
Knowledge-guided
Data Science

Shen Liang
Data Intelligence Institute of Paris (diiP)

diiP Summer School (dSDS 2024)

Outline

• Motivation for Knowledge-guided Data Science

• Knowledge Sources and Representations

• Fusing Knowledge with Data

• Conclusion

Outline

• Motivation for Knowledge-guided Data Science

• Knowledge Sources and Representations

• Fusing Knowledge with Data

• Conclusion

Data-driven Methods

• Data science, as the name suggests, is primarily driven by data, that
is, it directly learns from raw or transformed data.

• Machine Learning (ML) in a nutshell: Learn a mapping f from pre-
defined input x to output (as known as label) y. That is: y = f(x)

Task Input x Output y

Industrial fault detection Vibration signal of a machine Either “normal” or specific type of fault

Power consumption prediction Power consumption of the last 30 days

(one value per day)

Power consumption of the next 30 days

(one value per day)

Medical image segmentation Original medical image Labels (e.g. is_part_of_tumor,

not_part_of_tumor) for each pixel

Question answering Question text Answer text

… … …

Data-driven Methods

• Data science, as the name suggests, is primarily driven by data, that
is, it directly learns from raw or transformed data.

• Machine Learning (ML) in a nutshell: Learn a mapping f from pre-
defined input x to output (as known as label) y. That is: y = f(x)

• The classic data-driven ML pipeline:
• Training the ML model: feed it with a training set of known (x, y) pairs, so

that it learns a mapping f such that for each training example x, the
difference between f(x) and y is minimized.

• Testing / Predicting with the ML model: feed f with an example x’ that was
not in the training set, and let it predict its corresponding y’.

Data-driven Methods

• Data science, as the name suggests, is primarily driven by data, that
is, it directly learns from raw or transformed data.

• Machine Learning (ML) in a nutshell: Learn a mapping f from pre-
defined input x to output y.

• The classic data-driven ML pipeline:
• Training the ML model: feed it with a training set of known (x, y) pairs, so

that it learns a mapping f such that for each training example x, the
difference between f(x) and y is minimized.

• Testing / Predicting with the ML model: feed f with an example x’ that was
not in the training set, and let it predict its corresponding y’.

• The ML model only learns from the training examples, without
drawing on pre-existing domain knowledge.

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Note: What will be discussed

should only be considered a toy

example. This is not how a real

text-to-speech system works!

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation

Let’s do this in a purely data-driven (learn-
by-example) manner. That is, we solely
learn from examples in the training set.

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [na

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [nata

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

So far, the purely data-driven approach
has served us well!

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas

Let’s see if the purely data-driven
approach works too on this one.

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa

Ah oh, how to pronounce s when it is at the
end of a word?
Do we pronounce it as [s] as in Simulation?

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa

Ah oh, how to pronounce s when it is at the
end of a word?
Do we pronounce it as [s] as in Simulation?
(News flash: WRONG!)

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa

Ah oh, how to pronounce s when it is at the
end of a word?
• Data-driven methods tend not to work

well on small training sets, where the
training examples cannot sufficiently
represent all cases!

• Don’t worry: domain knowledge is here
to help!

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa

We now switch to a domain knowledge-
driven approach, utilizing the following pre-
existing knowledge:

In French, except for q, c, l, r and f, the other
consonant letters are usually not pronounced
at the end of a word.

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

We now switch to a domain knowledge-
driven approach, utilizing the following pre-
existing knowledge:

In French, except for q, c, l, r and f, the other
consonant letters are usually not pronounced
at the end of a word.

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

Knowledge-driven methods can excel in the
face of small training data!

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

Another advantage of knowledge-driven
methods is their high explainability, that is,
their ability to explain why they make a
certain prediction (rather than others) for a
testing example.

E.g. In royal and moyen, why is o seemingly
pronounced as [wa], rather than [ɔ] as in
objet?

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

In royal and moyen, why is o seemingly pronounced
as [wa], rather than [ɔ] as in objet?

Domain knowledge: When y is between two vowels, it
should be treated as i+i in pronunciation.
- Royal = roi+ial; Moyen = moi+ien
So it is not o that is pronounced as [wa], but the
implicit oi !

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

The knowledge-driven method is so cool!
Why bother using a data-driven one?

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

Maïs

Well, let’s see how a knowledge-driven
method fairs with this one…

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

Maïs [mai

To begin with, we currently do not have knowledge
on how to pronounce maï, so we need to use a
data-driven approach to bypass this.

But this is not the main problem with a knowledge-
driven approach. After all, we can always add
additional domain knowledge to tackle this.

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

Maïs [mai

The real problem with a knowledge-driven
approach is: How to pronounce the s?

If we draw on our previous knowledge,

except for q, c, l, r and f, the other consonant
letters are usually not pronounced at the end of a
word

we should make it silent, which is WRONG!

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

Maïs [mais]

If we draw on our previous knowledge,

except for q, c, l, r and f, the other consonant
letters are usually not pronounced at the end of a
word

we should make it silent, which is WRONG!

