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Graphs Are Everywhere
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Mathematical aspects of 
computer-aided share trading. 
We consider problems of 
statistical analysis of share 
prices and propose 
probabilistic characteristics to 
describe the price series. We 
discuss three methods of 
mathematical modelling of 
price series with given 
probabilistic characteristics.

Why graphs?
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Machine Learning on Graphs

Machine learning tasks on graphs:

Node classification: given a graph with labels on some nodes, provide a high
quality labeling for the rest of the nodes

Graph clustering: given a graph, group its vertices into clusters taking into
account its edge structure in such a way that there are many edges within
each cluster and relatively few between the clusters

Link Prediction: given a pair of vertices, predict if they should be linked with
an edge

Graph classification: given a set of graphs with known class labels for
some of them, decide to which class the rest of the graphs belong
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Graph Classification

Input data G ∈ X

Output y ∈ {−1, 1}

Training set D = {(G1, y1), . . . , (Gn, yn)}

Goal: estimate a function f : X → R to predict y from f (x)
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Graph Comparison

Definition (Graph Comparison Problem)

Given two graphs G1 and G2 from the space of graphs G, the problem of graph
comparison is to find a mapping

s : G × G → R

such that s(G1,G2) quantifies the similarity of G1 and G2.

Graph comparison is a topic of high significance

- It is the central problem for all learning tasks on graphs such as clustering
and classification

- Most machine learning algorithms make decisions based on the similarities or
distances between pairs of instances (e.g. k-nn)
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Not an Easy Problem

Although graph comparison seems a tractable problem, it is very complex

Many problems related to it are NP-complete

subgraph isomorphism

finding largest common subgraph

We are interested in algorithms capable of measuring the similarity between two
graphs in polynomial time
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Graphs to Vectors

To analyze and extract knowledge from graphs, one needs to perform
machine learning tasks

Most machine learning algorithms require the input to be represented as a
fixed-length feature vector

There is no straightforward way to transform graphs to such a representation

→

?
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Weisfeiler-Lehman Test of Isomorphism

May answer if two graphs are not isomorphic

Run the Weisfeiler-Lehman algorithm for the following pair of graphs

G1 G2
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Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of
neighbouring vertices

G1 G2
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Iteration 1

Second step: Compress the augmented labels into new, short labels:

o 1, 11 → 2

o 1, 111 → 3

o 1, 1111 → 4

G1 G2
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Iteration 1

Are the label sets of G1 and G2 identical?

G1 G2
Yes!!!

Continue to the next iteration
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Iteration 2

First step: Augment the labels of the vertices by the sorted set of labels of
neighbouring vertices

2,34

G1 G2
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Iteration 2

Second step: Compress the augmented labels into new, short labels:

o 2, 24 → 5

o 2, 33 → 6

o 2, 34 → 7

o 3, 234 → 9

o 4, 2233 → 10

G1 G2
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Iteration 2

Are the label sets of G1 and G2 identical?

G1 G2
No!!!

Graphs are not isomorphic
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Weisfeiler-Lehman Framework

Let G 1,G 2, . . . ,G h be the graphs emerging from graph G at the iteration
1, 2, . . . , h of the Weisfeiler-Lehman algorithm

Then, the Weisfeiler-Lehman kernel is defined as:

kh
WL(G1,G2) = k(G1,G2) + k(G 1

1 ,G
1
2 ) + k(G 2

1 ,G
2
2 ) + . . .+ k(G h

1 ,G
h
2 )

where k(·, ·) is a base kernel (e.g. subtree kernel, shortest path kernel, . . .)

At each iteration of the Weisfeiler-Lehman algorithm:

run a graph kernel for labeled graphs

the new kernel values are added to the ones of the previous iteration

[Shervashidze et al., JMLR 12.Sep (2011)]
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Message Passing Neural Networks for Learning Node Representations

Consist of a series of message passing layers usually followed by one or more
fully-connected layers

The message passing phase runs for T time steps and updates the representation
of each vertex ht

v based on its previous representation and the representations of
its neighbors:

m(t+1)
v = AGGREGATE

({
h(t)
u

∣∣u ∈ N (v)
})

h(t+1)
v = COMBINE

(
h(t)
v ,m(t+1)

v

)
where N (v) is the set of neighbors of v , and AGGREGATE and COMBINE
are message functions and vertex update functions respectively

* a node’s neighbors have no natural ordering
↪→ the AGGREGATE function operates over an unordered set of vectors →
must be invariant to permutations of the neighbors
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Example of Message Passing Layer
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Remark: Biases are omitted for clarity
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Graph Convolutional Network (GCN)

Each message passing layer of the GCN model is defined as:

h(t+1)
v = ReLU

(
W(t) 1

1 + d(v)
h(t)
v +

∑
u∈N (v)

W(t) 1√
(1 + d(v))(1 + d(u))

h(t)
u

)

where d(v) is the degree of node v

In matrix form, the above is equivalent to:

H(t+1) = ReLU
(

Â H(t) W(t)
)

where Â = D̃−
1
2 Ã D̃−

1
2 , Ã = A + I and D̃ is a diagonal matrix such that

D̃ii =
∑n

j=1 Ãij

[Kipf and Welling, ICLR’17]
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Example of Message Passing Layer of GCN (1/2)

1

2

3

4

[2.1, 12.0]

[1.2, 9.7]

[-0.5, 5.8]

[3.4, 15.9]

A =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0



X =


2.1 12.0
1.2 9.7
−0.5 5.8
3.4 15.9



We compute matrices Ã and D̃:

Ã = A + I =


1 1 1 0
1 1 1 1
1 1 1 0
0 1 0 1

 D̃ =


3 0 0 0
0 4 0 0
0 0 3 0
0 0 0 2


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Example of Message Passing Layer of GCN (2/2)

And then matrix Â:

Â = D̃−
1
2 ÃD̃−

1
2 =


0.333 0.288 0.333 0
0.288 0.25 0.288 0.353
0.333 0.288 0.333 0

0 0.353 0 0.5



The parameters of the message passing layer are initialised as follows:

W =

[
1.064 0.211 −0.557
−1.282 0.614 0.996

]
b =

[
−1.177 −0.540 1.331

]

The representations of the first message passing layer are computed as follows:

H = ReLU
(

Â
(
XW + b

))
=


0 5.024 9.466
0 7.859 13.588
0 5.024 9.466
0 6.971 11.281


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Graph Attention Network (GAT)

Idea: Messages from some neighbors may be more important than messages
from others

GAT applies self-attention on the nodes

For nodes vj ∈ N (vi ), computes attention coefficients that indicate the
importance of node vj ’s features to node vi :

α
(t)
ij =

exp
(

LeakyReLU
(
a>[W(t)h

(t)
i ||W(t)h

(t)
j ]
))

∑
k∈Ni

exp
(

LeakyReLU
(
a>[W(t)h

(t)
i ||W(t)h

(t)
k ]
))

where [·||·] denotes concatenation of two vectors and a is a trainable vector
(context)
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Graph Attention Network (GAT)

