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Executive Summary

• data collected at unprecedented rates

• they enable data-driven scientific 
discovery

• lots of these data are high-d vectors

▫ takes days-weeks to analyze big 
high-d vector collections

10
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goal: analyze big high-d vectors in seconds
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Data Series
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Data Series
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Data Series
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Data Series
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Scientific Monitoring

• meteorology, oceanography, astronomy, 

finance, sociology, …
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Historical stock quotes
http://money.cnn.com/2012/04/23/markets/walmart_stock/index.htm

Wind speed
From ocean observing node project
http://bml.ucdavis.edu/boon/wind.html

Time



Telecommunications
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• analysis of call activity patterns

▫ Telecom Italia

clustermap of incoming calls time series
0

10000

20000

30000

40000

50000

60000

1
3

0 5
9

8
8

11
7

14
6

17
5

2
0

4
2

3
3

2
6

2
2

9
1

3
2

0
3

4
9

3
7

8
4

0
7

4
3

6
4

6
5

4
9

4
5

2
3

5
5

2
5

8
1

6
10

6
3

9
6

6
8

6
9

7

average number of calls for 5 smallest clusters

call activity for Easter Monday

Time



Home Networks
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• temporal usage behavior analysis of home networks

▫ Portugal Telecom

clustering based on user activity patterns
(previously unknown) frequent behavior pattern

Time



Data Centers

• cloud utilization/operation/health monitoring
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Neuroscience

• functional Magnetic Resonance Imaging (fMRI) data

▫ primary experimental tool of neuroscientists

▫ reveal how different parts of brain respond to stimuli

Themis Palpanas - dSDS - Jun 2024

20

Time



Neuroscience

• functional Magnetic Resonance Imaging (fMRI) data

▫ primary experimental tool of neuroscientists

▫ reveal how different parts of brain respond to stimuli

Themis Palpanas - dSDS - Jun 2024

21

Time



Neuroscience

• functional Magnetic Resonance Imaging (fMRI) data

▫ primary experimental tool of neuroscientists

▫ reveal how different parts of brain respond to stimuli

Themis Palpanas - dSDS - Jun 2024

22

Time



Neuroscience

• functional Magnetic Resonance Imaging (fMRI) data

▫ primary experimental tool of neuroscientists

▫ reveal how different parts of brain respond to stimuli

Themis Palpanas - dSDS - Jun 2024

23

Time



Neuroscience

• functional Magnetic Resonance Imaging (fMRI) data

▫ primary experimental tool of neuroscientists

▫ reveal how different parts of brain respond to stimuli

Themis Palpanas - dSDS - Jun 2024

24

Time



Themis Palpanas - dSDS - Jun 2024

25

Time

Entomology



Themis Palpanas - dSDS - Jun 2024

26

plant membrane
Stylet

voltage source

input resistor

V

to insect

conductive glue

to plant

Time

Entomology



Themis Palpanas - dSDS - Jun 2024

27

plant membrane
Stylet

voltage source

input resistor

V

0 50 100 150 200

10

20

to insect

conductive glue

voltage 

reading
to plant

Time

Entomology



Remote Sensing

• Earth monitoring
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Remote Sensing

• Earth monitoring
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Remote Sensing

• Earth monitoring
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Remote Sensing

• Earth monitoring
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Astrophysics
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Schinnerer et al.