This is a special case where the s at the end
of the word is not silent!

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

Maïs [mais]

Domain knowledge can often be (over)-
simplified summarizations of complex real-
world cases, which inevitably leads to a
degree of error.

Except for q, c, l, r and f, the other consonant
letters are usually (not always!) not
pronounced at the end of a word.

Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written
French words into their pronunciations.

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Testing examples

Input x Output y

Natation [natasjɔ̃]

Pas [pa]

Maïs [mais]

Domain knowledge can often be (over)-
simplified summarizations of complex real-
world cases, which inevitably leads to a
degree of error.

In such cases, it is usually better to draw on a
data-driven approach on a larger training set.

Data-driven vs Knowledge-driven: A Summary

• Data-driven and knowledge-driven methods nicely complement each
other. Thus, it is best that we fuse them together by integrating
knowledge into a data-driven method, hence knowledge-guided data
science.
• Synonyms of knowledge-guided: informed, knowledge-informed, physics-

informed, physics-guided, mechanism-guided, …

Data-driven Methods Knowledge-driven Methods

General methodology Learn from raw training examples Draw on pre-existing domain knowledge

Robustness against small data Low High

Explainability Low High

Adaptivity to complex real-world cases High Low

Outline

• Motivation for Knowledge-guided Data Science

• Knowledge Sources and Representations

• Fusing Knowledge with Data

• Conclusion

Sources of Knowledge

• Natural sciences: universal laws of physics, bio-molecular descriptions of
genetic sequences, material-forming production processes…

• Social Sciences: effects in social networks, the syntax and semantics of
language…

• Expert Knowledge: working experience of an expert…

• World Knowledge: common sense

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• E.g. Mass-energy equivalence

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• E.g. If I am not taller than 185cm, and you are as tall as or shorter than I am, then you are not taller
than 185cm.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Simulated Pedestrian Traffic
Credit: Louis Berger Group

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• E.g. Burgers’ equation, useful in fluid mechanics, nonlinear acoustics, gas dynamics, traffic flow,
etc.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• Knowledge graphs: mainly from world knowledge, can also come from natural and social sciences

• Knowledge graphs can effectively encode knowledge in the form of (subject, predicate, object)
triples. E.g.

• Tom is a man.

• A man wears a shirt.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• Knowledge graphs: mainly from world knowledge, can also come from natural and social sciences

• Probabilistic relations: mainly from expert knowledge, can also come from natural science and world
knowledge

• If you experience shifting difficulties when driving your car, you may have a problem with your
gearbox.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• Knowledge graphs: mainly from world knowledge, can also come from natural and social sciences

• Probabilistic relations: mainly from expert knowledge, can also come from natural science and world
knowledge

• Invariances: mainly from natural science, can also come from world knowledge

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

E.g. If you rotate an equilateral triangle around its center by

an angle of 120 degrees, it will look exactly the same.

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• Knowledge graphs: mainly from world knowledge, can also come from natural and social sciences

• Probabilistic relations: mainly from expert knowledge, can also come from natural science and world
knowledge

• Invariances: mainly from natural science, can also come from world knowledge

• Human feedback: mainly from expert knowledge, can also come from world knowledge

• - AI: How do you find the email I generated for you?

- Human: It’s too informal. To start with, you should begin with Dear Sir, not Hi Bob.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• Knowledge graphs: mainly from world knowledge, can also come from natural and social sciences

• Probabilistic relations: mainly from expert knowledge, can also come from natural science and world
knowledge

• Invariances: mainly from natural science, can also come from world knowledge

• Human feedback: mainly from expert knowledge, can also come from world knowledge

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Outline

• Motivation for Knowledge-guided Data Science

• Knowledge Sources and Representations

• Fusing Knowledge with Data

• Conclusion

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Prepare the training data-label pairs (x,

y) examples.

• The input x can both be the original

data, or features extracted from the

original data.

➢ E.g. If the original data is text, you can

extract the number of occurrences of

each word as a feature.

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Define the model you want to train.

1. Model architecture:
➢ Shallow models: linear regression, logistic

regression, support vector machines, etc.

➢ Deep models: convolutional, recurrent,

transformers ...

(Note: Deep models can automatically

extract features from the input data,

which overlays with the previous step.

However, in the previous step, the

features are manually defined; here the

features are automatically learned.)

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Define the model you want to train.

1. Model architecture:
➢ Shallow models: linear regression, logistic

regression, support vector machines, etc.

➢ Deep models: convolutional, recurrent,

transformers ...

2. Hyperparameters
➢ E.g. number of layers in a deep neural

network, number of neurons in each layer,

etc.

➢ Hyperparameters vs Parameters

• Hyperparameters: pre-set manually, does

not change in the training process

• Parameters: variables that are optimized

during the training process (in fact, training

an ML model is essentially optimizing its

parameters so that it aligns with the training

data).

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Decide how you want to train the

defined model

1. