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• Time series 𝑇 (example : number of taxi passengers in New York City)

• Subsequence 𝑇!,ℓ
with 𝑖 = 4400, ℓ = 250
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• Time series 𝑇 (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
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Introduction: Outline
• Time series (example : number of taxi passengers in New York City)

• Anomaly: rare point or sequence (of a given length) 
potentially non-desired
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Foundations

(a) Example of multivariate time series T from 
the vibration class !ℳ" .
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Foundations: Type of time series
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Foundations: Type of anomalies
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Foundations: Type of anomalies
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Anomaly Detection Methods

(a) Example of multivariate time series T from 
the vibration class !ℳ" .

(b) "#$%#ℳ" ! : Dimension-wise Class Activation 
Map of T for the vibration class !ℳ" .
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Anomaly Detection methods: A taxonomy
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Anomaly Detection methods: A taxonomy
By domains [5] …

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a comprehensive evaluation. Proc. 
VLDB Endow. 15, 9 (May 2022), 1779–1797. DiiP, June 2024 | 14



Anomaly Detection methods: A taxonomy

Supervised Semi-supervised Unsupervised

- Normal examples

- Anomaly examples
Training 
dataset

Time Series T

- Normal examples
Training 
dataset

Time Series T Time Series T

By inputs…
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More info :

On the use case

DCE journal 2023

On the method
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
LOF
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based Density-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
Isolation-

Forest

E.g.,
Series2Graph

E.g.,
HOBS

OCSVM

E.g.,
LOF

E.g.,
GrammarViz

POLY, PCA
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Anomaly Detection methods: A taxonomy
By methods…

Time series anomaly detection methods

Distance-based Density-based Prediction-based

Tree-
based

Distribution-
based

Graph-
based

Clustering-
based

ℬ

Discord-
based

Proximity-
based

Reconstruction
-based

Forecasting-
based

Encoding-
based

A  BC  A B C  A   D     E   A  BC

A →  BC
A →  DE

…

E.g.,
MP

DAMP

E.g.,
NormA
SAND

E.g.,
Isolation-

Forest

E.g.,
Series2Graph

E.g.,
HOBS

OCSVM

E.g.,
LSTM,CNN

E.g.,
AutoEncoderE.g.,

LOF

E.g.,
GrammarViz

POLY, PCA
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Anomaly 
Detection 
methods: 
A taxonomy
By time…
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Anomaly Detection methods: A taxonomy
By time…

Number of methods proposed per 
Second-level categories
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Anomaly Detection methods: A taxonomy
By time…

Number of methods proposed that can handle
Univariate or Multivariate time series

Univariate

MultivariateSemi-
Supervised

Unsupervised

Number of methods proposed that are 
Unsupervised or Semi-Supervised
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Anomaly Detection methods: Distance-based

50000 1250 3750

…
𝑇',ℓ 𝑇*,ℓ 𝑇+,ℓ 𝑇,,ℓ 𝑇#,ℓ 𝑇-,ℓ 𝑇.,ℓ

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

…
𝑇',ℓ 𝑇*,ℓ 𝑇+,ℓ 𝑇,,ℓ 𝑇#,ℓ 𝑇-,ℓ 𝑇.,ℓ

Nearest neighbor𝑆$,! = 𝑑(𝑇!,ℓ, 𝑇&,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

…
𝑇',ℓ 𝑇*,ℓ 𝑇+,ℓ 𝑇,,ℓ 𝑇#,ℓ 𝑇-,ℓ 𝑇.,ℓ

K-Nearest neighbor𝑆$,! = 𝑑(𝑇!,ℓ, 𝑇',ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

…
𝑇',ℓ 𝑇*,ℓ 𝑇+,ℓ 𝑇,,ℓ 𝑇#,ℓ 𝑇-,ℓ 𝑇.,ℓ

Nearest Cluster𝑆$,! =/
(∈𝒞

𝑑(𝑇!,ℓ, 𝑇(,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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Anomaly Detection methods: Distance-based

50000 1250 3750

…
𝑇',ℓ 𝑇*,ℓ 𝑇+,ℓ 𝑇,,ℓ 𝑇#,ℓ 𝑇-,ℓ 𝑇.,ℓ

Nearest Cluster𝑆$,! =/
(∈𝒞

𝑑(𝑇!,ℓ, 𝑇(,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.