Astrophysics
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GTCAATGGCCAGGATATTAGAACAGTACTCTGTGAACCCTATTTATGGTGGCACCCCTTAGACTAA
GATAACACAGGGAGCAAGAGGTTGACAGGAAAGCCAGGGGAGCAGGGAAGCCTCCTGTAAAGAG
AGAAGTGCTAAGTCTCCTTTCTAAGGCACATGATGGATTCAAGGGAAAGCCACATTTGACTAAAGC
CCAAGGGATTGTTGCTTCTAATCCGATTTCTTGGCAGAAGATATTACAAACTAAGAGTCAGATTAA
TATGTGGGTGCCAAAATAAATAAACAAATAATTGAATAATCCCTGGAGGTTTAAGTGAGGAGAAA
CTCCTCCACAGCTTGCTACCGAGGCAGAACCGGTTGAAACTGAAATGCATCCGCCGCCAGAGGATC
TGTAAAAGAGAGGTTGTTACGAAACTGGCAACTGCCAACCAAAGTCCACCAATGGACAAGCAAAA
AAGAGCACTCATCTCATGCTCCCAAGGATCAACCTTCCCAGAGTTTTCACTTAAGTGGCCACCAAG
CCAGTTGTCAATCCAGGGCTTTGGACTGAAATCTAGGGCTTCATCCGCTACCTCAGAGTGTCTTCT
ATTTCTTCCAGCCAGTGACAAATACAACAAACATCTGAGATGTTTTAGCTATAAATCCTTTACAATT
GTTATTTATGTCTTAACTTTTGTTATACCTGGAAAAGTAGGGGAAACAATAAGAACATACTGTCTT
GGCCAAGCATCCAAGGTTAAATGAGTTATGGAAATTCATTTGGGAGCCAAGACATTGCACGTGGT
TATTTATTAGTCACCCAAGCATGTATTTTGCATGTCCATCAGTTGTTCTTGGCCAAAAGAGCAGAAT
CAATGAGCCGCTGCAGATGCAGACATAGCAGCCCCTTGCAGGGACAAGTCTGCAAGATGAGCATT
GAAGAGGATGCACAAGCCCGGTAGCCCGGGAAATGGCAGGCACTTACAAGAGCCCAGGTTGTTGC
CATGTTTGTTTTTGCAACTTGTCTATTTAAAGAGATTTGGGCAATGGCCAGGATATTAGAACAGTA
CTCTGTGAACCCTATTTATGGTAGCACCCCTTAGACTAAGATAACACAGGGAGCAAGAGGTTGACA
GGAAAGCCAGGGGAGCAGGGAAGCCTCCTGTAAAGAGAGAAGTGCTAAGTCTCCTTTCTAAGGCA
CATGATGGATCAAGGGAAAGTCACATTTGACTAAAGCCCAAGGGATTGTTGCTTCTAATCCGATTC
TTGGCAGAAGATATTGCAAACTAAGAGTCAGATTAATATGTGGGTGCCAAAATAAATAAACAAATA
ATTGAATAATCCCTGGAGGTTTAAGTGAGGAGAAACTCCTCCACACTTGCTACCGAGGCAGAACCG
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Medicine

Mass
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Medicine

FrequencyMass



Data Series
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• represented as N d-dimensional vector

41

dimensionality d

sequence dimension

x1 x2
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Data Series Collections
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• represented as N d-dimensional vectors
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What do we want to do with them?

- simple query answering

Simlarity
Search

select some 
data series

select values 
in time 
interval

select values 
in some 

range

combinations 
of those
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• a solved(?) problem

▫ your favorite DBMS

▫ …

▫ InfluxData

▫ kx

▫ Riak TS

▫ OpenTSDB

▫ Gorilla/Beringei

▫ TimescaleDB

▫ KairosDB

▫ Druid

▫ …

Themis Palpanas - dSDS - Jun 2024
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- simple query answering



What do we want to do with them?

- complex analytics

Simlarity
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining
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What do we want to do with them?
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Outlier 

Detection

Frequent 
Pattern 
Mining
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HARD, because of very high dimensionality:
each data series has 100s-1000s of points!

even HARDER, because of very large size:
millions to billions of data series (multi-TBs)!
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seismology: seismic sequences, 100s of TB
partner: Atomic Energy Commission (CEA)
Paris, France

neuroscience: intracranial EEG sequences, TB/patient
partner: Paris Brain Institute (ICM)

Paris, France

astrophysics: gravitational waves, TB/hour
partner: European Gravitational Observatory (EGO)

Pisa, Italy

engineering: operation monitoring, TB-PB
partners: Airbus / Électricité de France (EDF)
Toulouse / Paris, France
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Real Use-Cases
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Nearest Neighbor (NN) Queries… Publications

