete graph objects as dense, 
continuous vectors. 

● employ probabilistic generative models (e.g., variational graph neural networks) as the 
encoder. 

● encoder function f Θ outputs the parameters of a stochastic distribution following a prior 
distribution p(z).

2813/06/2024

A Survey on Deep Graph Generation: Methods and Applications, Yanqiao Zhu et al, LOG 2023



Overview of deep graph generation - Sampler

● sample latent representations from learned distribution z ∼ p(z). 
● two sampling strategies: random sampling and controllable sampling. 
● Random: randomly sampling latent codes from the learned distribution. 
● controllable: sample latent code in an attempt to generate new graphs with desired 

properties. 
○ In practice, controllable sampling usually depends on different types of deep generative models and requires 

an additional optimization term beyond random generation.

2913/06/2024

A Survey on Deep Graph Generation: Methods and Applications, Yanqiao Zhu et al, LOG 2023



Overview of deep graph generation - Decoder

• The decoder receives the latent representations sampled from the learned distribution and 
generates graph structures. 

• decoder is more complicated due to the discrete, non-Euclidean nature of graph objects. 
• Decoder types: 
• sequential generation: generating graphs in consecutive steps, one node/edge at a time. 
• one-shot generation - generating node/edge feature matrices in single step.

• not all methods include all components – i.e. (GANs) do not include a specific encoder
3013/06/2024

A Survey on Deep Graph Generation: Methods and Applications, Yanqiao Zhu et al, LOG 2023



Graph generative models for deep graph generation

• auto-regressive models

•  variational autoencoders

•  normalizing flows

•  generative adversarial networks

•  diffusion models
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A Survey on Deep Graph Generation: Methods and Applications, Yanqiao Zhu et al, LOG 2023



Deep Graph Generators -Auto-Regressive models

● AR models: Likelihood of a joint distribution over N random variables (nodes/edges) -
chain rule of probability. 

● generation process: determines the next step action (add node/edge/stop)given the 
current subgraph. The general formulation of AR models is as follows:

● where  random variables in the previous N steps.
● constraint:  AR - sequential generation, requires pre-specified ordering of nodes in the 

graph.
● Many efforts [GraphRNN, 2018], [DeepGMG2018][Bacciu et al.2020], [Goyal et al.2020] ,  MolecularRNN

[2021]…
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Deep Generative Models of Graphs - DeepGMG [Li et al., 2018]

➔Autoregressive model for graph generation: No prior structural assumption

➔Generation process based on sequential decisions

◆ Generate one node at a time

◆ Connect node to graph at current state by creating edges (one by one)

➔ Probability of new event depends on history of graph derivation

➔Graphs are modeled by GNN

34

Li et al. Learning deep generative models of graphs. 2018
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Learning Deep Generative Models of Graphs
Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter 
Battaglia, https://arxiv.org/abs/1803.03324

https://arxiv.org/search/cs?searchtype=author&query=Li,+Y
https://arxiv.org/search/cs?searchtype=author&query=Vinyals,+O
https://arxiv.org/search/cs?searchtype=author&query=Dyer,+C
https://arxiv.org/search/cs?searchtype=author&query=Pascanu,+R
https://arxiv.org/search/cs?searchtype=author&query=Battaglia,+P
https://arxiv.org/search/cs?searchtype=author&query=Battaglia,+P
https://arxiv.org/abs/1803.03324


DeepGMG - Method

1. Check whether to add a new node of a particular type or terminate
2. If a node type is chosen, add that type node
3. Check if any further edges are needed to connect the new node to the 

existing graph
4. If yes, select a node in the graph and add an edge connecting the new 

node to the selected node
5. Return to (3)
6. Repeat until the model decides not to add another edge
7. Return to (1) to add subsequent nodes.