Then the representations of the nodes are updated as follows:

h
(t+1)
i = σ

(∑
j∈Ni

α
(t)
ij W(t)h

(t)
j

)
In matrix form, the above is equivalent to:

H(t+1) = σ
((

A� T(t)
)
H(t)W(t)

)
where � denotes elementwise product and is matrix such that T

(t)
ij = α

(t)
ij

More than one attention mechanisms can be employed by
concatenating/averaging their respective node representations, e.g., for averaging:

h
(t+1)
i = σ

( 1

K

K∑
k=1

∑
j∈Ni

[α
(t)
k ]ijW

(t)
k h

(t)
j

)
where [α

(t)
k ]ij are the attention coefficients computed by the k th attention

mechanism, and W
(t)
k is the corresponding weight matrix

[Veličković et al., ICLR’18]
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GraphSAGE

The GraphSAGE model can deal with very large graphs
↪→ the model does not take into account all neighbors of a node, but uniformly
samples a fixed-size set of neighbors

Let N k(v) be a uniformly drawn subset (of size k) from the set N (v)
The message passing scheme of GraphSAGE is defined as follows:

m(t)
v = AGGREGATE(t)

({
h(t)
u

∣∣u ∈ N k(v)
})

h(t+1)
v = σ

(
W(t)

[
h(t)
v ||m(t)

v

])
h(t+1)
v =

h
(t+1)
v∣∣∣∣h(t+1)
v

∣∣∣∣
2

The model draws different uniform samples at each iteration

[Hamilton et al., NIPS’17]
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GraphSAGE

The model uses one of the following trainable aggregation functions:

1 Mean aggregator: the mean operator computes the elementwise mean of
the representations of the neighbors and the node itself (the concatenation
step, i.e., second Equation of previous slide is skipped):

mt
v = σ

(
W(t)

h
(t)
v +

∑
u∈N k (v) h

(t)
u

d(v) + 1

)
where d(v) is the degree of node v

2 LSTM aggregator: the representations of the neighbors are passed on to
an LSTM architecture
o LSTMs are not permutation invariant

3 Pooling aggregator: an elementwise max-pooling operation is applied to
aggregate information across the neighbor set:

AGGREGATE
(t)
pool = max

({
σ
(
W

(t)
poolh

(t)
u

)∣∣u ∈ N k(v)
})

where max denotes the elementwise max operator
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Skip Connections

Idea: Instead of using only the final node representations h
(T )
v (i.e., obtained

after T message passing steps), can also use the representations of the earlier

message passing layers h
(1)
v , . . . ,h

(T−1)
v

Multi-hop information

As one iterates, vertex representations capture more and more global
information

However, retaining more local, intermediary information might be useful too.

Thus, we concatenate the representations produced at the different steps,

finally obtaining hv = [h
(1)
v ||h(2)

v || . . . ||h(T )
v ]

[Xu et al., ICML’18]
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Graph Autoencoders (GAE)

One of the main problems in representation learning for graphs is the following:
How can we learn node embedding representations in an unsupervised fashion?

DeepWalk

node2vec

...

In the last few years: several attempts to generalize autoencoders to graphs:

input: n × n adjacency matrix A and (potentially) an n × d node features
matrix X, stacking-up d-dimensional vectors associated to each node

objective: derive an n × d latent representation matrix Z (encoding step)
from which we can reconstruct (decoding step) A

Auto-encoders are i. unsupervised since they reconstruct the raw input data but
also ii supervised due to the knowledge from the adjacency matrix
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Graph Autoencoders (GAE)
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Graph Autoencoders (GAE)

Encoder: usually a Graph Neural Network, e.g.:

Graph Convolutional Network (GCN)

Graph Attention Network (GAT)

GraphSAGE

...

Most graph autoencoders rely on multi-layer GCN encoders
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Graph Autoencoders (GAE)

Graph AE:

1 encoder: Z = GNN(A,X)

2 decoder: Â = σ(ZZ>)

i.e., for all node pairs (i , j),
we have Âij = σ(z>i zj)

Figure: Sigmoid activation:
σ(x) = 1

1+e−x

Reconstruction Loss1: capturing the similarity between A and Â

e.g., cross-entropy loss: −
∑n

i=1

∑n
j=1(Aij log(Âij) + (1−Aij) log(1− Âij))

or MSE loss:
∑n

i=1

∑n
j=1(Aij − Âij)

2

1in losses, we usually reweight positive terms or use negative sampling, if G is sparse
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Graph Variational Autoencoders (GVAE)

Also, Graph VAE

extend Variational Autoencoders (VAE) to graph structures

Maximizing a lower bound of the model’s likelihood (ELBO):

L = Eq(Z|A)

[
log p(A|Z)

]
−DKL(q(Z|A)||p(Z))

[Kipf and Welling, Bayesian Deep Learning Workshop’16]
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Graph Variational Autoencoders (GVAE)

Encoder: q(Z|X,A) =
∏n

i=1 q(zi |X,A) where
q(zi |X,A) = N (zi |µi , diag(σ2

i ))

Gaussian parameters learned by 2 GNNs:
µ = GNNµ(X,A) and logσ = GNNσ(X,A)

Decoder: p(A|Z) =
∏n

i=1

∏n
j=1 p(Aij |zi , zj)

where p(Aij = 1|zi , zj) = σ(z>i zj)

Maximizing ELBO: L = Eq(Z|X,A)

[
log p(A|Z)

]
−DKL(q(Z|X,A)||p(Z))

Performing full-batch gradient descent, using the re-parameterization trick, and
choosing a Gaussian prior p(Z) =

∏
i p(zi ) =

∏
i N (zi |0, I).
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Applications of Graph Autoencoders

The embedding spaces learned via Graph AE and VAE led to many
promising applications during the past few years:

link prediction

node clustering

recommendation

...
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Recall: Link Prediction

Test set:

missing edges

unconnected pairs of nodes

Pair of Are nodes connected
nodes in ground-truth G?
(v1, v2) 1
(v3, v4) 1
(v5, v6) 1

... ...
(v7, v8) 0
(v9, v10) 0
(v11, v12) 0

−→ binary classification task, identify missing edges from incomplete train
graph
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Link Prediction with Graph Autoencoders

[Kipf and Welling, Bayesian Deep Learning Workshop’16]
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Node Embedding with GVAE - Cora Graph

Figure: Projection of latent space representations, from Graph VAE model trained on
Cora citation network. Colors denote document classes i.e. node labels (not provided
during training)

[Kipf and Welling, Bayesian Deep Learning Workshop’16]
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Graph Autoencoders for Recommendation

Figure: Using GAE for Matrix Completion and Recommendation

[van den Berg et al., KDD’18 Deep Learning Day]
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Graph Classification

Input data G ∈ G

Output y ∈ {−1, 1}

Training set S = {(G1, y1), . . . , (Gn, yn)}

Goal: estimate a function f : G →∈ {−1, 1} to predict y from f (G )
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Motivation - Protein Function Prediction

For each protein, create a graph that contains information about its

structure

sequence

chemical properties

Perform graph classification to predict the function of proteins

[Borgwardt et al., Bioinformatics 21]
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Graph Regression

G1

y1 = 3 G2

y2 = 6

G4

y4 = 8

G3

y3 = 4

G5

y5 =???

