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Introduction: Time series are Everywhere
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Introduction: Iime series are Everywhere

Energy Production Astrophysics
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Introduction: with Important Challenges
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Introduction: Anomaly Detection in Time Series

* Time series T (example : number of taxi passengers in New York City)

, , , WW‘H fiil “i“l““m # mv

Subsequence T; p

with i = 4400, ¢ = 250
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Introduction: Anomaly Detection in Time Series

* Time series T (example : number of taxi passengers in New York City)
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* Anomaly: rare point or sequence (of a given length) Daylight Flooding Snowstorm
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Introduction: Outline

1. Foundations

1.1. Type of Time Series
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2. Anomaly Detection
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2.2. Existing Benchmarks
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Foundations: Type of time series
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Foundations: Type of anomalies  campleor .
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Foundations: Type of anomalies
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Anomaly Detection methods: A taxonomy

e Anomalies -

Time Series
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Anomaly Detection methods: A taxonomy
By domains [5] ...

RobustPCA[101] Eros-SVMs[74] k-Means[151] XGBoosting [34] KNN[110]

SR[112] DWT-MLEAD[134] CHNEHNMEE
NetworkSVM [160] MS-SVDD [149] sequenceMiner [23] AOSVM [48] I-HMM [127] [68]
B PhaseSpace-SVM [85] NoveltySVR [86 1 1 SmartSifter [152]
RUSBoost [54] CCKFD[114] P oveltySVR[86] Signal Analysis LaserDBN[100]
. SLADE-TS [141] _ .
Random Black Forest[165] Classic ML PCA[121]  S-SVM[11] m"[‘gl FFT[111] cLa[ss]  Stochastic
I . EDBN [107]
Hybrid K-Means [140] Random Forest Regressor[165] EM-HMM [105] Learmng
Normalizing Flow[116]
SLADE-MTS [142] PCC[121
bl L Hybrid KNN[124] EncDec-AD [88] MultiimMm[78] HSMM[129] ~ CxDBN[137]
HBOS [47] LSTM-based p
STOMP[164] DeepLSTM[31]  SSA[155] VAE-GAN[98] . E[117] LAMP [166] (49] FuzzyDNBC [136]
e L DecpNAPL72] - LsTM-vAE [ 106] MAD-GAN [77] OmniAnom’cll‘fl\:;;\f][BS]
GrammarViz[120] TwoFinger [90] CoalESN[99] . . [60] 4 AEI)
) . 5 Conlnd [5]
KnorrSeq2[102]  Left STAMPi[156] STORN [123] B 56T Deep Learning PAD[33] |\ 4nT(o4] $-H-ESD[62]
TSBitmap[144]  DADS [119 MSCRED[1 - :
HOT SAX[70] = [D' ]' _ Al[ [i] [(159] OceanWNN[143] MultiHTM [146] Telemanom [64] LSTM-AD[89] FAST-MCD[115] SH-ESD+[138]
issimilarityAlgo
RADM[40] R CNN[112]  TAnoGAN([S] s VELC [158] MA[18]  EWMA[65] SARIMA[52]
. s MoteESN [30 i
Norm[14]  Data Mining g NumentaHTM 3] Bagell] NopE[9s) ~ Kalman Filter[52]
T MTAD-GAT[161] HealthESN[32] AR[18]
Image-embedding-CAE[44] o ze
BoehmerGraph[13]  yarpop([s2]  PST[128] 2 % MGDD [126] Statistics PCI[157)
RZA MERLIN [97 STAMP[156 ARMA [18
= il OE [1(:8] ] = Mcop[73] Isolation Forest[83]  EIF[58] s i : ]PEWMA [25] MedianMethod [10]
NormA-SJ[15] Dapi] LOCI/aLOCI[103]  Subsequence IF[83]  Subsequence LOF[22] EWMA-STR [162] Holt-Winter’s [1]
_ SurpriseEncoding [26] COPOD[80
NormA-smpl [15] IF-LOF[36] Outlier Detection [80] ARIMA[65] DSPOT[122]  RePAD[76]

SCRIMP++ [163] Ensemble GI[43] Hybrid Isolation GeckoFSM [118]

Forest[91]  COF[130] BLOF[59] DBStream[55] LOF[22] DILOF[95] AMD Segmentation[153]  Holt’s [65]

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a comprehensive evaluation. Proc.
VLDB Endow. 15, 9 (May 2022), 1779-1797.
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Anomaly Detection methods: A taxonomy
By inputs...

Time series anomaly detection methods

v J J

{ Supervised J { Semi-supervised } { Unsupervised }
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- Normal examples
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/ ! . CEX: condensate extraction system . GCT: turbine bypass system \
VVP: main steam system 2 sensors (pressure and temperature) | | 2 sensors (pressure)

28 sensors GSS: moisture separator-reheater system KKO: energy metering system
(flow, pressure, temperature) 2 sensors (pressure and temperature) | 1 sensor (power)
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ARE: feed-water flow control system | | AGR: feed-water pump turbine lubrication and |~ 2 sensors (pressure)
30 sensors (flow, temperature, water level) control fluid system
S : d —> ASG: auxiliary feed- AHP: high pressure feed- ' 32 sensors (temperature) | ADG: feed-water tank and gas
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1 sensor (temperature) 14 sensors (temperature) 9 sensors (flow, pressure, temperature, speed) 3 sensors (water level)
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Anomaly Dete

By inputs...

Time
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Anomaly Dete

By inputs...
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detection (e.g.,
classification)
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28 sensors i

anomaly (flow, pressure, temperature)

GSS: moisture separator-reheater system KKO: energy metering system
2 sensors (pressure and temperature) 1 sensor (power)

detection (e.g-, Primary circuit\ e ‘ : Secondary circuit
classification) —— steam ‘

Anomaly Dete
By inputs...
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Anomaly Detection methods: A taxonomy
By methods...

[ Time series anomaly detection methods ]
|

v
[ Distance-based ]

Proximity- Clustering- Discord-
based based based
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Anomaly Detection methods: A taxonomy

By methods...

[ Time series anomaly detection methods ]

v

[ Distance-based ]

[ Density-based ]
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Anomaly Detection methods: A taxonomy
By methods...

[ Time series anomaly detection methods ]

v v

[ Distance-based ] [ Density-based ]

[ Prediction-based ]
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Anomaly Detection Methods
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Anomaly Detection methods: A taxonomy
By time...