35

Li et al. Learning deep generative models of graphs. 2018
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Evaluation for DeepGMG
Synthetic Graphs with Certain Topological Properties

● Cycles, Trees and  Barabasi–Albert graphs (power-law degree 
distribution)

● Report portion of valid samples that satisfy the given 
characteristic

● Report the KL-divergence between the degree distributions 
of samples and data for B-A graphs

37

Li et al. Learning deep generative models of graphs. 2018
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Molecule Generation
• ChEMBL molecule database (20 most heavy atoms)
• RDKit: Convert SMILES string representations to Graph 

representation of molecules 
• Node/Edge ordering

• Fixed ordering: canonical from SMILES
• Uniform random ordering by permutation

• Report Negative Log-Likelihood (NLL)
• Report potion of well-formatted (valid) samples and unique 

novel samples not seen in training set
• Report estimated marginal likelihood on small molecules 

(intractable on large molecules) 



Evaluation for DeepGMG

Conditional Graph Generation
➔ A subset of previous ChEMBL database with contains molecules of 0, 1 and 3 aromatic rings
➔ Report potion of well-formatted (valid) samples and unique novel samples not seen in 

training set
➔ Report portion of samples that have the number of atoms, bonds, rings, and all three that 

match the given condition

38

Li et al. Learning deep generative models of graphs. 2018
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GraphRNN [You et al., 2018]
● Autoregressive model for graph generation

○ Key insight: Graph G with node permutation 𝝅 can be uniquely mapped into a sequence 
of node and edge additions S𝝅

○ Model the generation process with two RNNs
■ Node-level: generate a state for a new node
■ Edge-level: generate edges for the new node based its hidden state

39

You et al. GraphRNN: Generating Realistic graphs with Deep Auto-Regressive models. ICML 2018
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GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec

https://arxiv.org/search/cs?searchtype=author&query=You,+J
https://arxiv.org/search/cs?searchtype=author&query=Ying,+R
https://arxiv.org/search/cs?searchtype=author&query=Ren,+X
https://arxiv.org/search/cs?searchtype=author&query=Hamilton,+W+L
https://arxiv.org/search/cs?searchtype=author&query=Leskovec,+J


GraphRNN - Method

➔ Omitting symbol of node permutation π, Graph G~p(G) can be represented as a sequence of 
adjacency vectors (S1 , …, Sn)

➔ Si is a (i-1) dimensional vector represents edges between i and previous nodes: {0, 1}i-1

➔ p(G) is related to p(S) with p(S) = ∏1
n+1 p( Si | S1, …, Si-1 ). This product can be modelled by a RNN 

(node-level) with state transition possible modelled by another RNN (edge-level), which models 
the distribution p( Si | S<i ) = ∏1

i-1 p( Si,j | Si,<j , …, S<i )

40

You et al. GraphRNN: Generating Realistic graphs with Deep Auto-Regressive models. ICML 2018
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Node-level RNN

Edge-level RN
N



Evaluation for GraphRNN

Visual comparison
➔ First row: Training set
➔ Third row: Kronecker graph, Mixed-Membership Stochastic Block model and Barabasi–

Albert graph

41

You et al. GraphRNN: Generating Realistic graphs with Deep Auto-Regressive models. ICML 2018
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Evaluation for GraphRNN

42

You et al. GraphRNN: Generating Realistic graphs with Deep Auto-Regressive models. ICML 2018
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Maximum Mean Discrepancy (MMD)
➔ Compare all moments of the empirical distributions using an exponential kernel with 

Wasserstein distance
80% decrease of MMD over traditional baselines: E-R, B-A, Kronecker, MMSB
90% decrease of MMD over deep learning baselines
22% smaller average NLL gap compared to deep learning baselines



Graph generative models for deep graph generation

• auto-regressive models

•  variational autoencoders

•  normalizing flows

•  generative adversarial networks

•  diffusion models
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A Survey on Deep Graph Generation: Methods and Applications, Yanqiao Zhu et al, LOG 2023



Graph Auto encoders

44/64

Graph Machine Learning – node embeddings
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Graph Auto encoders

45

Graph Machine Learning – node embeddings
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Graph Variational Auto Encoders

● VAE1 estimates the distributions of graphs p(G) by maximizing the Evidence Lower Bound (ELBO):

● reconstruction loss between the input G and the reconstructed graph,  distance  among decoder 
qφ(z|G) and the prior distribution pθ(z) – usually Gaussian. 

● The encoder p(z|G) and decoder q(G|z) are typically GNNs (i.e.  GCN, GAT…).

4613/06/2024

[1] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In ICLR, 2014.

A Survey on Deep Graph Generation: Methods and Applications, Yanqiao Zhu et al, LOG 2023



Junction Tree Variational AutoEncoder – JTVAE 
[Jin et al., 2018]

➔ GraphVAE [Simonovsky and Komodakis, 2017]
◆ Generate a probabilistic fully-connected graph

● Model node/edge with Bernoulli distribution
● Model node/edge features using multinomial 

distribution 
◆ Loss: Similarity (KL divergence) between                 and prior 

distribution (normal)          + similarity (likelihood) between 
generated graph      and input graph     .  