G6

y6 =???

Input data G ∈ G

Output y ∈ R

Training set S = {(G1, y1), . . . , (Gn, yn)}

Goal: estimate a function f : G → R to predict y from f (G )
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Motivation - Molecular Property Prediction

12 targets corresponding to molecular properties: [’mu’, ’alpha’, ’HOMO’,
’LUMO’, ’gap’, ’R2’, ’ZPVE’, ’U0’, ’U’, ’H’, ’G’, ’Cv’]

SMILES: NC1=NCCC(=O)N1

Targets: [2.54 64.1 -0.236 -2.79e-03
2.34e-01 900.7 0.12 -396.0 -396.0
-396.0 -396.0 26.9]

SMILES: CN1CCC(=O)C1=N

Targets: [4.218 68.69 -0.224 -0.056
0.168 914.65 0.131 -379.959 -379.951
-379.95 -379.992 27.934]

SMILES: N=C1OC2CC1C(=O)O2

Targets: [4.274 61.94 -0.282 -0.026
0.256 887.402 0.104 -473.876 -473.87
-473.869 -473.907 24.823]

SMILES: C1N2C3C4C5OC13C2C5

Targets: [? ? ? ? ? ? ? ?
? ? ? ?]

Perform graph regression to predict the
values of the properties

[Gilmer et al., ICML’17]
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Message Passing Neural Networks for Learning Graph Representations

Consist of a series of message passing layers followed by a readout function

Step 1: The message passing phase runs for T time steps and updates the
representation of each vertex ht

v based on its previous representation and the
representations of its neighbors:

m(t+1)
v = AGGREGATE

({
h(t)
u

∣∣u ∈ N (v)
})

h(t+1)
v = COMBINE

(
h(t)
v ,m(t+1)

v

)
where N (v) is the set of neighbors of v , and AGGREGATE and COMBINE
are message functions and vertex update functions respectively

Step 2: The readout step computes a feature vector for the whole graph using
some readout function R:

hG = READOUT

({
h(T )
v

∣∣v ∈ G
})
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Example of Message Passing Layer

h
(t+1)
1 = f (W

(t)
0 h

(t)
1 + W

(t)
1 h

(t)
2 + W

(t)
1 h

(t)
3 )

h
(t+1)
2 = f (W

(t)
0 h

(t)
2 + W

(t)
1 h

(t)
1 + W

(t)
1 h

(t)
3 + W

(t)
1 h

(t)
4 )

h
(t+1)
3 = f (W

(t)
0 h

(t)
3 + W

(t)
1 h

(t)
1 + W

(t)
1 h

(t)
2 + W

(t)
1 h

(t)
4 )

h
(t+1)
4 = f (W

(t)
0 h

(t)
4 + W

(t)
1 h

(t)
2 + W

(t)
1 h

(t)
3 + W

(t)
1 h

(t)
5 )

h
(t+1)
5 = f (W

(t)
0 h

(t)
5 + W

(t)
1 h

(t)
4 + W

(t)
1 h

(t)
6 )

h
(t+1)
6 = f (W

(t)
0 h

(t)
6 + W

(t)
1 h

(t)
5 )

1

2

3

4

5

6

Remark: Biases are omitted for clarity
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Readout Step Example

Output of message passing phase:{
h

(T )
1 ,h

(T )
2 ,h

(T )
3 ,h

(T )
4 ,h

(T )
5 ,h

(T )
6

}

Graph representation:

hG =
1

6

(
h

(T )
1 + h

(T )
2 + h

(T )
3 + h

(T )
4 + h

(T )
5 + h

(T )
6

)

1

2

3

4

5

6
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How Can we Build Message Passing Neural Networks for Learning
Graph Representations?

1 Take a message passing neural network that can produce node
representations

2 Add a readout function to the model. Simple and popular functions.

sum aggerator: computes the sum of the representations of the nodes of the
graph

hG =
∑
v∈V

h(T )
v

mean aggerator: computes the sum of the representations of the nodes of
the graph

hG =
1

n

∑
v∈V

h(T )
v

max aggerator: an elementwise max-pooling operation is applied to the
representations of the nodes of the graph

hG = max
({

h(T )
v

)∣∣v ∈ V
})

where max denotes the elementwise max operator
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Example of Simple Readout Functions

Suppose we have a graph consisting of 3 nodes and we have that:

h
(T )
1 =

[
1.2 1.4 −1.0

]
h

(T )
2 =

[
−2.4 −0.6 1.3

]
h

(T )
3 =

[
1.5 1.3 −0.9

]
Then, we can produce graph representations as follows:

sum aggerator:

hG = h
(T )
1 + h

(T )
2 + h

(T )
3 =

[
0.3 2.1 −0.6

]
mean aggerator:

hG =
1

3

(
h

(T )
1 + h

(T )
2 + h

(T )
3

)
=
[
0.1 0.7 −0.2

]
max aggerator:

hG = max
({

h
(T )
1 ,h

(T )
2 ,h

(T )
3

})
=
[
1.5 1.4 1.3

]
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Convolutional Networks for Learning Molecular Fingerprints

Step 1: The network updates the states of the nodes as follows:

m(t+1)
v = h(t)

v +
∑

u∈N (v)

h(t)
u

h(t+1)
v = σ

(
E

(t)
d(v)m

(t+1)
v

)
where d(v) is degree of vertex v and E

(t)
d(v) a learned matrix for each time step t

and vertex degree d(v)

Step 2: The network computes the graph representation as:

hG =
T∑
t=0

∑
v∈V

softmax(W(t)h(t)
v )

The output hG is then fed to a fully-connected neural network

[Duvenaud et al, NIPS’15]
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Deep Graph Convolutional Neural Network (DGCNN)

Step 1: Aggregates node information in local neighborhoods to extract local
substructure information:

H(t+1) = f
(
D̃−1ÃH(t)W(t)

)
where Ã = A + I, D is a diagonal matrix such that D̃ii =

∑
j Ãij , and f is a

nonlinear activation function

After T iterations, the model concatenates the outputs H(t), for t = 1, . . . ,T
horizontally to form a concatenated output:

H =
[
H(1)||H(2)|| . . . ||H(T )

]
[Zhang et al, AAAI’18]
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Deep Graph Convolutional Neural Network (DGCNN)

Step 2: Employs the so-called SortPooling layer:

Sorts the output H of previous step row-wise:

vertices are sorted in a descending order based on the last component of H

vertices that have the same value in the last component are compared based
on the second to last component and so on

Unifies the sizes of the outputs to handle graphs with different numbers of
vertices:

Truncates/extends the output tensor in the first dimension from n to k

Output is then passed to traditional CNN
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Differentiable Graph Pooling (DiffPool)

Idea: Simple readout functions too flat
↪→ Aggregate information in a hierarchical way to capture the entire graph

The DiffPool model

learns hierarchical pooling analogous to CNNs

sets of nodes are pooled hierarchically

soft assignment of nodes to next-level nodes

A different GNN is learned at every level of abstraction
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Differentiable Graph Pooling (DiffPool)

A matrix S(t) ∈ Rnt×nt+1 is associated with each DiffPool layer

corresponds to the learned cluster assignment matrix at layer t

each row corresponds to one of the nt nodes (or clusters) at layer t and each
column to one of the nt+1 clusters at the next layer t + 1

it provides a soft assignment of each node at layer l to a cluster in the next
coarsened layer t + 1

Each DiffPool layer coarsens the input graph:

X(t+1) = S(t)>Z(t)

A(t+1) = S(t)>A(t)S(t)

where A(t+1) is the coarsened adjacency matrix, and X(t+1) is a matrix of
embeddings for each node/cluster
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Differentiable Graph Pooling (DiffPool)

DiffPool generates the assignment and embedding matrices using two
separate message passing neural networks

Both are applied to the input cluster node features X(t) and coarsened
adjacency matrix A(t)

Z(t) = GNN
(t)
embed(A(t),X(t))

S(t) = softmax
(
GNN

(t)
pool(A(t),X(t))

)
where the softmax function is applied in a row-wise fashion

GNN
(t)
embed generates new representations for the input nodes

GNN
(t)
pool generates a probabilistic assignment of the input nodes to nt+1

clusters
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Example of Coarsening Procedure of DiffPool

A(1) =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 1
0 0 1 1 0

 Z(1) =


0.5 −1.2
0.3 −1.4
−0.5 0.8
−0.1 1.2
−0.8 0.6

 S(1) =


0.9 0.1
0.8 0.2
0.2 0.8
0.1 0.9
0.1 0.9



X(2) = S(1)>Z(1) =

[
0.5 −1.86
−1.1 1.86

]
A(2) = S(1)>A(1)S(1) =

[
1.86 1.64
1.64 4.86

]

2

1

3

4

[0.3, -1.4]

[0.5, -1.2]

[-0.5, 0.8]

[-0.1, 1.2]
5

[-0.8, 0.6]
1

[0.5, -1.86]

2

[-1.1, 1.86]
1.64

1.86 4.86
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Random Walk Graph Neural Network (RWNN)
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Random Walk Graph Neural Network (RWNN)
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Given an input graph G
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and a set of trainable “hidden graphs” G1,G2, . . .
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The model computes the following random-walk kernel between the input graph G
and each “hidden graph” Gi:

k(p)(G ,Gi) =

|V×|∑
i=1

|V×|∑
j=1

sisj
[
Ap
×
]
ij
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For each input graph G , we build a matrix H ∈ RN×P+1 where Hij = k(j−1)(G ,Gi )
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Matrix H is flattened and fed into a fully-connected neural network to produce the
output
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Experimental Evaluation - Graph Classification

We evaluated RWNN on the following standard graph classification datasets from
bio/chemo-informatics and social networks

Dataset ENZYMES NCI1 PROTEINS D&D
IMDB IMDB REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K

Max # vertices 126 111 620 5,748 136 89 3,782 3,648 492

Min # vertices 2 3 4 30 12 7 6 22 32

Average # vertices 32.63 29.87 39.05 284.32 19.77 13.00 429.61 508.50 74.49

Max # edges 149 119 1,049 14,267 1,249 1,467 4,071 4,783 40,119

Min # edges 1 2 5 63 26 12 4 21 60

Average # edges 62.14 32.30 72.81 715.66 96.53 65.93 497.75 594.87 2,457.34

# labels 3 37 3 82 - - - - -

# graphs 600 4,110 1,113 1,178 1,000 1,500 2,000 4,999 5,000

# classes 6 2 2 2 2 3 2 5 3
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Experimental Setup

10-fold CV for model assessment and an inner holdout technique with a 90%/10%
training/validation split for model selection

After each model selection → train 3 times on the whole training fold, holding out
a random fraction (10%) of the data to perform early stopping

Final test fold score obtained as the mean of these 3 runs
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Baselines

Graph Kernels

Shortest path kernel (SP) [Borgwardt and Kriegel, ICDM’05]

Graphlet kernel (GR) [Shervashidze et al., AISTATS’09]

Weisfeiler-Lehman subtree kernel (WL) [Shervashidze et al., JMLR’11]

Graph Neural Networks

DGCNN [Zhang et al., AAAI’18]

DiffPool [Ying et al., NIPS’18]

ECC [Simonovsky and Komodakis, CVPR’17]

GIN [Xu et al., ICLR’19]

GraphSAGE [Hamilton et al., NIPS’17]
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Graph Classification - Real World Datasets

MUTAG D&D NCI1 PROTEINS ENZYMES

SP 80.2 (± 6.5) 78.1 (± 4.1) 72.7 (± 1.4) 75.3 (± 3.8) 38.3 (± 8.0)
GR 80.8 (± 6.4) 75.4 (± 3.4) 61.8 (± 1.7) 71.6 (± 3.1) 25.1 (± 4.4)
WL 84.6 (± 8.3) 78.1 (± 2.4) 84.8 (± 2.5) 73.8 (± 4.4) 50.3 (± 5.7)

DGCNN 84.0 (± 6.7) 76.6 (± 4.3) 76.4 (± 1.7) 72.9 (± 3.5) 38.9 (± 5.7)
DiffPool 79.8 (± 7.1) 75.0 (± 3.5) 76.9 (± 1.9) 73.7 (± 3.5) 59.5 (± 5.6)
ECC 75.4 (± 6.2) 72.6 (± 4.1) 76.2 (± 1.4) 72.3 (± 3.4) 29.5 (± 8.2)
GIN 84.7 (± 6.7) 75.3 (± 2.9) 80.0 (± 1.4) 73.3 (± 4.0) 59.6 (± 4.5)
GraphSAGE 83.6 (± 9.6) 72.9 (± 2.0) 76.0 (± 1.8) 73.0 (± 4.5) 58.2 (± 6.0)

1-step RWNN 89.2 (± 4.3) 77.6 (± 4.7) 71.4 (± 1.8) 74.7 (± 3.3) 56.7 (± 5.2)
2-step RWNN 88.1 (± 4.8) 76.9 (± 4.6) 73.0 (± 2.0) 74.1 (± 2.8) 57.4 (± 4.9)
3-step RWNN 88.6 (± 4.1) 77.4 (± 4.9) 73.9 (± 1.3) 74.3 (± 3.3) 57.6 (± 6.3)