Number of methods proposed per

Number of methods proposed per
Second-level categories (cumulative)

Second-level categories
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Percentage

Anomaly Detection methods: A taxonomy
By time...

Number of methods proposed that are Number of methods proposed that can handle
Unsupervised or Semi-Supervised Univariate or Multivariate time series
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T

; T 1250 / l \ | / L 37'50/ 5000
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T

; T 1250 / l \ | / L 37'50/ 5000

Sri =d(Tis Tip) Nearest neighbor
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T

; T 1250 / l \ | / L 37'50/ 5000

Sri = d(Tip Trme) K-Nearest neighbor
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T

| | | | |

; T 1250 / l \I | / / 3750 5000

L I3 0. 3

Tip Tip Tk Trp T Toe

Sri= ) d(Tie

Tk,f) Nearest Cluster

kec
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect

anomalies.

Time series T

L [ 03 - AR
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% 1
ST,L’ = Z d(Ti,f; Tk,{)) Nearest Cluster
kec f” w

5000

I I I
0 1250 2500 3750

5000
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Anomaly Detection methods: Distance-based

/ Example of distance computation \
\H | F'—M ‘]h

\ (a) Euclidean Distance (b) DTW Distance (c) LCSS Distance /
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Anomaly Detection methods: an Example

Matrix Profile [6] (MP) A

Compute the distance to the
nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score

Unsupervised
Univariate
sequence

N Y

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM. DiiP, June 2024 | 33



Anomaly Detection methods: an Example

v

The matrix Profile is computed as follows:
Sy = |NN(To), NN(Typ), ... NN(Ti7i=s,¢)]

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

Matrix Profile [6] (MP) A

Compute the distance to the
nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score

Unsupervised

Univariate

sequence
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Anomaly Detection methods: an Example

Time series T

N

Discord

i

T
0

Anomaly score St

171

f f
300 400

f f
0 100

f f
300 400

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

Matrix Profile [6] (MP) A

Compute the distance to the
nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score

Unsupervised

Univariate

sequence
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Anomaly Detection methods: an Example

Matrix Profile [6] (MP) A

Compute the distance to the
nearest neighbor (using the

N MASS algorithm z-norm

) ) Discord
Time series T

-

. . Euclidean distance
Many different extensions... . .
computation) and use it as
- For streaming time series: STAMPi [6], DAMP [8] anomaly score
- For similar recurrent anomalies: left-STAMP [6] ) .
- Anytime or ordered: STAMP [6], STOMP [7] Unsu pervised
. - For multivariate time series: MSTAMP [9] ) - /
fJ L Univariate
b 180 280 i 380 480 ( h
sequence
o %

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah )
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM. DiiP, June 2024 | 36



Anomaly Detection methods: an Example

Time series T

0 2000 4000 6000 8000

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931.

-

NormA [10]

Distance-based approach that
summarize the time series into
a weighted set of subsequences
and use the distance to them as

anomaly score

Unsupervised

Univariate

sequence
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Anomaly Detection methods: an Example

4 )
Time series T NormA [10]
Distance-based approach that
summarize the time series into
| | | | | | | | | | a weighted set of subsequences
0 50 100 150 200 0 2000 4000 6000 8000 _
B A (VL wh) and use the distance to them as
| anomaly score
Unsupervised
(NnM' Wn) e N
Univariate
sequence
o /

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised )
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931. DiiP, June 2024 | 38



Anomaly Detection methods: an Example

4 )
Time series T NormA [10]
Distance-based approach that
summarize the time series into
| | | | | | | | | | a weighted set of subsequences
0 ‘\ 50 100 }\150 2q0 0 2000 4000 6000 8000 d th d t t th
R A (N, wh) | and use the distance to them as
— forTi,inT: anomaly score
E > d= ZNi Wi * minXE[O,fNM—f] {dl'St(Tj,g,NiMx'l )} - : N
Y Unsupervised
(NnM' Wn) 1 e N
Univariate
0 b 2(I)00 40|00 6600 8600 ( 0
Anomaly score St sequence
o /

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised )
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931. DiiP, June 2024 | 39



Anomaly Detection methods: an Example

Time series T

Tip
ﬂ

S\

\\_/ '
jt

;150 20 2000

[
[ /‘u‘“

N/

_

4000

6000

8000

v

fOT' Tj'g inT:

> d = ZN’: Wi * ml'nxe[olfNM_g] {diSt(’I}',{; NiMx,l )}
M

[

O i
0 2000

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised

1
4000

1
6000

8000
Anomaly score St

and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931.

-

NormA [10]

Distance-based approach that
summarize the time series into
a weighted set of subsequences
and use the distance to them as

anomaly score

Unsupervised

Univariate

sequence
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Anomaly Detection methods: an Example

4 )
Time series T M \\_/ NormA [10]
Tip e
\ i | (N%y,w®) h Distance-based approach that
| [} S8 cummarize the time series into
SAND [25] a weighted set of subsequences
and use the distance to them as
Distance-based approach that summarize the time series into a anomaly score
weighted set of subsequences, and can be updated incrementally l)} )
for new arriving batches of data points i Unsu pervised
G ’ ; :
Univariate
0 I0 Z(I)OO 40IOO 6600 8600 € )
Anomaly score St sequence
o /

[25] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021. SAND: streaming subsequence anomaly detection. )
Proc. VLDB Endow. 14, 10 (June 2021), 1717-1729. DiiP, June 2024 | 41



Anomaly Detection methods: Density-based

Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.

Time series T

I I T
0 1250 3750 5000
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Anomaly Detection methods: Density-based

Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.