➔ Junction Tree VAE: molecule generation leveraging 
chemical domain knowledge
◆ Instead of generating graph node by node, generate group 

(structure) by group (structure): functional groups by tree 
decomposition of molecular graphs 

◆ Less than 800 groups given 250K molecules

47

Jin et al. Junction tree variational autoencoder for molecular graph generation. ICML 2018
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Motivations:
● Not every VAE- generated graph is 

chemically valid 
● Long action sequence (intermediate 

states) are hard to validate and difficult 
to train (DeepGMG, [Li et al., 2018])

shorter action sequence



JTVAE - Method

48

Jin et al. Junction tree variational autoencoder for molecular graph generation. ICML 2018
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Graph & Tree encoder: graph message passing networks [Dai et al., 2016]
● Graph encoder output: average pooling
● Tree encoder output: embedding of the root node

Decoder? 



JTVAE - Tree Decoding

49

Alvarez-Melis and Jaakkola. Tree-structured decoding with doubly-recurrent neural networks. ICLR 2017. 
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JTVAE - Tree Decoding

50

Alvarez-Melis and Jaakkola. Tree-structured decoding with doubly-recurrent neural networks. ICLR 2017. 
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JTVAE - Tree Decoding

51

Alvarez-Melis and Jaakkola. Tree-structured decoding with doubly-recurrent neural networks. ICLR 2017. 
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Topological Prediction: Whether to add a child node or backtrack?

Label Prediction: What is the label of the new node?



JTVAE - Tree Decoding

52

Alvarez-Melis and Jaakkola. Tree-structured decoding with doubly-recurrent neural networks. ICLR 2017. 
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Topological Prediction: Whether to add a child node or backtrack?

Label Prediction: What is the label of the new node?

Topological Prediction



JTVAE - Tree Decoding

53

Alvarez-Melis and Jaakkola. Tree-structured decoding with doubly-recurrent neural networks. ICLR 2017. 
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Encodes the entire subtree 
of current state

Functional group features
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Evaluation for JTVAE
➔ Molecule Reconstruction on ZINC [Sterling 

and Irwin, 2015]
◆ Reconstruct input molecules from latent 

representations
◆ 100 montecarlo trials [Kusner et al., 

2017] per molecule
◆ Report portion of decoded molecules 

identical to input

➔ Molecule Validity
◆ Decode valid molecules when sampling 

from prior distribution
◆ 100 monte-carlo trials per latent z 

sampled from prior distribution
◆ Report portion of decoded molecules 

chemically valid (RDKit)

Jin et al. Junction tree variational autoencoder for molecular graph generation. ICML 2018



GNNs and Graph Generative models for biomedical 
applications

• Graph Generative models
• Generative models for Medical Graphs
• Large generative models 
• Graph / LLMs
• Multi modality for molecule generation
• Conclusions
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GVAE for Generating Synthetic Patient Trajectories

59

GVAEs for medigal graph generation
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Synthetic electronic health records generated with variational graph autoencoders, 
G. Nikolentzos, M. Vazirgiannis, C. Xypolopoulos, M. Lingman, E. G. Brandt NATURE DIGITAL MEDICINE 2023, 
https://www.nature.com/articles/s41746-023-00822-x

https://www.nature.com/articles/s41746-023-00822-x


Health data - constraints

60

GVAEs for medical graph generation
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Synthetic Data Generation
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Shaarpeec graph model for patient trajectories

62

GVAEs for medical graph generation
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@SHAARPEC graph data model 
→ patient trajectories 
represented as graphs 

∣ΣV∣ = 13980 node labels                                          
∣ΣE∣=  6 edge labels. 

https://shaarpec.com/

https://shaarpec.com/


GVAE architecture

63

GVAEs for medical graph generation

13/06/2024

We use a variational autoencoder:
• The encoder maps input DAGs into d-dimensional gaussian distributions

• The decoder reconstructs the input DAGS given vectors sampled from the 
gaussian distributions



MIMIC dataset

Statistics on the patient 
trajectories calculated 
from the atrial 
fibrillation cohort from 
the MIMIC-IV database.

64

GVAEs for medical graph generation
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Quality of graph reconstruction

● Real graph input to encoder - decoder produces a reconstructed version 
● Histogram of similarities between input graphs and reconstructed graphs 

using the Weisfeiler Lehman subtree (WL) kernel and the shortest path (SP) 
kernel.

65

GVAEs for medical graph generation
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Graph generation – similarity to real graphs

● Generated graph: Sample from the learned distribution and feed the decoder
● Similarity histogram between input and generated graphs using the 

Weisfeiler-Lehman subtree (WL) kernel and the shortest path (SP) kernel.
● lower similarity => privacy

66

GVAEs for medical graph generation
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Graph generation – similarity to real graphs

• Pearson’s r between frequency 
of different structures in training 
trajectories and generated 
trajectories.

• 1-paths (node labels), 2-paths, 
and 3-paths 

67

GVAEs for medical graph generation
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• Comorbidities for real and synthetic 
atrial fibrillation cohorts. 

• comorbidities: HF heart failure, S/TIA 
stroke/TIA, DM diabetes mellitus, H 
hypertension. 



Privacy concerns

● % novel trajectories vs standard deviation of 
the Gaussian noise. 

● mean Gaussian = 0 vector. 
● noise added to Encounters. 
● σ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, 20000 

trajectories generated, compared to  real

6813/06/2024

● Real data are barely distinguishable by the synthetic 
ones. 



GVAEs for medical graph generation - Conclusions
● the model generates novel 

synthetic patient trajectories, 
● sufficiently different to preserve 

patient privacy, 
● yet retains the characteristics of 

the real-world data. Thus data 
exchange and ML is feasible 

● most significant feature: 
capacity to learn long-range 
correlations between trajectory 
nodes.

69

GVAEs for medical graph generation
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GNNs and Graph Generative models for biomedical 
applications
● Graph Generative models
● Generative models for Medical Graphs
● Large generative models 
● Graph & LLMs
● Multi modality for molecule generation
● Conclusions
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Digress [1]

● Diffusion process: 
○ Inspired by statistical physics – uncertainty of particles position
○ Noising model: q progressively corrupts a data point x to create a sequence of 

increasingly noisy data points (z1, . . . , zT ) 
■ Markovian structure q(z1, . . . , zT |x) =

○ Denoising ϕθ is trained to invert the noising process by predicting zt-1 from zt. 
○ Inference: 

■ generate new samples: noise is sampled from a prior distribution 
■ inverted by iterative application of the denoising network. , 

7113/06/2024

______________________-
[1]DIGRESS: DISCRETE DENOISING DIFFUSION FOR GRAPH GENERATION Clement Vignac et al, ICLR23, https://arxiv.org/pdf/2209.14734

https://arxiv.org/pdf/2209.14734


Digress - Discrete diffusion

● Continuous diffusion:  Gaussian is poor noise model for 
graphs: destroys sparsity as well as graph theoretic 
notions such as connectivity. 

● Discrete diffusion more appropriate to graph 
generation tasks.
○ Recent works have considered the discrete diffusion 

problem for text, image and audio data [Hooge-
boom et al., 2021; Johnson et al., 2021; Yang et al., 2022]

● data x ∈ Rd (one-hot encoding, d: classes), noise 
represented by transition matrices (Q1, ..., QT ) such 
that
○ [Qt]ij : probability state i => j: q(zt|zt−1) = zt−1Qt

○ as process is Markovian:                         the noisy state zt
can be built from x: 

○ posterior distribution q(zt−1|zt, x) - closed-form  Bayes rule:

7213/06/2024

______________________-
[1]DIGRESS: DISCRETE DENOISING DIFFUSION FOR GRAPH GENERATION Clement Vignac et al, ICLR23, https://arxiv.org/pdf/2209.14734

https://arxiv.org/pdf/2209.14734


Overview of Digress

● Discrete noising process for node/edge (Xt/Et) labels, Q noising matrix. 

● Discrete noising process for node/edge (Xt/Et) labels, Q noising matrix. 
● DiGress denoising neural network ϕθparametrized by θ.
○ Input: noisy graph Gt = (Xt, Et): aims to predict the “clean” graph G, 
○ To train ϕθ , optimize cross-entropy loss: between the predicted probabilities                                for each node 

and edge and the true graph G:

7313/06/2024

______________________-
[1]DIGRESS: DISCRETE DENOISING DIFFUSION FOR GRAPH GENERATION Clement Vignac et al, ICLR23, https://arxiv.org/pdf/2209.14734
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Digress - Experiments

● Molecule generation - QM9. 
● Training time: time to reach 99% validity. 
● DiGress achieves similar results to the continuous model but  faster to train.
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Digress - Experiments

● Martinkus et al. (2022): i. 200 graphs drawn from stochastic block model ii.  200 planar graphs. 
● We evaluate ability
○ correctly model various properties of these graphs, 
○ generated graphs are statistically distinguishable from the SBM model or if they are planar and connected. 