Time series 𝑇
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50000 1250 2500 3750

Anomaly Detection methods: Distance-based

50000 1250 3750

…
𝑇',ℓ 𝑇*,ℓ 𝑇+,ℓ 𝑇,,ℓ 𝑇#,ℓ 𝑇-,ℓ 𝑇.,ℓ

Nearest Cluster𝑆$,! =/
(∈𝒞

𝑑(𝑇!,ℓ, 𝑇(,ℓ)

Methods that use distance computation between subsequences (or group of subsequences) to detect 
anomalies.
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Example of distance computation

(a) Euclidean Distance (b) DTW Distance (c) LCSS Distance



Anomaly Detection methods: an Example

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score𝑇*,ℓ

𝑇',ℓ

𝑇+,ℓ

Matrix Profile [6] (MP)

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM. DiiP, June 2024 | 33



Anomaly Detection methods: an Example

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score

𝑆/ = 𝑁𝑁 𝑇!,ℓ , 𝑁𝑁 𝑇",ℓ , … , 𝑁𝑁 𝑇/ 0ℓ,ℓ

𝑇+,ℓ𝑁𝑁 𝑇&,ℓ

𝑁𝑁
𝑇),ℓ

𝑁𝑁 𝑇*,ℓ

The matrix Profile is computed as follows:

𝑇*,ℓ
𝑇',ℓ

Matrix Profile [6] (MP)

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM. DiiP, June 2024 | 34



Anomaly Detection methods: an Example
Matrix Profile [6] (MP)

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score

4000 100 200 300 4000 100 200 300

4000 100 200 300 4000 100 200 300

Discord Motifs

! "′ "′′

(a1)

(a2)

(b1)

(b2)

(a) Discord finding using matrix profile (b) Motifs finding using matrix profile

Time series 𝑇

Anomaly score S#

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM. DiiP, June 2024 | 35



Anomaly Detection methods: an Example
Matrix Profile [6] (MP)

Unsupervised

Univariate

sequence

Compute the distance to the 
nearest neighbor (using the 

MASS algorithm z-norm 
Euclidean distance 

computation) and use it as 
anomaly score

4000 100 200 300 4000 100 200 300

4000 100 200 300 4000 100 200 300

Discord Motifs

! "′ "′′

(a1)

(a2)

(b1)

(b2)

(a) Discord finding using matrix profile (b) Motifs finding using matrix profile

Time series 𝑇

Anomaly score S#

Many different extensions…
- For streaming time series: STAMPi [6], DAMP [8]
- For similar recurrent anomalies: left-STAMP [6]
- Anytime or ordered:  STAMP [6], STOMP [7]
- For multivariate time series: mSTAMP [9]

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM. DiiP, June 2024 | 36



Anomaly Detection methods: an Example

80000 2000 4000 6000

𝑇𝑖𝑚𝑒	𝑠𝑒𝑟𝑖𝑒𝑠	𝑇 NormA [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised 
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909–931. DiiP, June 2024 | 37



Anomaly Detection methods: an Example

2000 50 100 150

2000 50 100 150

2000 50 100 150

𝑁+
,, 𝑤+

𝑁-,, 𝑤-

𝑁.
,, 𝑤.

... 

𝑁,

80000 2000 4000 6000

𝑇𝑖𝑚𝑒	𝑠𝑒𝑟𝑖𝑒𝑠	𝑇

... 

NormA  [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised 
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909–931. DiiP, June 2024 | 38



Anomaly Detection methods: an Example

80000 2000 4000 6000

2000 50 100 150

2000 50 100 150

2000 50 100 150

𝑁+
,, 𝑤+

𝑁-,, 𝑤-

𝑁.
,, 𝑤.

... 

𝑁,

𝑓𝑜𝑟	𝑇&,ℓ	𝑖𝑛	𝑇:	

𝑑 = 	/
/+,

𝑤! ∗ 𝑚𝑖𝑛01[+,ℓ-,3ℓ] 𝑑𝑖𝑠𝑡(𝑇&,ℓ, 𝑁
!
,.,/	)

80000 2000 4000 6000

𝑇𝑖𝑚𝑒	𝑠𝑒𝑟𝑖𝑒𝑠	𝑇
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0

𝐴𝑛𝑜𝑚𝑎𝑙𝑦	𝑠𝑐𝑜𝑟𝑒	𝑆$

... 

NormA  [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised 
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909–931. DiiP, June 2024 | 39



Anomaly Detection methods: an Example

80000 2000 4000 6000

2000 50 100 150

2000 50 100 150

2000 50 100 150

𝑁+
,, 𝑤+

𝑁-,, 𝑤-

𝑁.
,, 𝑤.

... 

𝑁,

𝑓𝑜𝑟	𝑇&,ℓ	𝑖𝑛	𝑇:	

𝑑 = 	/
/+,

𝑤! ∗ 𝑚𝑖𝑛01[+,ℓ-,3ℓ] 𝑑𝑖𝑠𝑡(𝑇&,ℓ, 𝑁
!
,.,/	)

𝑇&,ℓ

80000 2000 4000 6000

𝑇𝑖𝑚𝑒	𝑠𝑒𝑟𝑖𝑒𝑠	𝑇

1

0

𝐴𝑛𝑜𝑚𝑎𝑙𝑦	𝑠𝑐𝑜𝑟𝑒	𝑆$

... 

𝑇′&,ℓ

NormA  [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised 
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909–931. DiiP, June 2024 | 40



Anomaly Detection methods: an Example

80000 2000 4000 6000

2000 50 100 150

2000 50 100 150

2000 50 100 150

𝑁+
,, 𝑤+

𝑁-,, 𝑤-

𝑁.
,, 𝑤.

... 

𝑁,

𝑓𝑜𝑟	𝑇&,ℓ	𝑖𝑛	𝑇:	

𝑑 = 	/
/+,

𝑤! ∗ 𝑚𝑖𝑛01[+,ℓ-,3ℓ] 𝑑𝑖𝑠𝑡(𝑇&,ℓ, 𝑁
!
,.,/	)

𝑇&,ℓ

80000 2000 4000 6000

𝑇𝑖𝑚𝑒	𝑠𝑒𝑟𝑖𝑒𝑠	𝑇

1

0

𝐴𝑛𝑜𝑚𝑎𝑙𝑦	𝑠𝑐𝑜𝑟𝑒	𝑆$

... 

𝑇′&,ℓ

[25] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021. SAND: streaming subsequence anomaly detection. 
Proc. VLDB Endow. 14, 10 (June 2021), 1717–1729.

SAND  [25]

Distance-based approach that summarize the time series into a 
weighted set of subsequences, and can be updated incrementally 

for new arriving batches of data points

NormA  [10]

Unsupervised

Univariate

sequence

Distance-based approach that 
summarize the time series into 
a weighted set of subsequences 
and use the distance to them as 

anomaly score
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Anomaly Detection methods: Density-based

50000 1250 3750

Methods that estimate the density of the space (points or subsequences) and identify as anomalies 
points (or sequences)that are in low-density subspace.

Time series 𝑇
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Anomaly Detection methods: Density-based

50000 1250 3750

Methods that estimate the density of the space (points or subsequences) and identify as anomalies 
points (or sequences)that are in low-density subspace.

Time series 𝑇

Tree-based approaches [11] Distribution-based 
Approaches [12]

Graph-based approaches [13]

…
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Anomaly Detection methods: an Example
Isolation Forest [11]

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

0 splits 0 splits

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

1 splits 1 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

2 splits 2 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

3 splits 3 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

4 splits 3 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

5 splits 3 splits

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

ITree1 ITree2 ITree3 ITreen

...

Instance N

Instance N

Instance N

Instance N

Instance A

Instance A

Instance A Instance A

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example

Unsupervised

Univariate/Multivariate

Point/sequence

Density-based approach that 
split the space randomly and 

using the depth of the trees to 
identify anomalies

ITree1 ITree2 ITree3 ITreen

...

Instance N

Instance N

Instance N

Instance N

Instance A

Instance A

Instance A Instance A

ITree1 ITree2 ITree3 ITreen

...

Instance N

Instance N

Instance N

Instance N

Instance A

Instance A

Instance A Instance A

ITree1 ITree2 ITree3 ITreen

...

Instance N

Instance N

Instance N

Instance N

Instance A

Instance A

Instance A Instance A

Isolation Forest [11]

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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Anomaly Detection methods: an Example
Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

𝑁(1)

𝑁(")

𝑁(2)

𝑁(3)

𝑁(4)

𝑁(5)

𝐺ℓ=

For a given subsequence 𝑇!,ℓ and its corresponding path
𝑃67 =< 𝑁(!), 𝑁(!:-), … , 𝑁 !:ℓ >,	we define the normality score as follows:

𝑁𝑜𝑟𝑚 𝑃67 =/
&;!

!:ℓ3-𝑤 𝑁 & , 𝑁 &:- deg(𝑁 & − 1)
ℓ

Each node is an ensemble of similar 
subsequences.

Each edge is associated to a weight 
𝑤 that corresponds to the number 
of times a subsequence move from 
one node to another.

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834 DiiP, June 2024 | 52



Anomaly Detection methods: an Example
Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834

𝐺ℓ=

𝑇',ℓ
𝑇'61,ℓ

𝑇'6",ℓ

𝑁(1)

𝑁(")

𝑁(2)

𝑁(3)

𝑁(4)

𝑁(5)

𝑇',ℓ61

𝑇*61,ℓ
𝑇*6",ℓ

𝑇*,ℓ

𝑇',ℓ

𝑇'6",ℓ

𝑇'61,ℓ

𝑁(1)

𝑁(")

𝑁(2)

𝑁(3)

𝑁(4)

𝑁(5)

𝐺ℓ=

𝑇*,ℓ61
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Anomaly Detection methods: an Example
Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834

𝑟0 	

𝑣123 	

m𝑎𝑥 𝑇 ∗ 𝟏ℓ45 𝑟6 	
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Anomaly Detection methods: an Example
Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834
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Anomaly Detection methods: an Example
Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834
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Anomaly Detection methods: an Example
Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories
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(1) subsequence embedding (3) edge creation

[26] Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB 
Journal 30, 579–602 (2021).

DADS  [26]

Distributed version of Series2Graph
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Anomaly Detection methods: an Example
Series2Graph [13]

Unsupervised

Univariate

subsequence

Density-based approach that 
convert the time series into a 

graph and detect unusual 
trajectories

52000 1300 2600 3900 6500

Snippet of SED time series [14]

Pattern following 
an unusual path in 

the graph

Pattern following 
a recurrent path 

in the graph

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc. 
VLDB Endow. 13, 12 (August 2020), 1821–1834 DiiP, June 2024 | 58



Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used 
to detect if there is an anomaly or not. 

50000 1250 2500 3750

𝑇'0ℓ,ℓ 𝑇'
𝑇'
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Anomaly Detection methods: Forecasting-based
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Anomaly Detection methods: Forecasting-based
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Anomaly Detection methods: Forecasting-based
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Anomaly Detection methods: an Example
LSTM-AD [15]

Semi-supervised

Univariate/Multivariate

Point/sequence

Model that stack multiple LSTM 
cell and use the output to 

predict the next value!! !! !" !!
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[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shro, and Puneet Agarwal. 2015. Long Short Term Memory Networks for Anomaly 
Detection in Time Series. (2015). DiiP, June 2024 | 65



Anomaly Detection methods: an Example

Semi-supervised

Univariate/Multivariate

Point/sequence

Convolutional-based approach 
(2 convolutional layers) taking 

as input a sequence and aims to 
predict the next value.

50000 1250 2500 3750

𝑇'0ℓ,ℓ

𝑇'6"

Conv layer 1

MaxPooling Conv layer 2

MaxPooling

Dense layer

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection 
in Time Series. IEEE Access 7 (2019), 1991–2005.

DeepAnT [16] (CNN)
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Anomaly Detection methods: an Example
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Univariate/Multivariate

Point/sequence

Convolutional-based approach 
(2 convolutional layers) taking 
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Anomaly Detection methods: an Example

Semi-supervised

Univariate/Multivariate

Point/sequence

Convolutional-based approach 
(2 convolutional layers) taking 

as input a sequence and aims to 
predict the next value.
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𝑇'6"

Conv layer 1

MaxPooling Conv layer 2

MaxPooling

Dense layer𝑇'0ℓ,ℓ

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection 
in Time Series. IEEE Access 7 (2019), 1991–2005.

DeepAnT [16] (CNN)
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50000 1250 2500 3750

𝑆$,! = 𝑇!,ℓ 	− 𝑇!,ℓ′

Anomaly Detection methods: Reconstruction-
based
Methods that aims to reconstruct the time series 𝑇 and use the reconstruction error to detect if the 
time series is an anomaly or not. 

0 20 40 60

50000 1250 2500 3750

Time series 𝑇
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𝑓 𝑇!,ℓ =	𝑇!,ℓ′
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Anomaly Detection methods: Reconstruction-
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Anomaly Detection methods: an Example
AutoEncoders [17] (AE)

Semi-supervised

Univariate/Multivariate

Point/sequence

Neural Network composed of an 
encoder (that reduce the 

dimensionality) and decoder 
that reconstruct the time series. 
The objective is to minimize the 

reconstruction error.

[17] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings 
of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia QLD, Australia) (MLSDA’14). DiiP, June 2024 | 72



Anomaly Detection methods: Existing 
benchmark
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Anomaly Detection methods: Existing 
benchmark

HEX/UCR [18]

Set of 250 time series with 
labels.