PVLDB‘19
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OQ

Ox

exact 
NN

Nearest Neighbor (NN) Queries… Publications

PVLDB‘19
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Prob( dx = min{di} ) = 1

result is exact NN
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dng

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries… Publications

PVLDB‘19
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OQ

Ong

Ox
Oε

exact 
NN

dε

dng

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries… Publications

PVLDB‘19
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Oδε

Ong

Ox

OQ

δ-ε-approximate
neighbor

Oε

exact 
NN

dε

dδε

dng

Prob(dε <= dx (1+ε)) >= δ

result within (1+ ε) of exact NN 

with probability at least δ

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries… Publications

PVLDB‘19
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Problem Variations

• similarity search is based on measuring distance 
between vectors

• A variety of distance measures have been proposed
▫ Lp distances (0<p≤2, ∞),  (Euclidean for p = 2)

▫ Cosine distance 

▫ Correlation

▫ Hamming distance

▫ …

High-d Vectors Distance Measures
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Euclidean Distance

v1
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Euclidean Distance

v1
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Euclidean Distance

• Euclidean distance

▫ pair-wise point distance

v1
v2



Similarity Matching

Fast Euclidean Distance

• similarity matching requires many distance computations

▫ can significantly slow down processing

 because of large number of data series in the collection

 because of high dimensionality of each data series

Themis Palpanas - dSDS - Jun 2024
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Similarity Matching

Fast Euclidean Distance

• similarity matching requires many distance computations

▫ can significantly slow down processing

 because of large number of data series in the collection

 because of high dimensionality of each data series

• in case of Euclidean Distance, we can speedup processing by

▫ smart implementation of distance function

▫ early abandoning
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Similarity Matching

Fast Euclidean Distance

• similarity matching requires many distance computations

▫ can significantly slow down processing

 because of large number of data series in the collection

 because of high dimensionality of each data series

• in case of Euclidean Distance, we can speedup processing by

▫ smart implementation of distance function

▫ early abandoning

• result in considerable performance improvement
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

𝐸𝐷 𝑋, 𝑌 = 

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

Publications

Keogh-
DMKD’03

Themis Palpanas - dSDS - Jun 2024

75



Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

▫ do not compute the square root (of the Euclidean 
Distance)

𝐸𝐷(𝑋, 𝑌) =

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

Publications

Keogh-
DMKD’03
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

▫ do not compute the square root (of the Euclidean 
Distance)

• does not alter the results

• saves precious CPU cycles

𝐸𝐷(𝑋, 𝑌) =

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

Publications

Keogh-
DMKD’03
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Similarity Matching

Fast Euclidean Distance

• early abandoning

▫ stop the distance computation as soon as it exceeds the 
value of bsf

𝐸𝐷 𝑋, 𝑌 =

𝑖=1

𝑚

𝑥𝑖 − 𝑦𝑖
2 , 𝑚 ≤ 𝑛

Publications

Keogh-
DMKD’03
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Similarity Matching

Fast Euclidean Distance

• early abandoning

▫ stop the distance computation as soon as it exceeds the 
value of bsf

• does not alter the results

• avoids useless computations

𝐸𝐷 𝑋, 𝑌 =

𝑖=1

𝑚

𝑥𝑖 − 𝑦𝑖
2 , 𝑚 ≤ 𝑛

Publications

Keogh-
DMKD’03
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Distance Measures:

Euclidean, DTW, LCSS

• Euclidean

▫ rigid
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Distance Measures:

Euclidean, DTW, LCSS

• Euclidean
▫ rigid

• Dynamic Time Warping (DTW)
▫ allows local scaling

• Longest Common SubSequence (LCSS)
▫ allows local scaling

▫ ignores outliers
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Pearson’s Correlation Coefficient

• used to see linear dependency between values of data series of 
equal length, n

Themis Palpanas - dSDS - Jun 2024
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Pearson’s Correlation Coefficient

•
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Pearson’s Correlation Coefficient

• used to see linear dependency between values of data series of 
equal length, n