7513/06/2024

Unconditional generation on SBM and planar graphs. VUN: valid, unique & novel graphs.



Digress - Experiments
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Neural Graph Generator (NGG)

● a novel graph generative model which leverages latent diffusion for conditional graph generation. 
● represents a significant shift from traditional graph generation methods, focusing on prompting with a vector that 

includes a set of diverse properties of the graph.
● introduce a large-scale dataset of synthetic graphs that covers several different types of graphs on which our 

model was trained. This dataset can be used for pre-training any graph generative model in the future.
● extensively evaluate our model across various graph generation tasks, demonstrating its effectiveness in capturing 

specific graph properties, generalizing to larger graphs, and generating graphs from subsets of properties.
● release the pre-trained autoencoder, the pre-trained latent diffusion model, and the synthetic dataset of 1M 

graphs to be useful for both practitioners and the scientific community.

8013/06/2024

1. Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models, Evdaimon et. 
al,  https://arxiv.org/pdf/2403.01535.pdf

https://arxiv.org/pdf/2403.01535.pdf


Neural Graph Generator (NGG)
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Neural Graph Generator (NGG) - conditioning
● Dataset: 1M synthetic graphs (<=100 nodes). 
● use different types of graph generators. 
● 17 families of graphs: (1) paths (2) cycles (3) wheels (4) stars (5) 

ladders; (6)lollipops (7) Erdos-Renyi random graphs; (8) 
Newman–Watts–Strogatz small-world graphs; (9) Watts–
Strogatz small-world graphs, (10) random d-degree regular 
graphs (11) Barabasi–Albert graphs; (12) dual Barabasi–Albert 
graphs (13) extended Barabasi–Albert graphs (14) graphs 
generated using the Holme and Kim algorithm (15) random 
lobsters  (16) stochastic block model graphs and (17) random 
partition graphs. 

● The generated graphs are devoid of self-loops, isolated nodes, 
and multigraphs are also excluded.

● NGG model: 3.6M parameters

8213/06/2024



Neural Graph Generator (NGG) – exp results
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Within distribution 
performance



Neural Graph Generator (NGG) – exp results
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Performance Comparison 
of NGG and Baseline 
Model :
• Out-of-Distribution 

Performance (trained 
on graphs with up to 
50 nodes and 
evaluated on larger 
graphs) 

• Within-Distribution 
Performance with 
Masking Applied to 
some Condition Vector 
Elements.



Neural Graph Generator (NGG) – exp results
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GNNs and Graph Generative models for biomedical 
applications

• Graph Generative models
• Generative models for Medical Graphs
• Large generative models 
• Graph / LLMs
• Multi modality for molecule generation
• Conclusions
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Graphs & LLMs [1]

● Despite not being explicitly designed for graph-structured data, LLMs are increasingly
leveraged for graph machine learning tasks.

● Are LLMs capable of mapping textual descriptions of graphs and structures to
grounded conceptual spaces and solving graph algorithm problems explicitly with
natural language?

● NLGraph1 constructs 29,370 problems, 8 graph reasoning tasks - varying complexity 
○ simple tasks: connectivity,  shortest path
○ complex problems: maximum flow, simulating graph neural networks.

● Conclusion:
○ LLMs do possess preliminary graph reasoning abilities.
○ The benefit of advanced prompting methods diminishes with complex problems.
○ Few shot learning does not help on complex graph reasoning problems.

_______________
1) Wang, Heng, et al. "Can language models solve graph problems in natural language?." Advances in Neural
Information Processing Systems 36 (2024).
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NLGraph Benchmark - eight tasks, varying complexity

8813/06/2024



NLGraph Benchmark
● random graph generator to generate graphs and structures while controlling for the network 

size, graph sparsity, and more.
● adopting generated graphs as bases to synthetically generate problems for eight graph-

based reasoning tasks with varying algorithmic difficulties

● Statistics of the NLGraph benchmark. A / B indicates that there are A and B problems in the standard and
extended set of NLGraph. SPEC. denotes difficulty specifications.
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Results
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* CoT+SC: Construct multiple chains of thought, evaluate each one, and ultimately select the most effective and coherent chain.