Time series T

___________________________________________________________

Tree based approaches [11] ! { Distribution-based

o ! Approaches [12]
A 1 1

o O .. 1
Ooo0 oo |
%6 0g HO !
O o[, |
OOOOO :
o0 ©O :
o o ( } 1
o0 Y :
:

DiiP, June 2024 | 43
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Anomaly Detection methods: an Example

0 splits

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

v

0 splits

v

Isolation Forest [11] A

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

( )

Unsupervised

\. /

Univariate/Multivariate

( )

-

Point/sequence

. J

J

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

1 splits

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

v

v

Isolation Forest [11] A

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

( )

Unsupervised

\. /

Univariate/Multivariate

( )

-

Point/sequence

. J

J

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

. I
Isolation Forest [11]
2 splits 2 splits
A A Density-based approach that
o O o O split the space randomly and
OOOOOO O 4 OOOOOO O 4 using the depth of the trees to
o 6L o O identify anomalies
e ofo” o O ooO
o) Q
e® ©O o0 O
o) O o o O ® ( ) )
®° oo 0 © o0 Unsupervised
Univariate/Multivariate
Point/sequence
o J
[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 B
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Anomaly Detection methods: an Example

. I
Isolation Forest [11]
3 splits 3 splits
A A Density-based approach that
o O o O split the space randomly and
OOOOOO O 4 OOOOOO O 4 using the depth of the trees to
o 6L o O identify anomalies
e ofo” o O ooO
o) Q
e® © o0 O
O O o o O d ( ) )
00 oo 0 © 0O Unsupervised
Univariate/Multivariate
Point/sequence
o J
[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 B
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Anomaly Detection methods: an Example

. I
Isolation Forest [11]
4 splits 3 splits
A A Density-based approach that
o O o O split the space randomly and
OOOOOO O 4 OOOOOO O 4 using the depth of the trees to
o 6L o O identify anomalies
o |e]o® o O ooO
O Q
o®| © o0 O
O o) ® o O d ( . )
0 © °® o © o0 Unsupervised
Univariate/Multivariate
Point/sequence
o J
[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 B
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Anomaly Detection methods: an Example

. I
Isolation Forest [11]
5 splits 3 splits
A A Density-based approach that
o O o O split the space randomly and
OOOOOO O 4 OOOOOO O 4 using the depth of the trees to
o 6L o O identify anomalies
o |e]o® o O ooO
O Q
o°| © o0 O
O o) ® o O d ( . )
0 © °® o © o0 Unsupervised
Univariate/Multivariate
Point/sequence
o J
[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 B
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Anomaly Detection methods: an Example

Instance A

Instance N

Isolation Forest [11] A

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

Unsupervised

Univariate/Multivariate

Point/sequence

- J

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

ITre e ] [Tree, ITree,

Isolation Forest [11] A

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

N

Unsupervised

J

/ N N
% ) ®

/ Instance A

AN
AN Instance N

@ ITree, Instance N

Instance A (
Univariate/Multivariate
Point/sequence

Instance N instance N |

~

J

-

J

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422

DiiP, June 2024 | 51



Anomaly Detection methods: an Example

. )
N® Series2Graph [13]
k\ (5) Each node is an ensemble of similar
subsequences. _
AN(l) | Density-based approach that
o | | ) .
OO 00 RO ¥ Each edge is associated to a weight convert the time series into a
°% OO 0 ‘N(3) w that corresponds to the number graph and-detec‘t unusual
05 O ;\\O“O \ of times a subsequence move from trajectories
0O j @ one node to another.
0 o 2 N*"e
O ‘ Qo ( o )
o — Unsupervised
\ ; v / ( U L) ) t B
For a given subsequence T; , and its corresponding path . INEINES )
Py, =< NO NG NE+H) > we define the normality score as follows: ( )
i+0-115(ND), NU+D) deg(ND) — 1) subsequence
Norm(Psy) = Z > g
j=i ' \_ J

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834 DiiP, June 2024 | 52



Anomaly Detection methods: an Example

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

-

Series2Graph [13] A

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

. )
Series2Graph [13]
7500 T 10000 Density-based approach that
convert the time series into a
graph and detect unusual
trajectories
Unsupervised
Univariate
(1) subsequence embedding | Su bsequence |
o /

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. )
VLDB Endow. 13, 12 (August 2020), 1821-1834 DiiP, June 2024 | 54



Anomaly Detection methods: an Example

. )
Series2Graph [13]
7500 T 10000 Density-based approach that
convert the time series into a
] 1, Ty graph and detect unusual
1 Nypyy trajectories
T 0
v,
B/ Unsupervised
> ? 1
Univariate
(1) subsequence embedding (2) node creation Su bsequence
- J

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834
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Anomaly Detection methods: an Example

. )
Series2Graph [13]
7500 T 10000 Density-based approach that
convert the time series into a
graph and detect unusual
trajectories
| Unsupervised
Gy (N, E) r — x
: Univariate
(1) subsequence embedding (3) edge creation Su bsequence J
- /

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. )
VLDB Endow. 13, 12 (August 2020), 1821-1834 DiiP, June 2024 | 56



Anomaly Detection methods: an Example

T; T3 T,

oY =da¥a) 2000
0

Vref DADS [26]

Distributed version of Series2Graph

| —1
Z500 1nan

(1) subsequence embedding

W1=1\; le

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Ge (N, E)

(3) edge creation

[26] Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB

Journal 30, 579-602 (2021).

Univariate

subsequence
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Anomaly Detection methods: an Example

4 . N
Snippet of SED time series [14] Series2Graph [13]
— Density-based approach that
convert the time series into a
! : : : L : graph and detect unusual
0 1300 2600 3900 5200 6500 . .
trajectories
Pattern following
a recurrent path ( U ised )
\—‘ in the graph \ NSUpervise )
N Univariate
Pattern following subsequence
an unusual path in > g

the graph

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. )
VLDB Endow. 13, 12 (August 2020), 1821-1834 DiiP, June 2024 | 58



Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

- T T T T
0 1250 2500 3750 5000
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— T; f(Ti—se)

1 I |
2500 3750 5000
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— T f(Ti—pp)
Tigye T; l T
\,\L\——AI/IL\L\,JJ‘A ..a/ Nt
(I) ) 121_50 25IOO 37I50 5800
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— T f(Ti—e,e)

Tigye T, ‘ L=44
M\h/\ J Ao\

(I) ) 12|50 25|00 37ISO 5800
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

_______ 7_15? v T, — T f(Ti—pe)
\ALLJ/LJ(\J‘A J A ~(A~ {A ~af\ s /\,-al‘ - lL\A.."/\,,.J‘/\ Jj/\.._’ /\.,., /\J A A‘\F Al\/\ J
(I) L 121_50: 25IOO 37ISO 5000
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

______ 7_*5? T — T f(Ti—e0)
“LL*LL‘L‘J /\4‘/ /\._‘i,,{/\..;. {A ~alff\ e /\,-,\JL\;\ ]\/L‘JJ"*,;"‘-L’\~'-,{"~~, A cn N\ J/\,,
5 L 12'L50I 2200 3750 | : 5000
ST = |Ti - f(Ti—&{’) | JL
o S ime— e w— i — T — T — — ~ A
0 1250 2500 3750 5000
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Anomaly Detection methods: an Example

Number of cells n,

fﬁi hi
[
Ci—1 =/)-(\ =G\ i > C;i
fT Ji i
Ge ag o,
w1 T o
hi—y
Ci—z 0 N > Citq
>
X
o | o |
hi_; > hivq
Ti—l Ti Tl+1

[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shro, and Puneet Agarwal. 2015. Long Short Term Memory Networks for Anomaly
Detection in Time Series. (2015).