Details

- The labels have been 
manually checked and are 
reliable

- Each time series contains 
only 1 labeled anomaly

TimeEval [5]

Set of 976 time series with 
labels.

Details

- New synthetic benchmark 
GutenTag used to tune 
parameters

- Only Time series with low 
contamination rate (< 0.1)

- Time series with at least one 
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with 
labels.

Details

- Collected as proposed in the 
literature (no filtering based 
on contamination, size or 
label quality)

- Artificial and synthetic data 
generation methods for 
reliable labels
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Anomaly Detection methods: Existing 
benchmark

HEX/UCR [18]

Set of 250 time series with 
labels.

Details

- The labels have been 
manually checked and are 
reliable

- Each time series contains 
only 1 labeled anomaly

TimeEval [5]

Set of 976 time series with 
labels.

Details

- New synthetic benchmark 
GutenTag used to tune 
parameters

- Only Time series with low 
contamination rate (< 0.1)

- Time series with at least one 
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with 
labels.

Details

- Collected as proposed in the 
literature.

- No filtering based on 
contamination, size or label 
quality.

Real datasets collection
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Anomaly Detection methods: 
Experimental evaluation

Methods AUC-ROC
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Observations on TimeEval [5]:

- Distance-based and Density-based methods 
have a better accuracy (AUC-ROC) than 
forecasting and reconstruction-based 
approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a 
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.
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Observations on TimeEval [5]:

- Distance-based and Density-based methods 
have a better accuracy (AUC-ROC) than 
forecasting and reconstruction-based 
approaches

- Semi-supervised methods are not 
outperforming Unsupervised approaches 

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a 
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779–1797.
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Anomaly Detection methods: 
Experimental evaluation

Observations on HEX/UCR [18]:

- Distance-based methods have a better 
accuracy (AUC-ROC) than forecasting and 
distribution-based approaches

[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion 
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023.
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Anomaly Detection methods: 
Experimental evaluation

Observations on TSB-UAD [19]:

- Distance-based methods have a better 
accuracy (AUC-ROC) than forecasting-based 
methods. 

- Isolation Forest (Tree-based and not 
proposed for time series) have also a strong 
accuracy

- AutoEncoder (AE) is also very accurate.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an 
end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Anomaly Detection methods: 
Experimental evaluation

Observations on TSB-UAD [19]:

- Forecasting methods (LSTM and CNN) are 
very accurate for point anomalies

- But have poor performances on sequence-
based anomalies.

Point-based anomaly sequence-based anomaly

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael 
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Anomaly Detection methods: 
Experimental evaluation

Observations on TSB-UAD [19]:

- The ratio of normal/abnormal points has a 
strong impact on the methods ranking.

Ratio>0.1 Ratio<0.001

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael 
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Anomaly Detection methods: Experimental evaluation
Observation from the results applied on specific datasets (TSB-UAD [19])

There is no overall winner.

(a.1) Example from ECG dataset (b.1) Example from MGAB dataset (c.1) Example from Daphnet dataset (d.1) Example from YAHOO dataset

(a.2) ECG best detector: NormA

(b.2) MGAB best detector: LOF

(c.2) Daphnet best detector: HBOS

(d.2) YAHOO best detector: CNN

(a.1) Example from ECG dataset

(b.1) Example from MGAB dataset

(c.1) Example from Daphnet dataset

(d.1) Example from YAHOO dataset
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[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series 
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697–1711.
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Perspectives and challenges
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Conclusion and Open Problems
If you are interested in anomaly detection in time series… 

S. Schmidl et al. PVLDB (2022)
[5]

J. Paparrizos et al. PVLDB (2022)
[19]

R. Wu et al. TKDE (2021)
[18]

A. Blazquez-Garcia et al. ACM 
Computing Survey (2021) [24]

https://github.com/TheDatumOrg/
TSB-UAD

https://github.com/HPI-
Information-Systems/TimeEval

https://wu.renjie.im/research/ano
maly-benchmarks-are-flawed/
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PyPI v0.0.5, Python 3.8

GitHub Documentation

Pip install tsb-kit



Conclusion and Open Problems
Context-aware Unsupervised Anomaly Detection

80000 2000 4000 6000

Daylight 
Saving Time 

(DST)

Flooding Snowstorm

number of taxi passengers in New York City
Christmas 

week
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Conclusion and Open Problems
Evaluating Anomaly Detection