Results
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LLMs for graph generation

● Graph generation requires the LLM to generate graphs with given 
properties

● valuable real-world applications such as drug discovery ⇒ more 
challenging than graph reasoning.

● first work1 towards this direction investigated the questions regarding:
○ LLMs’ understanding of different graph structure rules.
○ Their ability to capture structural type distributions.
○ Their utilization of domain knowledge for property-based graph generation.

● Conclusion:
○ LLMs exhibit preliminary abilities in graph generation tasks.
○ LLMs show potential in generating molecules with specific properties.
○ Popular prompting methods do not consistently enhance performance.
____________
1) Yao, Yang, et al. "Exploring the Potential of Large Language Models in Graph Generation." arXiv preprint
arXiv:2403.14358 (2024).
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Overview
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_________________
1) Yao, Yang, et al. "Exploring the Potential of Large Language Models in Graph Generation." arXiv preprint
arXiv:2403.14358 (2024).



Rule-based generation
Can LLMs understand the rules of different types of graph structures?
● Task: generating graphs of basic structure types, given rules describing the

desired structures, e.g., trees, cycles, wheel graphs, etc.
● Observations:○ GPT-4 has reasonably good abilities for rule-based graph generation.○ Providing examples has inconsistent impact ○ CoT prompt has diverse impacts on different evaluation metrics for graph generation.○ As the graph size increases, the performance of LLM in graph generation decreases for

most rules, except for simple cases such as cycles.
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Distribution-based generation
Can LLMs understand the distribution of different types of graph structures?
● Task: generating graphs following a structural type distribution p, given a set of

example graphs with the same distribution.
○ Trees or cycles: Exploring the distribution of graphs.○ Union of components: Exploring the distribution of subgraph combinations within a graph.○ Motif graph: Exploring the distribution of subgraph combinations within the graph for more complex situations.

● Observations:○ LLMs perorm well for simple distributions, but perform poorly in complex situations.○ Detailed examples and CoT are helpful for distribution-based graph generation.

9513/06/2024



Property-based generation

Can LLMs understand domain knowledge of graph generation?
● Task: generating molecule structures with specific properties, given example

molecules (SMILES format).
● Observations: LLMs show preliminary abilities in generating molecules with 

certain properties.
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GNNs and Graph Generative models for biomedical 
applications

• Graph Generative models
• Generative models for Medical Graphs
• Large generative models 
• Graph / LLMs
• Multi modality for molecule generation
• Conclusions
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Multimodal graph pretrained models

• Modality mi in {text, image, sound, …}
• Pretrain {mi}+graph => graph/ mi

Recent efforts: 
• Multimodal learning with graphs [Ektefaie et 

al, 2023] – guidelines and applications
• Investigating Pretrained Language Models for 

Graph-to-Text Generation[Ribeiro et al, 2021]
• Structural Information Preserving for Graph-to-

Text Generation[Song et al, 2021] – linearised 
graph; transformer encoder decoder – no 
graph encoding/generation

• ProtNLM: Model-based Natural Language 
Protein [Gane et al, 2022] – does merely 
classification
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Prot2Text: Multimodal Protein’s Function 
Generation with GNNs and Transformer

• Understanding proteins’ function is a central challenge in
the field of biological sciences 

• essential for: drug discovery, enabling identify and target 
specific proteins that play critical roles in disease pathways. 

• Traditionally, proteins’ functions prediction is assigning 
predefined labels based on their characteristics [Kulmanov
and Hoehndorf 2019]. 

• To address this limitation, we propose a novel method that 
given an unknown protein produces a free text predicting its 
function 
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Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers,  H. Abdine, M. Chatzianastasis, C. 
Bouyioukos, M. Vazirgiannis, AAAI 2024



Prot2Text: Multimodal Protein’s Function 
Generation with GNNs and Transformer

Contributions 
• a novel multimodal framework, that generate detailed and 

accurate descriptions of proteins’ functions in free text   
• first time - integrate GNNs and Large Language Models 

(LLMs), to encompass both structural (protein’s 3D structure)
and sequential (amino acid’s sequence) information 

• propose various baselines for protein text generation
• demonstrate integration of both graph and sequence protein 

information leads to better generation capabilities.
• release a comprehensive multimodal protein dataset - 256, 

690 protein structures, sequences, and textual function 
descriptions. 
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Prot2Text: Multimodal Protein’s Function 
Generation with GNNs and Transformer

• Encoder- Decoder framework forms the 
backbone of the model

• encoder component 
• Relational graph convolution network 

(RGCN) [Schlichtkrullet al. 2018] to 
process the protein graphs, 

• ESM protein language model (Lin et al. 
2023a)) to encode the protein’s sequence. 