IMDB IMDB REDDIT REDDIT
COLLAB

BINARY MULTI BINARY MULTI-5K

SP 57.7 (± 4.1) 39.8 (± 3.7) 89.0 (± 1.0) 51.1 (± 2.2) 79.9 (± 2.7)
GR 63.3 (± 2.7) 39.6 (± 3.0) 76.6 (± 3.3) 38.1 (± 2.3) 71.1 (± 1.4)
WL 72.8 (± 4.5) 51.2 (± 6.5) 74.9 (± 1.8) 49.6 (± 2.0) 78.0 (± 2.0)

DGCNN 69.2 (± 3.0) 45.6 (± 3.4) 87.8 (± 2.5) 49.2 (± 1.2) 71.2 (± 1.9)
DiffPool 68.4 (± 3.3) 45.6 (± 3.4) 89.1 (± 1.6) 53.8 (± 1.4) 68.9 (± 2.0)
ECC 67.7 (± 2.8) 43.5 (± 3.1) OOR OOR OOR
GIN 71.2 (± 3.9) 48.5 (± 3.3) 89.9 (± 1.9) 56.1 (± 1.7) 75.6 (± 2.3)
GraphSAGE 68.8 (± 4.5) 47.6 (± 3.5) 84.3 (± 1.9) 50.0 (± 1.3) 73.9 (± 1.7)

1-step RWNN 70.8 (± 4.8) 47.8 (± 3.8) 90.4 (± 1.9) 51.7 (± 1.5) 71.7 (± 2.1)
2-step RWNN 70.6 (± 4.4) 48.8 (± 2.9) 90.3 (± 1.8) 51.7 (± 1.4) 71.3 (± 2.1)
3-step RWNN 70.7 (± 3.9) 47.8 (± 3.5) 89.7 (± 1.2) 53.4 (± 1.6) 71.9 (± 2.5)
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Results - Synthetic Datasets

Structures planted into synthetic graphs

Caveman graph Cycle graph Grid graph Ladder graph Star graph

Examples of “hidden graphs” extracted from the proposed model
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Graph Classification - Kernels vs. GNNs

”Graph Kernels: a Survey”, G .Nikolentzos,M.Vazirgiannis, JAIR 2021
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Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving
Graph Representations, G. Nikolentzos, M. Chatzianastasis, M.
Vazirgiannis, AISTATS2023

Message-Passing Neural Networks

Let a graph G = (V ,E ).

For each node u ∈ V , we define its neighborhood as
N (u) = {v : (u, v) ∈ E}

Neighborhood Features: XN (u) = {{xv : v ∈ N (u)}} where {{·}} denotes a
multiset

Graph Neural Networks usually perform computations on each node’s
neighbourhood.

At layer k of a GNN, each node aggregates the messages from its
neighbours and combines it with its previous state.

mk
u = AGGREGATEk

(
{xk−1

v : v ∈ N (u)}
)
,

xku = COMBINEk
(
xk−1
u ,mk

u

)
.
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Weisfeiler-Leman (1-WL) Algorithm

- Test of graph isomorphism
- The classical WL (or 1-WL) keeps a state for each node that refines by
aggregating their neighbors state. It outputs an embedding of the graph that
corresponds to the state of every node. We say that the WL succeeds at
distinguishing a pair of non-isomorphic graphs G , Ĝ if WL(G ) 6= WL(Ĝ ).
1-WL Example

(Data Science and Mining Team (DASCIM), LIX École Polytechnique, Institute Polytechnique de Paris http://www.lix.polytechnique.fr/dascim Google Scholar: https://bit.ly/2rwmvQU Twitter: @mvazirg June 2024 )Deep Learning for Graphs and Sets with GNNs 67 / 111

http://www.lix.polytechnique.fr/dascim
https://bit.ly/2rwmvQU


1-WL Example
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1-WL Example
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1-WL Example

(Data Science and Mining Team (DASCIM), LIX École Polytechnique, Institute Polytechnique de Paris http://www.lix.polytechnique.fr/dascim Google Scholar: https://bit.ly/2rwmvQU Twitter: @mvazirg June 2024 )Deep Learning for Graphs and Sets with GNNs 70 / 111

http://www.lix.polytechnique.fr/dascim
https://bit.ly/2rwmvQU


Expressive Power of GNNs

Several studies have investigated how GNNs are related to the WL test of
isomorphism and its higher-order variants.

It was shown that standard GNNs are at most as powerful as the WL
algorithm in terms of distinguishing non-isomorphic graphs

Other studies proposed families of GNNs whose message passing scheme is
equivalent to high-order variants of the WL algorithm, and can thus
distinguish more pairs of non-isomorphic graphs than standard MPNNs
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Distances between graphs are ignored

The above studies investigate the power of GNNs in terms of distinguishing
non-isomorphic graphs.

Even though there exist several powerful models which can distinguish
almost all non-isomorphic graphs from each other, these models largely
ignore the distance between nodes.

In graph classification/regression problems, we are not that much interested
in testing whether two (sub)graphs are isomorphic to each other.

It has been observed that stronger GNNs (in the aforementioned sense) do
not necessarily outperform weaker GNNs

Capturing such distances between nodes is of paramount importance
for machine learning since similar graphs usually belong to the same
class or are associated with similar target values.
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Graph Distances

A natural question is: how is the distance between two nodes defined?

Unfortunately, there is no clear answer to the above question.

Several distance functions were proposed for comparing graphs, subgraphs or
nodes (i.e., subgraphs centered at nodes).

Most of those functions are hard to compute (NP-hard).
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1-WL Tree Hierarchy

v1

v2 v4
v5

v6

v3

v7v8

(a) A graph G

{v2, v8} {v4, v7} {v1} {v5, v6} {v3}

(b) hierarchy HG

Figure: An illustration of (a) a graph G with uniform initial colors c0 and refined colors
ci for i ∈ [4], and of (b) its corresponding WL tree hierarchy HG . The nodes of G are
the leaves of the hierarchy.
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WL Distance

We define a distance function between nodes which can be derived from
the hierarchy generated by the WL algorithm.

Definition (WL distance)

Let V be the set of nodes of all graphs of the corpus. Let H = (V ,E ) be a rooted
tree representing the hierarchy produced by the WL algorithm. Then, each
element of V corresponds to a leaf of tree T . Suppose that two nodes v1, v2 ∈ V
correspond to leaves u1, u2 ∈ V , respectively. Then, the WL distance between
nodes v1 and v2 is defined as dWL(v1, v2) = sp(u1, u2) where sp(·, ·) denotes the
shortest path distance between two nodes of tree T .
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Hierarchical Graph Structures in Euclidean Space

Task: Embed a tree in Euclidean Space.

Hierarchical nature of the tree: parent-child relationships. Children and their
parents should be close in the embedding space.