-

LSTM-AD [15]

Model that stack multiple LSTM
cell and use the output to
predict the next value

Semi-supervised

Vs
\\

Univariate/Multivariate

Ve

.

~

Point/sequence

J

-

J
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
A .
Conv layer 1 MaxPooling
/ Ti_py Dense layer
®
| i+

O_L

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.

1
2500

|
I
3750

|
5000

DeepAnT [16] (CNN) A

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.

Semi-supervised

Vs
\\

Univariate/Multivariate

Ve

\.

~

Point/sequence

J

-

J
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
N \/
Conv layer 1 MaxPooling
/ Ti_p s Dense layer
| C
. T . . .
0 1250 2500 3750 5000

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.

DeepAnT [16] (CNN) A

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.

Semi-supervised

Vs
\\

Univariate/Multivariate

Ve

\.

~

Point/sequence

J

-

J
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
A V.
Conv layer 1 MaxPooling
/ Ti_py Dense layer

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.

I
3750

5000

DeepAnT [16] (CNN) A

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.

Semi-supervised

Vs
\\

Univariate/Multivariate

Ve

\.

~

Point/sequence

J

-

J
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Anomaly Detection methods: Reconstruction-

based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

; |
o Tip 1250

1
1

I
3750

5000

T;
\’
f(Ti‘f)ljjiAlﬁ/\
0 20 zlto I60 N
Sri=|Tie = Tid|
| | | | |
0 1250 2500 3750 5000
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

1 1
| L | L | | |
| | I

T
1250 T- 2500 3750 5000

f(Tl f);ﬁji,Aﬁ/i( f)%&
20 40 20 40
ST,l - ”Tl,f - l,f ” - ]f

b ! | I
I 1 1

0 1250 2500 3750 5000
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

1 ) 1 1 | ! 1 1
1 I |
1250 Tip 2500 3750 5000

f(Tl f);ﬁji,Aﬁ/i( f)%&
20 40 20 40
ST,l = ”Tl,f - l,f ” _ ]fLm

I 1
0 1250 2500 3750 5000
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Anomaly Detection methods: an Example

Anomaly score

Original subsequence

= L(Ti,l' T'u)‘ |

Reconstructed subsequence

& ¢+ (D)t (D=1) s (0
Ti(j’)) Tl(f 1) T'fg) Ti,t’( )Ti.t’( )Ti,l’( )
Latent space
E(T,6)p) » D(Z,6p)
I Original subsequence ' ¥ !
4 A Reconstructed
/ | / \\ subsequence
i sy St N o
IO 2.0 4‘0 60 1 {0 2%0 4:0 éo |
Normal subsequence Anomalous subsequence

" AutoEncoders [17] (AE) A

Neural Network composed of an
encoder (that reduce the
dimensionality) and decoder
that reconstruct the time series.
The objective is to minimize the
reconstruction error.

Semi-supervised

. J

Univariate/Multivariate

Point/sequence
N Y,

[17] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings

of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia QLD, Australia) (MLSDA’14).
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Anomaly Detection methods: Existing
benchmark
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-

HEX/UCR [18]

Set of 250 time series with
labels.

Details

TimeEval [5]

The labels have been
manually checked and are
reliable

Each time series contains
only 1 labeled anomaly

Set of 976 time series with
labels.

Details

New synthetic benchmark
GutenTag used to tune
parameters

Only Time series with low
contamination rate (< 0.1)

Time series with at least one
methods above 0.8 AUC-ROC

Anomaly Detection methods: Existing
benchmark

TSB-UAD [19]

J

Set of 2000 time series with
labels.

Details

Collected as proposed in the
literature (no filtering based
on contamination, size or
label quality)

Artificial and synthetic data
generation methods for
reliable labels

J
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Anomaly Detection methods: Existing
benchmark

OPPORTUNITY

IOPS

Real datasets collection

SVDB

MGAB

oo T4

e

ECG

GHL

NASA-MSL

et

pom e

I

NASA-SMAP

NAB

SSSSSS

Dodgers

whvul by

o

W

DiiP, June 2024 | 75



Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.

Unsupervised

Semi-supervised

Methods AUC-ROC

Sub-LOF [22] 2% 0% 0% - 1
GrammarViz [120] [3% 0% 0% 1 T}
DWT-MLEAD [134] |0% 0% 0% 1 T H
VALMOD [82] 1% 9% 11% i ENNNN |
SAND [17] 5% 1% 22% 1 : ]
Ceft STAMPi [156] |2% 0% 1% { : i
Series2Graph [16] 0% 0% 5% [ T T H
ARIMA [65] 7% 0% 0% [ T T H
PCI [157] 0% 0% 0% ! : |
STOMP [164] 2% 0% 0% ! ! : -1
STAMP [156] 4% 0% 0% | ! : )
Triple ES [1] 15% 0% 9% I N

UmentaHIM [3] (0% 0% 0% e I
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

- Semi-supervised methods are not
outperforming Unsupervised approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.

Unsupervised
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Anomaly Detection methods: R—
Experimental evaluation T
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AE 1 I

LOF A [

Observations on HEX/UCR [18]: CNN - F—— e

IFOREST A } o

LSTM - I— )

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting and
distribution-based approaches

lLl

l
OCSVM 1 | @ —|
l
HBOS 1 | ("] 4|
IFOREST1 - |7 @ —l
l
POLY 4 | ® 4|
[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the lllusion PCA - l— (] 4|
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023. ' . . . . .
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Anomaly Detection methods:
Experimental evaluation

Observations on TSB-UAD [19]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting-based
methods.

- Isolation Forest (Tree-based and not
proposed for time series) have also a strong
accuracy

- AutoEncoder (AE) is also very accurate.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an
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end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection methods:

Point-based anomaly

Experimental evaluation

CNNR

NORMA -

MP -

Observations on TSB-UAD [19]: st

LOF A

- Forecasting methods (LSTM and CNN) are

very accurate for point anomalies AE -

- But have poor performances on sequence-
based anomalies.