• cross-attention mechanism facilitates 
exchange of relevant information between the 
graph-encoded and the sequence-encoded 
vectors =>  a fused representation synthesizing 
structural and textual aspects. 

• Decoder component: pre-trained GPT-2
generates detailed and accurate protein 
descriptions from fused protein 
representation. 
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Prot2Text: Multimodal Protein’s Function 
Generation with GNNs and Transformer

• Graph Construction - obtaining the 3D 
proteins’ from AlphaFold

• Protein graph G = (V, E, R), where
• V = [N ] := {1, ..., N } is the set of 

nodes/amino-acids of the proteins, 
• E ⊆ V × V is the set of edges/interactions 

between the nodes
• R:  set of different edge interactions. 
• Each node u is associated with a feature 

vector xu ∈ Rd, with attributes: local 
structural features, physico-chemical 
properties of amino-acids. 
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Prot2Text: Multimodal Protein’s Function 
Generation with GNNs and Transformer

• Graph Construction – 3D graphs from AlphaFold

• Protein graph G = (V, E, R), where
• V = [N ] := {1, ..., N } is the set of nodes/amino-acids 

of the proteins, 
• E ⊆ V × V is the set of edges/interactions between the 

nodes
• R:  set of different edge interactions. 
• Each node u is associated with a feature vector xu ∈ Rd, 

with attributes: local structural features, physico-
chemical properties of amino-acids. 

• Graph Encoding. employ a RGCN: effectively treats edge 
types in the message-passing mechanism. 

• In layer k of the GNN, update node representations

• Final graph representation: 
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Prot2Text: Multimodal Protein’s Function 
Generation with GNNs and Transformer
• Sequence Encoding. used ESM2-35M (Lin et al. 2023a) as 

our base model.

• transforms the individual amino-acid representations, 
derived from the ESM embedding dimension, into the graph 
embedding dimension dout.

• Multimodal Fusion. 

• obtain the final protein encoding,
with a fusion block combining the two representations:

• Text Generation transformer decoder architecture for 
generating protein descriptions. 

• initialize decoder components (text embedding matrix, self-
attention, and language modelling head), with the pre-trained 
weights of GPT-2. 

• forward the protein representation obtained from the protein 
encoder as input to the multihead cross-attention module within 
the transformer decoder.

• enabled to effectively incorporate context from the protein 
representation, to generate coherent and meaningful protein 
descriptions. 
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Dataset. 

• build a multimodal dataset with 256, 690 proteins. 

• For each protein: sequence, the AlphaFold accession ID 
and the textual description. 

• To build this dataset, we used the SwissProt dababase
(Bairoch and Apweiler 1996)

• Apply CD-HIT clustering algorithm (Li and Godzik 2006) 
to create a train/validation/test scheme (248.215/ 4. 
172/4, 023 proteins respectively). 

• maximum similarity threshold between the (train, 
validation test)
sets used in the CD-HIT algorithm is 40%. 
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Prot2Text: Multimodal Protein’s Function 
Generation with GNNs and Transformer

Metrics
• evaluate the performance of the model in the text 

generation task. 
• BLEU Score (Papineni et al.2002): similarity 

between generated and reference text based onn-
grams. 

• Rouge-* (Lin 2004): uni/bi/longest common 
subsequence between generated and reference 
text. 

• BERT Score (Zhanget al. 2020): measures the 
similarity between the generated text and the 
reference text using contextualized word 
embeddings from a transformer-based model. 



Prot2Text: Experimental Results (ongoing)
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• Test set results encoder models, 
• unimodal encoders: vanilla-Transformer, ESM2-35M,and RGCN, 
• multimodal encoders: RGCN × vanilla-Transformer, RGCN + ESM2-35. 
• All models share the same GPT-2 decoder. 
• Structure increases performance (cross attention)
• Prot2TextBASE achieves the highest performance across all evaluation metrics



Prot2Text: Experimental Resutls (ongoing)

• Test set results for different size variations of Prot2Text.