Relative ”distance” between the nodes. Leaf nodes in totally different
branches of the tree should be very far apart.
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Euclidean Space is too ”Narrow” for Hierarchical Graph Structures

The distortion is even bigger as we add more nodes. But why?

http://building-babylon.net/
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Euclidean Space is too ”Narrow” for Hierarchical Graph Structures

Euclidean Ball Volume: V E
d (r) = Θ(rd)

Number of nodes grows exponentially with the tree depth: l = br , where b
is the branching factor, l are the leaf nodes.
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Hierarchial Graph Structures in Hyperbolic Space

https://people.csail.mit.edu/oct/
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Trees Into Hyperbolic Space

It is well-known that trees can be embedded into the Poincaré disk D2 with
arbitrarily low distortion [sarkar2011]

Constructive algorithm (no learning involved)

The idea is to embed the root at the origin and recursively embed the
children of each node in the tree by spacing them around a sphere centered
at the parent.
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Euclidean vs Hyperoblic GNNs

GNNs on Euclidean space:
hk+1
u = σ(

∑
v∈V Auv Wk hk

v )

GNNs on Hyperoblic space:
hk+1
u = σ

(
expx

(∑
v∈V Auv Wk logx

(
hk
v

)))
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Weisfeiler-Leman Hyperbolic Network

We propose a new MPNN that learns node representations that respect the
distances between nodes, as those are defined by the WL algorithm.

1-WL or GNNs produce a tree hierarchy of the nodes.

Trees can be embedded with arbitrarily low distortion into the hyperbolic
space, while Euclidean space cannot achieve such a low distortion
[Sarkar2011]

Euclidean MPNNs cannot encode accurately the information contained in
the WL hierarchy. We propose a MPNN which delivers the “best of both
worlds” from Euclidean space and hyperbolic space.

The proposed model takes into account the distance of the input nodes
according to the hierarchy induced by WL, but also according to the
representations that emerge from the neighborhood aggregation procedure.

To embed the WL tree hierarchy into a vector space, we capitalize on recent
advances in hyperbolic representations using the Poincare ball model
[Ganea2018,Chami2019]
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Distance-Aware Hyperbolic Graph Neural Network

1 Neighborhood aggregation using GNN:

h(t)
v = MLP(t)

((
1 + ε(t)

)
h(t−1)
v +

∑
u∈N (v)

h(t−1)
u

)

2 Adaptation of Sarkar’s construction to embed those representations into the
hyperbolic space:

z(t)
v = f (h(t)

v ,h(t−1)
v ,h(t−2)

v )

where f is our proposed construction.

Each neighborhood aggregation operation is followed by an embedding phase
where the emerging node representations are mapped to the Poincaré ball using
the proposed construction.
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WLHN algorithm

DiffHypCon: Proposed Differentiable Hyperbolic Construction - mapping
Readout function: hG =

∑
u∈V logo(zTu )
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Experimental Results

Figure: Heatmap that illustrates the distances between all pairs of nodes of the hierarchy
HG . Distances are computed between the nodes’ generated hyperbolic representations.

4

3

2

1

0

(a) Heatmap

{v2, v8} {v4, v7} {v1} {v5, v6} {v3}

(b) hierarchy HG
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Experimental Results

Table: Classification accuracy (± standard deviation) of the proposed model and the
baselines on the 10 benchmark datasets. OOR means Out of Resources, either time
(>72 hours for a single training) or GPU memory.

MUTAG D&D NCI1 PROTEINS ENZYMES

DGCNN 84.0 (± 6.7) 76.6 (± 4.3) 76.4 (± 1.7) 72.9 (± 3.5) 38.9 (± 5.7)
DiffPool 79.8 (± 7.1) 75.0 (± 3.5) 76.9 (± 1.9) 73.7 (± 3.5) 59.5 (± 5.6)
ECC 75.4 (± 6.2) 72.6 (± 4.1) 76.2 (± 1.4) 72.3 (± 3.4) 29.5 (± 8.2)
GIN 84.7 (± 6.7) 75.3 (± 2.9) 80.0 (± 1.4) 73.3 (± 4.0) 59.6 (± 4.5)
GraphSAGE 83.6 (± 9.6) 72.9 (± 2.0) 76.0 (± 1.8) 73.0 (± 4.5) 58.2 (± 6.0)
HGCN (PoincareBall) 83.4 (± 6.7) 78.0 (± 2.8) 74.2 (± 2.4) 74.4 (± 3.1) 39.7 (± 5.5)
HGCN (Hyperboloid) 83.4 (±6.2) 77.8 (±4.3) 72.3 (± 4.3) 74.7 (± 3.4) 32.3 (± 5.4 )

WLHN 86.0 (± 7.4) 78.5 (± 3.4) 79.2 (± 1.1) 75.9 (± 1.9) 62.5 (± 5.0)

IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

DGCNN 69.2 (± 3.0) 45.6 (± 3.4) 87.8 (± 2.5) 49.2 (± 1.2) 71.2 (± 1.9)
DiffPool 68.4 (± 3.3) 45.6 (± 3.4) 89.1 (± 1.6) 53.8 (± 1.4) 68.9 (± 2.0)
ECC 67.7 (± 2.8) 43.5 (± 3.1) OOR OOR OOR
GIN 71.2 (± 3.9) 48.5 (± 3.3) 89.9 (± 1.9) 56.1 (± 1.7) 75.6 (± 2.3)
GraphSAGE 68.8 (± 4.5) 47.6 (± 3.5) 84.3 (± 1.9) 50.0 (± 1.3) 73.9 (± 1.7)
HGCN (PoincareBall) 73.0 (± 3.2) 50.3 (± 3.8) 87.9 (± 2.8 ) 49.4 (± 2.6 ) 80.2 (± 1.9 )
HGCN (Hyperboloid) 73.3 (± 3.5 ) 50.3 (± 4.0) 86.3 (± 1.6) 52.7 (± 2.0) 80.3 (± 1.8 )

WLHN 73.4 (± 3.7) 49.7 (± 3.6) 90.7 (± 1.9) 55.2 (± 1.2) 76.2 (± 2.3)
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Running Time

Table: Average running time per epoch (in seconds).

MUTAG D&D NCI1 PROTEINS ENZYMES

GIN 0.09 5.51 0.73 0.24 0.14
HGCN 0.13 6.58 1.32 0.44 0.23

WLHN 0.18 5.85 2.07 0.61 0.16

IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

GIN 0.22 0.34 0.77 2.01 15.30
HGCN 0.43 0.63 2.10 7.10 16.20

WLHN 0.50 0.73 2.30 6.83 16.55
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Experimental results

Performance of the proposed model and the baselines on the large ogbg-molhiv
and ogbg-molpcba datasets
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Conclusion

We defined a distance function between the nodes and proposed a novel
GNN model which can accurately capture that distances by embedding the
nodes of the graphs in the hyperbolic space.

We create a level of a tree hierarchy in each message passing layer, and
embed the nodes of this level to hyperbolic space.

Our method can be incorporated in various GNNs models.

In contrast with other Hyperbolic Graph Neural Networks, we explicitly
construct a tree hierarchy from the graph instead of trying to capture it
implicitly.