• takes values in [-1,1]
▫ 0 – no correlation
▫ -1, 1 – inverse/direct correlation

• there is a statistical test connected to PC, where null hypothesis 
is the no correlation case (correlation coefficient = 0)
▫ test is used to ensure that the correlation similarity is not caused by 

a random process 

Themis Palpanas - dSDS - Jun 2024

85



PC and ED

• Euclidean distance: 

• In case of Z-normalized data series (mean = 0, stddev = 1):

and

so the following formula is true:  

• direct connection between ED and PC for Z-normalized data 
series
▫ if ED is calculated for normalized data series, it can be directly 

used to calculate the p-value for statistical test of Pearson’s 
correlation instead of actual PC value.

𝐸𝐷2 = 2𝑛 𝑛 − 1 − 2
𝑖=1

𝑛

𝑥𝑖𝑦𝑖

Themis Palpanas - dSDS - Jun 2024
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Distance Measures:

Cosine Distance

▫ Cosine distance = 1 - cosine similarity

Themis Palpanas - dSDS - Jun 2024
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Distance Measures:

Cosine Distance

▫ Cosine distance = 1 - cosine similarity

Themis Palpanas - dSDS - Jun 2024

88

▫ ED vs. Cosine similarity

 If  A and B are normalized to unit length in L2, the square of 
ED is proportional to the cosine distance:

 ||A||2=||B||2=1  →||A−B||2=2−2cos(A,B)



Maximum Inner Product Search (MIPS)
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• Problem Definition:
▫ Given a collection of candidate vectors S and a query Q , find a 

candidate vector C maximizing the inner product with the query: :

 Given S ⊂ Rd and Q ∈ Rd , C = argmaxX∈S QT X



Maximum Inner Product Search (MIPS)
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• Problem Definition:
▫ Given a collection of candidate vectors S and a query Q , find a 

candidate vector C maximizing the inner product with the query: :

 Given S ⊂ Rd and Q ∈ Rd , C = argmaxX∈S QT X

▫ MIPS is closely related to NN search:

 If ∥Q∥2 = 1,  ∥Q − X∥2 = 1 + ∥X∥2− 2QTX

▫ MIPS and NN search are equivalent when all vectors X in S have 
constant length c

▫ Otherwise, MIPS can be converted to NN search with ED or Cosine
similarity [1][2][3]

[1] Anshumali Shrivastava and Ping Li. 2014a. Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search 
(MIPS). In NIPS. 2321–2329.
[2] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir Nice, and Ulrich Paquet. 
2014. Speeding Up the Xbox Recommender System Using a Euclidean Transformation for Inner-product Spaces. In RecSys. 
257–264.
[3] B. Neyshabur and N. Srebro. 2014. On Symmetric and Asymmetric LSHs for Inner Product Search. ArXiv e-prints (Oct. 
2014).
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Pre-Processing

z-Normalization

• data series encode trends

• usually interested in identifying similar trends
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Pre-Processing

z-Normalization

• data series encode trends

• usually interested in identifying similar trends

• but absolute values may mask this similarity
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Pre-Processing

z-Normalization

• two data series with similar trends

94

v1

v2

sequence dimension
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Pre-Processing

z-Normalization

• two data series with similar trends

• but large distance…

95

v1

v2
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

96

v1

v2
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

97

Themis Palpanas - dSDS - Jun 2024



Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev

100
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one
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Pre-Processing

z-Normalization

• when to z-normalize

▫ interested in trends
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Pre-Processing

z-Normalization

• when to z-normalize

▫ interested in trends

• when not to z-normalize

▫ interested in absolute values
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Publications

Keogh -
KDD‘04

for a complete 
and detailed 
presentation, 
see tutorial:



Comparison of Representations

• which representation is the best?
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Comparison of Representations

• which representation is the best?

• depends on data characteristics
▫ periodic, smooth, spiky, …
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Comparison of Representations

• which representation is the best?

• depends on data characteristics
▫ periodic, smooth, spiky, …

• overall (averaged over many diverse datasets, using same 
memory budget), when measuring reconstruction error (RMSE)
▫ no big differences among methods

▫ DFT, PAA, DWT (Haar), iSAX slightly better

• should also take into account other factors
▫ visualization, indexable, ...

Publications

Palpanas et al.
ICDE’04

Palpanas et al.
TKDE’08

Shieh et al.
KDD’08
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GEMINI Framework

• Raw data: original full-dimensional space 

• Summarization: reduced dimensionality space

• Searching in original space costly

• Searching in reduced space faster:

▫ Less data, indexing techniques available, lower bounding

• Lower bounding enables us to

▫ prune search space: throw away data series based on reduced 

dimensionality representation

▫ guarantee correctness of answer

 no false negatives

 false positives filtered out based on raw data

Publications

Faloutsos-
SIGMOD’94
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GEMINI Solution: Quick filter-and-refine:

• extract m features (numbers, e.g., average)

• map to point in m-dimensional feature space

• organize points

• retrieve the answer using a NN query

• discard false positives

Publications

Faloutsos-
SIGMOD’94

GEMINI Framework
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GEMINI: contractiveness

• GEMINI works when:

Dfeature(F(x), F(y)) <= D(x, y)

• Note that, the closer the feature distance to the
actual one, the better

Publications

Faloutsos-
SIGMOD’94
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan

Similarity Matching

Serial Scan
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The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan

bsf = +ꝏ

Similarity Matching

Serial Scan
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Cx

Q
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Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, C1)

Similarity Matching

Serial Scan
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Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, C1)

Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, Cx)

Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, Cx)

Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Indexes vs. Scans

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

bsf     = +ꝏ

lbcur = +ꝏ

lower-bounding (lb) property:   
dlb(Q’, Ci’)  <= d(Q, Ci)

Publications

Faloutsos-
SIGMOD’94
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Memory

Disk

Cx

Q

The summary of Q (Q’) is compared to 

the summary of each candidate

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
bsf     = +ꝏ

lbcur = dlb(Q’,C1’)
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = +ꝏ

lbcur = dlb(Q’,C1’) < bsf  
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = +ꝏ

lbcur = dlb(Q’,C1’) < bsf  
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Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C1’) < bsf
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) 
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Q
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Q
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsfd(Q,C2) >= 

LB Property   
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned
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dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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dataset before returning the answer Cx
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its summary cannot be pruned 
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Answering a similarity search query using different access paths
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bsf     = +ꝏ
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dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

2   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueue
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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4
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bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) Queue
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,C3)
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsf2
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,C3)
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) 
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Queue 4  
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) > bsf
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Queue 4  
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) > bsf

3  

Queue 4  

Themis Palpanas - dSDS - Jun 2024

161



162

Themis Palpanas - dSDS - Jun 2024



Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf
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Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf

lbcur =  dlb(OQ’, Ox’) < (1+ε) bsf
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Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε) = δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)
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Memory

Disk

Extensions: Skip-Sequential Scans

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)
If bsf <=(1+ε) rδ(OQ)

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ
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Memory

Disk

2

4

1

Q

bsf = d(OQ,O3)

lbcur =  dlb(OQ’,      ) < bsf

3

1 2

Extensions: Indexes

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

1   

Ox

Themis Palpanas - dSDS - Jun 2024

167



Memory

Disk

2

4

1

Q

bsf = d(OQ,O3)

lbcur =  dlb(OQ’, ) < bsf

lbcur =  dlb(OQ’, ) < (1+ε) bsf

3

1 2

1   

Extensions: Indexes

1   

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

Ox
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Memory

Disk

2

4

1

Q

bsf = d(OQ,O3)

If bsf <=     

3

1 2

Extensions: Indexes

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ

(1+ε) rδ(OQ)

Ox
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for a more complete and detailed presentation, see tutorial:

Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas. Big Sequence 
Management: Scaling Up and Out. EDBT 2021

http://helios.mi.parisdescartes.fr/~themisp/publications.html#tutorials

170

Themis Palpanas - dSDS - Jun 2024

Publications

Echihabi-
EDBT‘21

http://helios.mi.parisdescartes.fr/~themisp/publications.html#tutorials


Query answering process

Query Answering ProcedureData Loading Procedure

Raw data
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Query answering process

data-to-query time 

Query Answering ProcedureData Loading Procedure

Data Series 
Database/
Indexing

DataRaw data
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Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries
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Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries

Themis Palpanas - dSDS - Jun 2024 187

these times are big!



Themis Palpanas - dSDS - Jun 2024

Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

we have proposed the 

state-of-the-art
solutions for both problems!

Data Series 
Database/
Indexing

DataRaw data

Queries
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A data series T
SAX Representation

• Symbolic Aggregate approXimation
(SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)

Themis Palpanas - dSDS - Jun 2024

191



-3

-2

-1

0

1

2

3

4 8 12 160

A data series T
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PAA(T,4)
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SAX Representation

• Symbolic Aggregate approXimation
(SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)
 T typically normalized to μ = 0, σ = 1

 PAA(T,w) =                         

where  

wttT ,,1 =
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=
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A data series T
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SAX Representation

• Symbolic Aggregate approXimation
(SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)
 T typically normalized to μ = 0, σ = 1

 PAA(T,w) =                         

where  

▫ (2) Discretize into a vector of symbols 
 Breakpoints map to small alphabet a

of symbols

wttT ,,1 =


+−=

=

i

ij

jn
w

i

w
n

w
n

Tt
1)1(
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iSAX Representation

• iSAX offers a bit-aware, quantized, multi-resolution 
representation with variable granularity

=    { 6, 6, 3, 0}  =    {110 ,110 ,0111 ,000}

=    { 3, 3, 1, 0}    =    {11  ,11  ,011 ,00 }

=    { 1, 1, 0, 0}    =    {1 ,1 ,0 ,0  }
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index
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iSAX Index

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

• Approximate Search
▫ Match iSAX representation at each level

• Exact Search
▫ Leverage approximate search

▫ Prune search space

 Lower bounding distance
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Adaptive Data Series Index:

ADS+

• novel paradigm for building a data series index

▫ do not build entire index and then answer queries

▫ start answering queries by building the part of the index 
needed by those queries

• still guarantee correct answers
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Adaptive Data Series Index:

ADS+

• intuition for proposed solution

▫ build the iSAX index using the iSAX representations
▫ just like iSAX2+

▫ but start with a large leaf size
▫ minimize initial cost

▫ postpone leaf materialization to query time
▫ only materialize (at query time) leaves needed by queries

▫ parts that are queried more are refined more
▫ use smaller leaf sizes (reduced leaf materialization and query 

answering costs)
Themis Palpanas - dSDS - Jun 2024
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ROOT

I1 I2

LBL

FBL

Raw data

DISK

RAM

Start building an index with only the 
iSAX representations
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ROOT

I1 I2

LBL

FBL

Raw data

DISK

RAM

Read the data-series one by one from the raw file
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ROOT

I1 I2

LBL

FBL

Raw data

DISK

RAM

Convert them to iSAX
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ROOT

I1 I2

LBL

FBL

Raw data

DISK

RAM

Store only iSAX in memory (64 times smaller) ~1%

210
Themis Palpanas - dSDS - Jun 2024



ROOT

I1 I2

LBL

FBL

Raw data

DISK

RAM

Discard raw data and keep pointer to raw file
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ROOT

I1

LBL

FBL

Raw data

I2

DISK

RAM

Continue loading data until we run out of memory
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ROOT

I1

L3 L4L1 L2

I2

LBL

FBL

Raw data

DISK

RAM

Expand each sub-tree and move data to LBL
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Raw data

PARTIAL
PARTIAL

ROOT

I1

L5L1 L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL
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Raw data

PARTIAL
PARTIAL

ROOT

I1

L5L1 L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1
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Raw data

PARTIAL
PARTIAL

ROOT

I1

L5L1 L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

TOO BIG!
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Raw data

PARTIAL
PARTIAL

ROOT

I1

L5L2

L1

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

TOO BIG!
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Raw data

PARTIAL

PARTIAL

ROOT

I1

L5

I3

L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

PARTIAL

L5L4

Adaptive split

Create a smaller leaf

227
Themis Palpanas - dSDS - Jun 2024



Raw data

PARTIAL

PARTIAL

ROOT

I1

L5

I3

L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

PARTIAL

L5L4

Load data in LBL and
answer the query
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Raw data

PARTIAL

PARTIAL

ROOT

I1

L5

I3

L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

FULL

L5L4

We spill to the disk when we run out of memory
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Parallelization/Distribution?
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Parallelization/Distribution?

• discussion so far assumed serial execution in a single core

▫ focus on efficient resource utilization

▫ squeeze the most out of a single core

▫ produce scalable solutions at lowest possible cost

 also suitable for analysts with no access to/expertise for clusters
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Need for

Parallelization/Distribution

• take advantage of modern hardware!

▫ Single Instruction Multiple Data (SIMD) 

 natural for data series operations

▫ multi-tier CPU caches

 design data structures aligned to cache lines

▫ multi-core and multi-socket architectures

 use parallelism inside each computation server

▫ Graphics Processing Units (GPUs)

 propose massively parallel techniques for GPUs

▫ new storage solutions: SSDs, NVRAM

 develop algorithms that take these new characteristics/tradeoffs into 
account

▫ compute clusters

 distribute operation over many machines Themis Palpanas - dSDS - Jun 2024
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Need for

Parallelization/Distribution

• further scale-up and scale-out possible!

▫ techniques inherently parallelizable

 across cores, across machines
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Need for

Parallelization/Distribution
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• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

Need for

Parallelization/Distribution
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Need for

Parallelization/Distribution
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• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current single-node parallel solution

▫ masks out the CPU cost

Need for

Parallelization/Distribution
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• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

Need for

Parallelization/Distribution
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• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

Need for

Parallelization/Distribution
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goes down from several days to few hours!

Publications

ICDM‘17

TKDE’18

BigData’18

PKDD’19



Need for

Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

• MESSI: current single-node parallel solution + in-memory data

▫ answers exact queries at interactive speeds: ~50msec on 100GB

• SING: current single-node parallel solution + GPU + in-memory data

▫ answers exact queries at interactive speeds: ~32msec on 100GB
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• Distributed, in-memory solution for SIMD, multi-core, multi-socket 
architectures

▫ allows in-memory processing (across machines) of very large datasets

• Odyssey addresses the following challenges

▫ Query Scheduling: Which queries to which nodes?

 Query Execution Time estimations

 Flexible Replication Schemes

 Dynamic Scheduling

▫ Load Balancing: Enable nodes to perform useful and equal work

 Density-aware Data Distribution

 Efficient work-stealing
Themis Palpanas - dSDS - Jun 2024

259

Publications

Chatzakis-
PVLDB’23Odyssey

Distributed, Parallel, In-Memory Indexing 



Odyssey
• achieves all goals
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up to 3x faster 
than best competitor

scalable query answering
(almost linear)

more replication leads to 
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Further Advances

• how do we further reduce the wasted (gray) effort?
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• how do we further reduce the wasted (gray) effort?

▫ progressive query answering

 produce intermediate answers with (probabilistic) quality guarantees
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Further Advances

• how do we further reduce the wasted (gray) effort?

▫ progressive query answering

 produce intermediate answers with (probabilistic) quality guarantees

▫ learned summarizations + index structures

 adapt to data characteristics

 build more efficient indexes

 perform more effective pruning
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Data Series vs. high-d Vectors

• two sides of the same(?) coin

▫ data series as multidimensional points

▫ for a specific ordering of the dimensions
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Data Series vs. high-d Vectors

• two sides of the same(?) coin

▫ data series as multidimensional points

▫ for a specific ordering of the dimensions

• everything we discussed applicable to high-d vectors, too!