• Larger models outperform their smaller counterparts across most evaluation metrics, 
indicating the benefits of employing larger language models in the Prot2Text framework.

• The Prot2TextBASE model, strikes an optimal balance between performance and 
computational efficiency. This configuration demonstrates improved performance compared 
to the smaller model while still maintaining reasonable computational costs.

13/06/2024 108



Prot2Text: Experimental Resutls (ongoing)
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Demonstration 

http://nlp.polytechnique.fr/
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Multimodal Gen AI for molecules
• Task: Generate or modify the structure of 

molecules based on text descriptions. 
• Motivation: 

• Discovery in medicine and science is 
expensive. 

• huge amount of time and money for experts 
to design new molecules with the desired 
functionality every year. 

• deep learning tools are essential for 
facilitating molecule discovery. 

• “Water is an oxygen hydride 
consisting of an oxygen atom 
that is covalently bonded to 
two hydrogen atoms” => H - O - H 
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• Molecule representations 
• SMILES(Simplified Molecular Input Line 

Entry System):  string of compact encoding 
of molecular structures, making it easy to 
share and search. 

• Graph: each atom in the molecule 
corresponds to a node in the graph, bonds 
between atoms are represented as edges, 
where some attributes can be applied to 
nodes and edges. 

• else: SELFIES, 3-D structure, fingerprints.. 
• SMILES: c1ccccc1
• Graph: as adjacency matrix: 



MolT5[1]
• self-supervised learning framework for pre-training models on un-labeled natural 

language text and molecule strings. 
• First pre-train MolT5 on both SMILES string and natural language using the 

“replace corrupted spans” objective. Fine-tuned for task of molecule captioning 
or generation. 
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[1] Translation between Molecules and Natural Language, Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, 
Kyunghyun Cho, Heng Ji, https://arxiv.org/abs/2204.11817



MolT5[1]
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Text+Chem T5[1]

● first multi-domain, multi-task LM for chemical and natural language domains
● Key Ideas: 
○ Multi-tasking across multiple domains.
○ Weight sharing and information sharing across domains(encoders) . 
○ efficient training strategy without the need for costly pre-training on large dataset and task-specific fine-tuning. 
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Unifying Molecular and Textual Representations via Multi-task Language Modelling, https://arxiv.org/abs/2301.12586
Dimitrios Christofidellis, Giorgio Giannone, Jannis Born, Ole Winther, Teodoro Laino, Matteo Manica
Demo: https://huggingface.co/spaces/GT4SD/multitask-text-and-chemistry-t5

https://arxiv.org/abs/2301.12586
https://arxiv.org/search/cs?searchtype=author&query=Christofidellis,+D
https://arxiv.org/search/cs?searchtype=author&query=Giannone,+G
https://arxiv.org/search/cs?searchtype=author&query=Born,+J
https://arxiv.org/search/cs?searchtype=author&query=Winther,+O
https://arxiv.org/search/cs?searchtype=author&query=Laino,+T
https://arxiv.org/search/cs?searchtype=author&query=Manica,+M


Text+Chem T5
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Bio T5[1]
● BioT5 uses T5 model to incorporate modalities, in pre-training it uses: 
● modality including molecule SELFIES, and general text independently. 
● wrapped text from scientific corpus. 
● Bidirectional translation for the molecule SELFIES-text pairs. 
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[1] BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge and Natural Language Associations, 
https://arxiv.org/pdf/2310.07276.pdf

https://arxiv.org/pdf/2310.07276.pdf


Bio T5

● Text2mol task
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Conclusions
● Graph Generative AI
○ High potential topic with crucial applications: Power grid/telecoms, VLSI, social networks, 

chemistry/proteins/pharma
○ via LLMs – not promising currently – only for graph reasoning
○ Need for neural graph generators

● Graph Pretrained models 
○ Different challenges

• pretraining tasks are diverse, masking may not be enough
• Decoder architecture – permutation invariance
• Graph data loaders scaling
• Prompting ? Domain depentent
• Multimodality with graphs – architectural challenges 

● Tasks for evaluation – potential 
○ Variety of domain dependent metrics
○ genenerated graphs similarity is non trivial (graph kernels/embeddings)
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THANK YOU!
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