𝑒𝑥1 	𝐸𝑥𝑎𝑚𝑝𝑙𝑒	𝑜𝑛	𝐼𝑂𝑃𝑆 𝑒𝑥2 	𝐸𝑥𝑎𝑚𝑝𝑙𝑒	𝑜𝑛	𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑐𝑜𝑝𝑒 𝑒𝑥3 	𝐸𝑥𝑎𝑚𝑝𝑙𝑒	𝑜𝑛	𝑁𝐴𝐵

What is the problem here?
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80000 2000 4000 6000

80000 2000 4000 6000

Time Series

Anomaly score

Labels

Thresholds T

Threshold-based Evaluation 
Measures:

Conclusion and Open Problems
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80000 2000 4000 6000

80000 2000 4000 6000

Time Series

Anomaly score

Labels

Thresholds T

Threshold-based Evaluation 
Measures:

- Precision: /7
/7687

- Recall (true positive rate): /7
/7689

- False positive rate: 87
876/9

- F-score: "6:$ ∗7<=>'?'.-
:$∗7<=>'?'.-6@=>A,,

TP

FN
FP TN

Conclusion and Open Problems
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Labeling can be an issue for time 
series [22]:

- Misalignment can lead to 
significant changes of 
accuracy values.

- This is a real issue because of:

- Methods that produce 
misaligned anomaly 
scores.

- Different Labeling 
strategies between 
domains and applications

12000 300 600 900

𝑎𝑛𝑜𝑚𝑎𝑙𝑦	
1 	𝑇𝑖𝑚𝑒	𝑠𝑒𝑟𝑖𝑒𝑠

ℓ

12000 300 600 900

2 	𝐴𝑛𝑜𝑚𝑎𝑙𝑦	𝑠𝑐𝑜𝑟𝑒
 : 𝑆𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑚𝑒𝑡ℎ𝑜𝑑 ℓ
 : 𝑃𝑜𝑖𝑛𝑡	𝑚𝑒𝑡ℎ𝑜𝑑

𝑒𝑥1 	𝐸𝑥𝑎𝑚𝑝𝑙𝑒	
𝑜𝑛	𝐼𝑂𝑃𝑆

𝑒𝑥2 	𝐸𝑥𝑎𝑚𝑝𝑙𝑒	𝑜𝑛	
𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑐𝑜𝑝𝑒

𝑒𝑥3 	𝐸𝑥𝑎𝑚𝑝𝑙𝑒	
𝑜𝑛	𝑁𝐴𝐵
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3 	𝐿𝑎𝑏𝑒𝑙𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦:

ℓ

𝑎𝑛𝑜𝑚𝑎𝑙𝑦 + 𝑟𝑖𝑔ℎ𝑡	𝑏𝑜𝑟𝑑𝑒𝑟:

𝑎𝑛𝑜𝑚𝑎𝑙𝑦 + 𝑏𝑜𝑟𝑑𝑒𝑟𝑠:
𝑎𝑛𝑜𝑚𝑎𝑙𝑦:

Conclusion and Open Problems
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Conclusion and Open Problems
If you are interested in evaluation measures for anomaly detection… 

Threshold-based

Precision, Recall
F-score

AUC-based

AUC-PR, AUC-ROC

Generic measures Time series measures

Threshold-based [23,31]

RPrecision, RRecall
RF-score, affiliation-based measures

AUC-based [5]

AUC-PTRT

VUS-based [22]

VUS-ROC, VUS-PR
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Conclusion and Open Problems
If you are interested in evaluation measures for anomaly detection… 

https://arxiv.org/abs/2303.01272https://www.vldb.org/pvldb/vol15
/p2774-paparrizos.pdf

https://arxiv.org/abs/1803.03639 https://arxiv.org/abs/2206.13167

S. Sørbø et al. DAMI 2024 [29]J. Paparrizos et al. PVLDB 2022 [22]N. Tatbul et al. NeurIPS 2018 [23] A. Huet et al. KDD 2022 [31]
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Conclusion and Open Problems
Model selection for anomaly detection
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(c.2) Daphnet best detector: HBOS

(d.2) YAHOO best detector: CNN
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Choose Wisely [29]
An experimental evaluation of model selection for 

time series anomaly detection

VLDB 2023 ICDE 2024
[29] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and Themis Palpanas. 2023. 
Choose Wisely: An Extensive Evaluation of Model Selection for Anomaly Detection in Time Series. Proc. 
VLDB Endow. 16, 11 (July 2023), 3418–3432.
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