Our results demonstrate that the proposed model can indeed encode
meaningful distances in the learned representations, while it achieves high
levels of performance in graph classification problems.
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Sets

What is a set?
A set is a well-defined collection of distinct objects

Complex data sets decomposed into sets of simpler objects

↪→ NLP: documents as sets of word embeddings

↪→ Graph Mining: graphs as sets of node embeddings

↪→ Computer Vision: images as sets of local features

Machine learning on sets has attracted a lot of attention recently

Set classification

Set regression
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Set Classification

S1 = {1, 4, 2} S2 = {5, 0, 8, 10}

S3 = {3, 7}
S4 = {3, 5, 6}

S5 = {5}

y1 = −1 y2 = −1

y3 = 1

y4 = 1

y5 = −1

S6 = {2, 6, 3, 5}

S7 = {4, 2, 5}

y6 =???

y7 =???

Let X be a set

Input data S ∈ 2X

Output y ∈ {−1, 1}

Training set {(S1, y1), . . . , (Sn, yn)}

Goal: estimate a function f : 2X →∈ {−1, 1} to predict y from f (S)
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Limitations of Standard Machine Learning Models

Conventional machine learning models cannot handle sets:

expect fixed dimensional data instances
↪→ sets allowed to vary in the number of elements

not invariant to permutations of features

a learning algorithm for sets needs to produce identical representations for
any permutation of the elements of an input set

for instance, a model f needs to satisfy the following for any permutation π
of the set’s elements:

f ({x1, . . . , xM}) = f ({xπ(1), . . . , xπ(M)})
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Neural Networks for Sets

Recent approaches:

unordered sets → ordered sequences → RNN [Vinyals et al., ICLR’16]

DeepSets [Zaheer et al., NIPS’17] and PointNet [Qi et al., CVPR’17] transform the
vectors of the sets into new representations, then apply
permutation-invariant functions

PointNet++ [Qi et al., NIPS’17] and SO-Net [Li et al., CVPR’18] apply PointNet
hierarchically in order to better capture local structures

Set Transformer [Lee et al., ICML’19], a neural network that uses self-attention
to model interactions among the elements of the input set

RepSet [Skianis et al., AISTATS’20], a neural network that generates
representations for sets by comparing them against some trainable sets

SOTA in supervised learning tasks:

regression: population statistic estimation, sum of digits

classification: point cloud classification, outlier detection
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DeepSets

Theorem (Zaheer et al., NIPS’17)

If X is a countable set and Y = R, then a function f (X ) operating on a set X
having elements from X is a valid set function, i.e., invariant to the permutation
of instances in X , if and only if it can be decomposed in the form ρ(

∑
x∈X φ(x)),

for suitable transformations φ and ρ.

DeepSets achieves permutation invariance by replacing φ and ρ with multi-layer
perceptrons (universal approximators)

DeepSets consist of the following two steps:

1 Each element xi of each set is transformed (possibly by several layers) into
some representation φ(xi )

2 The representations φ(xi ) are added up and the output is processed using
the ρ network in the same manner as in any deep network (e.g., fully
connected layers, nonlinearities, etc.)
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DeepSets

x1
x2
x3
.
.
.
xm

MLP

φ(x1)
φ(x2)
φ(x3)
.
.
.

φ(xm)

SUM MLP y

X = {

}

Step 1 Step 2

Step 1: The elements x1, . . . , xm of the input set X are transformed into
representations φ(x1), . . . , φ(xm)

Step 2: A representation for the entire set is produced as
zX = φ(x1) + . . .+ φ(xm) and is also transformed as follows y = ρ(zX ) to
produce the output
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Experiments - Point Cloud Classification

Objective: classify point-clouds
↪→ point-clouds are sets of
low-dimensional vectors (typically
3-dimensional vectors representing the
x , y , z-coordinates of objects)

Dataset: ModelNet40 → consists of
3-dimensional representations of 9, 843
training and 2, 468 test instances
belonging to 40 classes of objects

Setup: point-clouds directly passed on
to DeepSets
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Experiments - Text Concept Retrieval

Objective: retrieve words belonging to a “concept” given few words from the
concept

Example: given the set of words {tiger , lion, cheetah}, retrieve other related
words like jaguar and puma, which all belong to the concept of big cats

Setup: query word added to set and new set fed to DeepSet which produces a
score
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Experiments - Image Tagging

Objective: retrieve all relevant tags
corresponding to an image

Setup: features of the image are
concatenated to the embeddings of the
tags, and then the whole set is passed
on to DeepSets to assign a single score
to the set

(Data Science and Mining Team (DASCIM), LIX École Polytechnique, Institute Polytechnique de Paris http://www.lix.polytechnique.fr/dascim Google Scholar: https://bit.ly/2rwmvQU Twitter: @mvazirg June 2024 )Deep Learning for Graphs and Sets with GNNs 100 / 111

http://www.lix.polytechnique.fr/dascim
https://bit.ly/2rwmvQU


Experiments - Set Anomaly Detection

Objective: find the anomalous face in each set

Architecture: consists of 9 2d-convolution and max-pooling layers followed by
the DeepSets model, and a softmax layer that assigns a probability value to each
set member
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RepSet - towards interpretable set representation learning

A permutation invariant neural network for sets

Generates a number of “hidden sets” and it compares the input set with
these sets using a network flow algorithm (e.g., bipartite matching)

The outputs of the network flow algorithm form the penultimate layer and
are fed to a fully-connected layer which produces the output

The model is end-to-end trainable → “hidden sets” are updated during
training

For large sets, solving the flow problems can become prohibitive §
↪→ ApproxRepSet is a relaxed formulation (also permutation invariant) that
scales to very large datasets
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Permutation Invariant Layer

A layer whose output is the same regardless of the ordering of the input’s
elements

Contains m “hidden sets” Y1,Y2, . . . ,Ym of d-dimensional vectors
↪→ may have different cardinalities and their components are trainable

Measure similarity between input set and each one of the “hidden sets” by
comparing their building blocks, i.e., their elements → bipartite matching

1 1.76 0.40 0.97

2 2.24 1.86 −0.97

3 0.95 −0.15 −0.10

4 0.41 0.14 1.45

5 0.52 0.08 1.62

6 2.14 1.72 −1.05

7 1.55 −0.45 0.88

8 −0.34 −1.26 0.24

9 1.08 −0.21 −0.09

1

2

3

4

5

6

7

8

9

Figure: Example of a bipartite graph generated from 2 sets of 3-dimensional vectors, and
of its maximum matching M. Green color indicates that an edge belongs to M
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RepSet - Bipartite Matching Problem

Input set X = {v1, v2, . . . , v|X |} where v1, . . . , v|X | vectors

“Hidden set” Y = {u1,u2, . . . ,u|Y |}

Maximum matching between the elements of X and Y by solving the
following linear program:

max

|X |∑
i=1

|Y |∑
j=1

zij f (vi ,uj) subject to:

|X |∑
i=1

zij ≤ 1 ∀j ∈ {1, . . . , |Y |}

|Y |∑
j=1

zij ≤ 1 ∀i ∈ {1, . . . , |X |}

zij ≥ 0 ∀i ∈ {1, . . . , |X |},∀j ∈ {1, . . . , |Y |}

where f (vi ,uj) is a differentiable function (e.g., inner product), and zij = 1
if component i of X is assigned to component j of Yi , and 0 otherwise
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RepSet - Produced Set Representations