POLY -+

IFOREST -+

PCA A
HBOS -+
[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series oCSVM
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Experimental evaluation Ratio>0.1 Rati0<0.001
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- The ratio of normal/abnormal points has a
strong impact on the methods ranking. orkA | | o —1 |  Po —— o [—
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[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series e | ® | oCSVM @ |
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711. H
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Anomaly Detection methods: Experimental evaluation

Observation from the results applied on specific datasets (TSB-UAD [19])

(a.1) Example from ECG dataset Y (a.2) ECG. (c.1) Example from Daphnet dataset (c.2) Daphnet
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(b.1) Example from MGAB dataset (b.2) MGAB (d.1) Example from YAHOO dataset (d 2) YAHOO
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There is no overall winner.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection in Time Series: A Comprehensive Evaluation
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ABSTRACT

Detecting anomalous subsequences in time series data s an im-
portant task in arcas ranging from manufacturing processes over
finance applications to health care monitoring. An anomaly can
indicate important events, such as production faults, delivery bot-
tlenecks, system defects, or heart flicker, and is therefore of central
interest. Because time series are often large and exhibit complex
patterns, data scientists have developed va lized algo-

‘marburg.de

— Tmesres — SubioF — ISTHAD

rithims for the automatic detection of such anomalous patterns. The
number and variety of anomaly detection algorithms has grown
significantly in the past and, because many of these solutions have
been developed independently and by different research communi-
ties, there is no comprehensive study that systematically evaluates
and compares the different approaches. For this reason, choosing
the best detection technique for a given anomaly detection task is
a difficult challenge.

‘This comprehensive, scientific study carefully evaluates most
state-of-the-art anomaly detection algorithms. We collected and
re-implemented 71 anomaly detection algorithms from different
domains and evaluated them on 976 time series datasets. The al-
gorithms have been selected from different algorithm families and
detection approaches to represent the entire spectrum of anomaly
detection techniques. In the paper, we provide a concise overview
of the techniques and their commonalities; we evaluate their in-
dividual strengths and weaknesses and, thereby, consider factors,
such efficiency, and robust
results should ease the algorithm selection problem and open up
new research directions.

@synthetic
ibsequence anomaly (pattern shift), a point anomaly (extremum),
and the scorings of LSTM-AD and Sub-LOF.

& & s s s

(b) Synthetic multivariate time series with a correlation anomaly
and the scoring of k-Means,

Figure 1: Example time series with anomalies and scorings.

1 ANOMALY DETECTION WILDERNESS

TSB-UAD: An End-to-End Benchmark Suite for Univariate
Time-Series Anomaly Detection

John Paparrizos Yuhao Kang Paul Boniol
‘The Ohio State University University of Chicago Université de Paris
papartizos.|@osu.cdu yuhaok@uchicago.du pauLboniol@ctuu-paris fr
Ruey S. Tsay Themis Palpanas Michael . Franklin
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ABSTRACT that, shortly, billions of Internet-of-Things (IoT) devices will be re-

The detection of anomalies in time series has gained ample aca-
demic and industrial attention. However, no comprehensive bench-
mark exists to evaluate time-series anomaly detection methods. It
is common to use (i) proprietary or synthetic data, often biased
to support particular claims; or (ii) a limited collection of publicly
available datasets. Consequently, we often observe methods per-
forming exceptionally well in one dataset but surprisingly poorly
in another, creating an illusion of progress. To address the issues
above, we thoroughly studied over one hundred papers t0 iden-

sponsible for generating zettabytes (ZB) of time series (44, 51). This
3pid growthofcost-fective T deployments leady empoers
e dat seen applicaions and has evolutonized the e-
{ail healtheas riculture, utilities,
and utomobile ndustries (80). Among analytical tasks for IoT data
(55, 56, 65, 90), time-series anomaly detection is particularly impor-
tant for identifying abnormal phenomena (either in the behavior of
the monitored process, or measurement errors) [8, 49, 54, 82].
 Despts aver s decades of cadenac s indnstrtal tention

tify, collect, process,
in'the past decades. We summarize our ffort in TSB-UAD, 2 new
benchmark
detection methods. Overall, TSB-UAD contains 13766 time series
with labeled anomalies spanning different domains with high vari-
ability of anomaly types, ratios, and sizes. TSB-UAD includes 18
previously proposed datasets containing 1980 time series and we
contribute two collections of datasets. Specifically, we generate
958 time series using a principled methodology for transforming
126 time-series classification datasets into time series with labeled
anomalies. In addition, we present data transformations with which
we introduce new anomalies, resulting in 10828 time series with
varying complexity for anomaly detection. Finally, we evaluate 12
representative methods demonstrating that TSB-UAD is a robust

source for assessing anomaly detection methods. TSB-UAD pro-
vides a valuable, reproducible, and frequently updated resource to
establish a leaderboard of time-series anomaly detection methods.

detection (AD) (41, 81, 107], only a few ef-
forts have focused on stablshing standard means of valuating
existing solutions (notable examples 36, 60, 103, 109, 114, 118]).
Unfortunately, there is currently no consensus on using a single
benchmark for assessing the performance of time-series AD meth-
ods. As a result, we observe two standard wamrt: in the literature
‘models by using (i) synthet
dat o (1) a limied collection of pubicly avalable datasets How-
ever, both of these practices are often flawed. In the former case,
proprietary or synthetic data may have been collected or generated
biasedly to support particular claims, anomaly types, or methods.
In the latter case, only a small fraction of datasets are available,
some of which suffer from several drawbacks (e.g, trivial anomalies,
unrealistic anomaly density, or mislabeled ground truth [114])
In addition, the ambiguity and the startlingly different interpre-
tation of anomalies across applications further hinders progress. It
is not uncommon for methods to achieve high accuracy for some

Benchmarks are Flawed and are Creating the

1

SIGKDD [2], 3], ICDM [4], ICDE, SIGMOD, VLDB, etc.

largely driven by researchers anxiot

Current Time Series Anomaly Detection

lllusion of Progress

Renjie Wu and Eamonn J. Keogh

Abstract—Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the
1950s. However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep
learning in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular
benchmark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the
individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many
published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent
progress in recent years may be illusionary. In addition to demonstrating these claims, with this paper we introduce the UCR
Time Series Anomaly Archive. We believe that this resource will perform a similar role as the UCR Time Series Classification
At providing the community with a benchmark that allows meaningful comparisons between approaches and a
meaningful gauge of overall progress.

Index Terms—Anomaly detection, benchmark datasets, deep leaming, time series analysis

INTRODUCTION

IME series anomaly detection has been a perennially  neural networks, and a variational auto-encoder (VAE) over-
important topic in data science, with papers dating sampling model.” This description sounds like it has many
back to the dawn of computer science [1]. However, inthe “moving parts”, and indeed, the dozen or so explicitly
last five years there has been an explosion of interest in
this topic, with at least one or two papers on the topic
appearing each year in virtually every database, data put size, softmax
mining and machine learning conference, including and batch size. All of lhh is to demonstrate “accuracy ex-
ceeding 0.90 (on a subset of the Yahoo's anomaly detection
Alarge fraction of this increase in interest seems to be  benchmark datasets).” However, as we will show, much of
S to transfer the con-  the results of this cumplex approach can be duplicated

siderable success of decp learning in other domains and  with a single line of code and a few minutes of effort.

£

ther ime sorics tacke such ag ificati Thi facado! -y !

listed parameters include: convolution filter, activation,
kermel size, srides, paddmg, LSTM input size, dense in-
nction, window size, learning rate

https://github.com/HPI-
Information-Systems/TimeEval

https://github.com/TheDatumOrg/
TSB-UAD

https://wu.renjie.im/research/ano
maly-benchmarks-are-flawed/

TS, We Ioauce TSB-UAD, a7 Open end-(6-ehd Denchmark

A review on outlier/anomaly detection in time series data

ANE BLAZQUEZ-GARCIA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research
and Technology Alliance (BRTA), Spain

USUE MORI, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University
of the Basque Country (UPV/EHU), Spain

JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence,
University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematics (BCAM), Spain

Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered
over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past
few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide
a structured and comprehensive state-of-the-art on outlier detection techniques in the context of time series. To this end, a taxonomy

is presented based on the main aspects that characterize an outlier detection technique.

Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software

1 INTRODUCTION

Recent advances in technology allow us to collect a large amount of data over time in diverse research areas. Observations
that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series
data mining aims to extract all meaningful knowledge from this data, and several mining tasks (c.g. classification,
clustering, forecasting, and outlier detection) have been considered in the literature [Esling and Agon 2012; Fu 2011;
Ratanamahatana et al. 2010].

Outlier detection has become a field of interest for many researchers and practitioners and is now one of the main
tasks of time series data mining. Outlier detection has been studied in a variety of application domains such as credit
card fraud detection, intrusion detection in cybersecurity, or fault diagnosis in industry. In particular, the analysis of
outliers in time series data examines anomalous behaviors across time [Gupta et al. 2014a]. In the first study on this
topic, which was conducted by Fox [1972], two types of outliers in univariate time series were defined: type I, which

affects a single observation; and type II, which affects both a particular and the sub;

This work was first extended to four outlier types [Tsay 1988), and then to the case of multivariate time series [Tsay
etal. 2000]. Since then, many definitions of the term outlier and numerous detection methods have been proposed in the
literature. However, to this day, there is still no consensus on the terms used [Carreiio et al. 2019]; for example, outlier
observations are often referred to as anomalies, discordant observations, discords, exceptions, aberrations, surprises,
peculiarities or contaminants.

Authors’ add: S 1 Conde, Ikerl Centre, Basque Research

“The data points of a time series record are one or multiple real- advances In sensing solutions en- P b oble. More & T e aet L AR s} gy
salued vaiables.Esch varisble models one channel of th time “ble collecting enormous amounts o SulesISEIAD First, to relieve may be unreliable. More importantly, we believe that  ing with mosquitos, and he is impressed. and Technology . PJM. 2 20500, Spain; Usue Mori, usue mori@ehu.es, Intelligent Systems
e i " Ry - commonly referred to as fime series In particular, analysts estimate____from the laborious tasks of identifying, collecting, processing, and much of the apparent progress in recent years may be  Suppose however that someone downloaded the origi- e e e e et Lo

S. Schmidl et al. PVLDB (2022)
[5]

J. Paparrizos et al. PVLDB (2022)

[19]

R. Wu et al. TKDE (2021)
[18]

A. Blazquez-Garcia et al. ACM
Computing Survey (2021) [24]

Google search for “novel deep learning applications”. We have no reason
ly skimme

to doubt the claims of this paper, which we only
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Anomaly Detection in Time Series: A Comprehensive Evaluation
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ABSTRACT

Detecting anomalous subsequences in time series data s an im-
portant task in arcas ranging from manufacturing processes over
finance applications to health care monitoring. An anomaly can
indicate important events, such as production faults, delivery bot-
tlenecks, system defects, or heart flicker, and is therefore of central
interest. Because time series are often large and exhibit complex
patterns, data scientists have developed various specialized algo-
rithims for the automatic detection of such anomalous patterns. The
number and variety of anomaly detection algorithms has grown
significantly in the past and, because many of these solutions have
been developed independently and by different research communi-
ties, there is no comprehensive study that systematically evaluates
and compares the different approaches. For this reason, choosing
the best detection technique for a given anomaly detection task is
a difficult challenge.

‘This comprehensive, scientific study carefully evaluates most
state-of-the-art anomaly detection algorithms. We collected and
re-implemented 71 anomaly detection algorithms from different
domains and evaluated them on 976 time series datasets. The al-
gorithms have been selected from different algorithm families and
detection approaches to represent the entire spectrum of anomaly
detection techniques. In the paper, we provide a concise overview
of the techniques and their commonalities; we evaluate their in-
dividual strengths and weaknesses and, thereby, consider factors,
such as effectiveness, efficiency, and robust
results should ease the algorithm selection problem and open up
new research directions.

Hasso Plattner Institute,
University of Potsdam
Potsdam, Germany

Thorsten Papenbrock
Philipps University of Marburg
Marburg, Germany
papenbrock@informatik uni-
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(a) Synthetic univariate time series resembling an ECG signal with a
subsequence anomaly (pattern shift), a point anomaly (extremum),
and the scorings of LSTM-AD and Sub-LOF.

A /
S AN o
& & w &
(b) Synthetic multivariate time series with a correlation anomaly

and the scoring of k-Means.

Figure 1: Example time series with anomalies and scorings.
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ABSTRACT
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A review on outlier/anomaly detection in time series data

ANE BLAZQUEZ-GARCIA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research
and Technology Alliance (BRTA), Spain

USUE MORI, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University
of the Basque Country (UPV/EHU), Spain

JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence,
University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematics (BCAM), Spain
Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered

over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past

few years, including the detection of outliers or anomalies that may represent errors or events of interest, This review aims to provide

a structured and comprehensive state-of-the-art on outlier detection techniques in the context of time series. To this end, a taxonomy

is presented based on the main aspects that characterize an outlier detection technique.

Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software

1 INTRODUCTION

Recent advances in technology allow us to collect a large amount of data over time in diverse research areas. Observations
that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series
data mining aims to extract all meaningful knowledge from this data, and several mining tasks (c.g. classification,

u2011;

clustering, forecasting, and outlier detection) have been considered in the literature [Esling and Agon 201
Ratanamahatana et al. 2010].

Outlier detection has become a field of interest for many researchers and practitioners and is now one of the main
tasks of time series data mining. Outlier detection has been studied in a variety of application domains such as credit
card fraud detection, intrusion detection in cybersecurity, or fault diagnosis in industry. In particular, the analysis of
outliers in time series data examines anomalous behaviors across time [Gupta et al. 2014a]. In the first study on this
topic, which was conducted by Fox [1972], two types of outliers in univariate time series were defined: type I, which

affects a single observation; and type II, which affects both a particular and the sub; .
This work was first extended to four outlier types [Tsay 1988], and then to the case of multivariate time series [Tsay
et al. 2000]. Since then, many definitions of the term outlier and numerous detection methods have been proposed in the
literature. However, to this day, there is still no consensus on the terms used [Carreiio et al. 2019]; for example, outlier
observations are often referred to as anomalies, discordant observations, discords, exceptions, aberrations, surprises,
peculiarities or contaminants.
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Context-aware Unsupervised Anomaly Detection

Christmas
number of taxi passengers in New York City week

0 2000 4000 000 8000 / \

Daylight Flooding Snowstorm
Saving Time
(DST)

DiiP, June 2024 | 86



301

20 1

10 1

Conclusion and Open Problems

Evaluating Anomaly Detection
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Threshold-based Evaluation
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If you are interested in evaluation measures for anomaly detection...
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If you are interested in evaluation measures for anomaly detection...

Precision and Recall for Time Series
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Abstract

Classical anomaly detection is principally concerned with point-based anomalies,
those anomalies that occur at a single point in time. Yet, many real-world anomalies
are range-based, meaning they occur over a period of time. Motivated by this
observation, we present a new mathematical model to evaluate the accuracy of time
series classification algorithms. Our model expands the well-known Precision and
Recall metrics to measure ranges, while simultancously enabling customization
support for domain-specific preferences

1 Introduction

Anomaly detection (AD) s the process of identifying non-conforming items, events. or behaviors
[1.9]. The proper identification of anomalies can be critical for many domains. Examples include
carly diagnosis of medical discases [22], threat detection for cyber-attacks (3, 18, 36], or safety
analysis for self-driving cars [38]. Many real-world anomalies can be detected in time series data.
Therefore, systems that detect anomalies should reason about them as they occur over a period of
time. We call such events range-based anomalies. Range-based anomalies constitute a subset of both
contextual and collective anomalies [9]. More precisely, a range-based anomaly is one that occurs
over a consecutive sequence of time points, where no non-anomalous data points exist between the
beginning and the end of the anomaly. The standard metrics for evaluating time series classification
aleorithms todav, Precision and Recall have been around since the 1050s. Qrieinally formulaied

Volume Under the Surface: A New Accuracy Evaluation Measure
for Time-Series Anomaly Detection
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ABSTRACT (s)Critical diagram computed using the F score insigicanc
8 6 5 4 3 2 g diffe
Anomaly. D)isafi task for time-series analyt-
ics with important for the £ oy
many applications. In contrast to other domains where AD mainly ]
focuses on point-based anomalies (i.e., outliers in standalone ob- oo
servations), AD for time series is also concerned with range-based (6) Crtcaldagram computed sin th range-based  score
anomalies (ic., outliers spanning multiple observations). Never- s T8 5 4 3
theless, it is common to use traditional point-based e
retrieval measures, such as Precision, Recall, and F-score, to assess Forost MaxProfle]
the quality of methods by thresholding the anomaly score to mark oesum 5
o

each point as an anomaly or not. However, mapping discrete la-
bels into continuous data introduces unavoidable shortcomings
complicating the evaluation of range-based anomalies. Notably,
the choice of evaluation measure may significantly bias the ex-
perimental outcome. Despite over six decades of attention, there
has never been a large-scale systematic quantitative and qualita-
tive analysis of time-series AD evaluation measures. This paper
extensively evaluates quality measures for time-series AD to assess
their robustness under noise, misalignments, and different anomaly
cardinality ratios. Our results indicate that measures producing
quality values independently of a threshold (i.e., AUC-ROC and
AUC-PR) are more suitable for time-series AD. Motivated by this
observation, we first extend the AUC-based measures to account
for range-based anomalies. Then, we introduce a new family of
parameter-free and threshold-independent measures, VUS (Volume
Under the Surface), to evaluate methods while varying parameters.

igure 1: Critical difference diagram computed with the Friedman
test followed by a post-hoe Wilcoxon test (with a = 0.1) for the (a) F-
score and (b) range-based F-score over 250 in KDD21 [29].
Bold lines indicate insignificant differences of connected methods.

scientific and industrial domain (5, 6, 19, 4146, 49). Notably, there
is an increasingly pressing need for developing techniques for effi-
cient and effective analysis of zettabytes of time series produced by
millions of Internet-of-Things (IoT) devices [23, 25, 27, 28, 33, 48]
16T deployments empower diverse data science apphcatmns inen-
d engl
among others [40, 60], and have revolutionized many industries,
including automobile, healthcare, manufacturing, and ut
However, rare events, or imperfections and inherent complexities
in the data generation and measurement pipelines, often introduce
that apuear as gnomalies in time-series database:

Local Evaluation of Time Series Anomaly Detection Algorithms
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Huawei Technologies Co., Ltd. Huawei Technologies Co., Ltd. Huawei Technologies Co., Ltd.
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alexis huet@huawei.com jose.manuel com dari com

ABSTRACT
In recent years, specific evaluation metrics for time series anomaly
detection algorithms have been developed to handle the limitations
of the elassical precision and recall. However, such metrics are
heuristically built as an aggregate of multiple desirable aspects,
introduce parameters and wipe out the interpretability of the out-
put. In this article, we first highlight the limitations of the classical
precision/recall, as well as the main issues of the recent event-
based metrics - for instance, we show that an adversary algorith
can reach high precision and recall on almost any dataset under
weak assumption. To cope with the above problems, we propose
a theoretically grounded, robust, parameter-free and interpretable
ctension to precision/recall metrics, based on the concept of “af-
filation” between the ground truth and the prediction sets, Our
metrics leverage measures of duration between ground truth and
predictions, and have thus an intuitive interpretation. By further
comparison against random sampling, we obtain a normalized pre-
cision/recall, quantifying how much a given set of results s better
than a random baseline prediction. By construction, our approach
keeps the evaluation local regarding ground truth events, enabling
fine-grained visualization and interpretation of algorithmic results
We compare our proposal against various public time series anom-
aly detection datasets, algorithms and metrics. We further derive
theoretical properties of the affliation metrics that give explicit
expectations about their behavior and ensure robustess against

adversary strategies

CCS CONCEPTS

- General and reference Metrics; - Mathemat-

1 INTRODUCTION

‘Time series anomaly detection is the field consisting in detecting
elements of a time series that behave differently from the rest of
the data. This field attracted interest in recent years with the rise
of monitoring systems collecting a large amount of data over time,
mainly for the purpose of troubleshooting and security. Many sci-
entific domains are involved: water control industrial systems [5,
24], Web traffic [15, 31), servers of Internet companies (21, 26,
spacecraft telemetry [10], and also medicine or robotics (30, 1]
Due to the nature of the series, each anomaly (referred as an event
in the context of time series) can be a point in time (point-based
anomaly) or occupy a range of consecutive samples (range-based
anomaly). The detection s performed in a supervised or in a un-
supervised way. but the resulting performance of the algorithm s
generally always assessed against ground truth labels that have
been previously collected (either in controlled environments or
labeled by experts in the field). This assessment is realized with
evaluation metrics taking as input both the ground truth and the
predicted labels, and outputting one or multiple scores. The most
common metrics for anomaly detection are the classical precision
and recall, computed by comparing the predicted and the ground
truth outputs for each sample. In the usual terminology, the posi-
tive samples refer to the samples that are predicted as positive, and
are partitioned into the true positives (TP, positive samples that
are also anomalous in the ground truth) and false positives (FP)
Likewise, the samples predicted as negative are partitioned into
false (TN). The

the proportion TP/(TP + FP) of positive predicted samples that are
s the recall measures the proportion TP/ (TP + FN)

correct, where

NAVIGATING THE METRIC MAZE: A TAXONOMY OF
EVALUATION METRICS FOR ANOMALY DETECTION IN TIME
SERIES

imiliano Ruocco’*
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ABSTRACT

The field of time series anomaly detection is constantly advancing, with several methods available,
making it a challenge to determine the most appropriate method for a specific domain. The evaluation
of these methods is facilitated by the use of metrics, which vary widely in their properties. Despite
the existence of new evaluation metrics, there is limited agreement on which metrics are best suited
for specific scenarios and domain, and the most commonly used metrics have faced criticism in the
literature. This paper provides a comprehensive overview of the metrics used for the evaluation of
time series anomaly detection methods, and also defines a taxonomy of these based on how they are
calculated. By defining a set of properties for evaluation metrics and a set of specific case studies and
experiments, twenty metrics are analyzed and discussed in detail, highlighting the unique suitability
of each for specific tasks. Through extensive experimentation and analysis, this paper argues that the
choice of evaluation metric must be made with care, taking into account the specific requirements of
the task at hand.

Keywords Time series - Anomaly detection - Evaluation - Taxonomy

https://arxiv.org/abs/1803.03639

Informally. Precision is the fraction of all detected anomalies that arc real anomalies. whereas. Recall
i the fraction of all real anomalies that are successfully detected. In this sense, Precision and Recall
are complementary, and this characterization proves useful when they are combined (c.g., using
5-Score, where /3 represents the relative importance of Recall to Precision) [6). Such combinations
help canoe the guality of anom: While useful for based anomalis lassica
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their specific use-case: range precision/recall [27] for evaluating
the Greenhouse algorithm [17], time-aware precision/recall [11]
for evaluating the HAT dataset (24], Numenta benchmark [16] for
evaluating the Numenta corpus [1], ete.

L A Lol

2], online service systems [3], smart grids [4]. spacecraft telemetry [S]. Internet of Things [6] and healthcare [7]. The
rapid advancement of machine learning technology has also opened up new opportunities for developing and improving
TSAD methods. With the vast number of different machine learning architectures and techniques available, researchers
are constantly exploring new ways to create more accurate anomaly detectors. Whether it be through trying out new

N. Tatbul et al. NeurIPS 2018 [23]
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To address this need. we redefine Precision and Recall to encompa:
prior work [2, 25], our new mathematical definitions extend their
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anomaly score produced by AD methods to mark cach time-scries
point as an anomaly or not. The most common approach to set
a threshold value is to use the average score plus three times the
standard deviation of the anomaly score. However, this popular
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TSt against adversary predictions. retan a physical meaning (as
they are connected to quantities expressed in time units), and are lo-
cally interpretable (allows
event level). Summarizing our main contributions:

& to troubleshoot detection at individual

T ATEOTTRT, POTeRTrATTY TEadmmE To MoTreCT TeCTSTonS Ab0uT TS USe Th TeaT-worTT Tor exampTe, FIgure T
shows a prediction evaluated by two of the most used metrics in the literature. They vastly disagree on the quality of the
prediction. Despite this, most papers give very little attention to the choice of metric. It is important to understan
the limitations and trade-offs of different evaluation metrics, and to make an informed choice when evaluating TSAD
algorithms. Additionally, the development of new and improved evaluation metrics should continue to be a priority in
the field of TSAD, to ensure that the best algorithms are selected and used in real-world applications.
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Model selection for anomaly detection

: Results over TSB-UAD
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Model selection for anomaly detection
Can Ensembling methods solve the
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Model selection for anomaly detection
Can automatic model selection solve

Methods ranking changes ) the problem?

significantly between datasets [19]
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Model selection for anomaly detection
Can automatic model selection solve

Methods ranking changes ) the problem?

significantly between datasets [19]
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Model selection for anomaly detection

Methods ranking changes
significantly between datasets [19]
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Can automatic model selection solve

the problem?
/ .
Choose Wisely [29]
An experimental evaluation of model selection for
time series anomaly detection
\ VLDB 2023 ICDE 2024 )

[29] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and Themis Palpanas. 2023.
Choose Wisely: An Extensive Evaluation of Model Selection for Anomaly Detection in Time Series. Proc.

VLDB Endow. 16, 11 (July 2023), 3418-3432.
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