• several techniques for similarity search in high-d vectors

▫ using LSH (SRS), space quantization (IMI), k-NN graphs (HNSW)
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High-d Vector 

Similarity Search Applications

306
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• ocean life monitoring
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High-d Vector 

Similarity Search Applications

• ocean life monitoring

• image retrieval

• recommendations

• entity matching

• fraud detection

• …



Data Series vs. high-d Vectors

• two sides of the same(?) coin

▫ data series as multidimensional points

▫ for a specific ordering of the dimensions

• everything we discussed applicable to high-d vectors, too!

• several techniques for similarity search in high-d vectors

▫ using LSH (SRS), space quantization (IMI), k-NN graphs (HNSW)

• how do these high-d vector techniques compare to data series 
techniques?

▫ have conducted extensive experimental comparison
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ng-Approximate

Similarity Search 

Methods

no guarantees

δ-ε-Approximate

δ,ε guarantees

0 ⩽ δ ⩽ 1
ε ⩾ 0

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

Publications

PVLDB‘20
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ng-Approximate

Similarity Search 

Methods

no guarantees

δ-ε-Approximate

δ,ε guarantees

0 ⩽ δ ⩽ 1
ε ⩾ 0

Probabilistic

δ < 1, ε guarantee
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δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk
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general high-d vector data
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

▫ perform the best for long vectors, in-memory and on-disk
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

▫ perform the best for long vectors, in-memory and on-disk

▫ perform the best for disk-resident vectors
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NSW Graphs

• Augment approximate kNN graphs with long range links:

▫ Milgram experiment

▫ Shorten the greedy algorithm path to log(N)

Publications

Kleinberg
STOC’ 00
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NSW Graphs

• Augment approximate kNN graphs with long range links:

▫ Milgram experiment

▫ Shorten the greedy algorithm path to log(N)
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N2=N/4

N1=N/2

N0=N

● In HNSW we split the graph into layers 

(fewer elements at higher levels) 

● Search starts for the top layer. Greedy 

routing at each level and descend to 

the next layer.

● Maximum degree is capped while 

paths ~ log(N) → log(N) complexity 

scaling.

● Incremental construction 

● ng-approximate search

Publications

Malkov et al.
TPAMI’ 20
Arxiv’16

HNSW

Slides by Malkov Themis Palpanas - dSDS - Jun 2024
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ELPIS
Parallel, In-Memory Indexing of Sequences
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❏ In-memory solution for SIMD, multi-
core, multi-socket architectures

❏ ELPIS combines tree and graph
structures for efficient 
in-memory ng-approximate
vector similarity search.
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ELPIS builds the index up to 8x faster,
using 40% less memory

○ Scalability of indexing time and memory footprint with dataset size (Deep)
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Parallel, In-Memory Indexing of Sequences
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ELPIS answers 10-NN queries in ~3 msec for a dataset of 1 billion vectors
with recall 0.99

○ Query Performance on 1B vectors datasets (Sift, Deep)
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ELPIS

ELPIS

Sift Dataset Deep Dataset

ELPIS
Parallel, In-Memory Indexing of Sequences



Available Solutions

• libraries

▫ ELPIS

▫ HNSW

▫ FAISS (META/Facebook)

• vector databases

▫ Pinecone

▫ milvus

• general databases

▫ Postgres with HNSW and IVF algorithms (open souree)

▫ AlloyDB with SCaNN algorithm (Google)

▫ Oracle
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Conclusions

• high-d vectors is a very common data type

▫ across several different domains and applications
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Conclusions

• high-d vectors is a very common data type

▫ across several different domains and applications

• complex high-d vector analytics are challenging

▫ have very high complexity

• data series management/indexing techniques provide much 
needed scalability

▫ work for data series and general high-d vectors (and embeddings)

▫ lead to fast complex analytics and machine learning
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Conclusions

• high-d vectors is a very common data type

▫ across several different domains and applications

• complex high-d vector analytics are challenging

▫ have very high complexity

• data series management/indexing techniques provide much 
needed scalability

▫ work for data series and general high-d vectors (and embeddings)

▫ lead to fast complex analytics and machine learning

• several exciting research opportunities
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thank you!

google: Themis Palpanas

visit: http://nestordb.com
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