Given an input set X and the m “hidden sets” Y1,Y2, . . . ,Ym

1 formulate m different bipartite matching problems

2 by solving all m problems, end up with an m-dimensional vector x → hidden
representation of set X

3 this m-dimensional vector can be used as features for different machine
learning tasks (e.g., set regression, set classification)
↪→ For instance, in the case of a set classification problem with |C|classes,
output is computed as

p = softmax(Wx + b)

where W is a matrix of trainable parameters and b is the bias term
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RepSet - Architecture
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Figure: Each element of the input set is compared with the elements of all “hidden
sets”, and the emerging matrices serve as the input to bipartite matching. The values of
the BM problems correspond to the representation of the input set.
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RepSet - Relaxed Variant (ApproxRepSet)

Input set X = {v1, v2, . . . , v|X |} where v1, . . . , v|X | vectors

“Hidden set” Y = {u1,u2, . . . ,u|Y |}

Identify which of the two sets has the highest cardinality.

If |X | ≥ |Y |, we solve the following problem:

max

|X |∑
i=1

|Y |∑
j=1

zij f (vi ,uj) subject to:

|X |∑
i=1

zij ≤ 1 ∀j ∈ {1, . . . , |Y |}

zij ≥ 0 ∀i ∈ {1, . . . , |X |},∀j ∈ {1, . . . , |Y |}

Multiple elements of X (the bigger set) can be matched with the same
element of Y

Optimal solution matches an element yj of Y with xi of X if f (vi ,uj) is
positive and f (vi ,uj) = maxk f (vk ,uj)
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Experimental Evaluation

Text categorization

given a document, the input to the model is the set of embeddings of its
terms

standard text categorization datasets (TWITTER, BBCSPORT etc.)

Graph classification

represent each graph as a set of vectors (i.e., the embeddings of its nodes)

node embeddings are extracted by struc2vec [Ribeiro et al., KDD’17]

datasets derived from bioinformatics (MUTAG, PROTEINS) and social
networks (IMDB-BINARY, -MULTI, REDDIT-BINARY)
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Experiments - Text classification

BBCSPORT TWITTER RECIPE OHSUMED CLASSIC REUTERS AMAZON 20NG

WMD 4.60 ± 0.70 28.70 ± 0.60 42.60 ± 0.30 44.50 2.88 ± 0.10 3.50 7.40 ± 0.30 26.80
S-WMD 2.10 ± 0.50 27.50 ± 0.50 39.20 ± 0.30 34.30 3.20 ± 0.20 3.20 5.80 ± 0.10 26.80

DeepSets 25.45 ± 20.1 29.66 ± 1.62 70.25 ± 0.00 71.53 5.95 ± 1.50 10.00 8.58 ± 0.67 38.88
NN-mean 10.09 ± 2.62 31.56 ± 1.53 64.30 ± 7.30 45.37 5.35 ± 0.75 11.37 13.66 ± 3.16 38.40
NN-max 2.18 ± 1.75 30.27 ± 1.26 43.47 ± 1.05 35.88 4.21 ± 0.11 4.33 7.55 ± 0.63 32.15
NN-attention 4.72 ± 0.97 29.09 ± 0.62 43.18 ± 1.22 31.36 4.42 ± 0.73 3.97 6.92 ± 0.51 28.73

Set-Transformer 4.18 ± 1.23 27.79 ± 0.47 42.54 ± 1.35 35.68 5.23 ± 0.52 4.52 7.18 ± 0.44 30.01

RepSet 2.00 ± 0.89 25.42 ± 1.10 38.57 ± 0.83 33.88 3.38 ± 0.50 3.15 5.29 ± 0.28 22.98
ApproxRepSet 4.27 ± 1.73 27.40 ± 1.95 40.94 ± 0.40 35.94 3.76 ± 0.45 2.83 5.69 ± 0.40 23.82

Table: Classification test error of the proposed architecture and baselines on 8 TC datasets.

Hidden Terms similar to Terms similar to
set elements of hidden sets centroids of hidden sets

1 chelsea, football, striker, club, champions footballing

2 qualify, madrid, arsenal, striker, united, france ARSENAL Wenger

3 olympic, athlete, olympics, sport, pentathlon Olympic Medalist

4 penalty, cup, rugby, coach, goal rugby

5 match, playing, batsman, batting, striker batsman

Table: Terms of the employed pre-trained model that are most similar to the elements and
centroids of 5 hidden sets.
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Experiments - Graph Classification

MUTAG PROTEINS
IMDB IMDB REDDIT

BINARY MULTI BINARY

PSCN k = 10 88.95 (± 4.37) 75.00 (± 2.51) 71.00 (± 2.29) 45.23 (± 2.84) 86.30 (± 1.58)
Deep GR 82.66 (± 1.45) 71.68 (± 0.50) 66.96 (± 0.56) 44.55 (± 0.52) 78.04 (± 0.39)
EMD 86.11 (± 0.84) - - - -
DGCNN 85.80 (± 1.70) 75.50 (± 0.90) 70.03 (± 0.86) 47.83 (± 0.85) -
SAEN 84.99 (± 1.82) 75.31 (± 0.70) 71.59 (± 1.20) 48.53 (± 0.76) 87.22 (± 0.80)
RetGK 90.30 (± 1.10) 76.20 (± 0.50) 72.30 (± 0.60) 48.70 (± 0.60) 92.60 (± 0.30)
DiffPool - 76.25 - - -

DeepSets 86.26 (± 1.09) 60.82 (± 0.79) 69.84 (± 0.64) 47.62 (± 1.18) 52.01 (± 1.47)
NN-mean 87.55 (± 0.98) 73.00 (± 1.21) 71.48 (± 0.48) 49.92 (± 0.82) 84.57 (± 0.84)
NN-max 85.84 (± 0.99) 71.05 (± 0.54) 69.56 (± 0.91) 48.28 (± 0.43) 80.98 (± 0.79)
NN-attention 85.92 (± 1.16) 74.48 (± 0.22) 72.40 (± 0.45) 49.56 (± 0.47) 88.74 (± 0.53)

Set-Transformer 87.71 (± 1.14) 59.62 (± 1.42) 71.21 (± 1.28) 50.25 (± 0.74) 83.79 (±) 0.83

RepSet 88.63 (± 0.86) 73.04 (± 0.42) 72.40 (± 0.73) 49.93 (± 0.60) 87.45 (± 0.86)
ApproxRepSet 86.33 (± 1.48) 70.74 (± 0.85) 71.46 (± 0.91) 48.92 (± 0.28) 80.30 (± 0.56)

Table: Classification accuracy (± standard deviation) of the proposed architecture and
the baselines on the 5 graph classification datasets.
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Conclusions

THANK YOU !
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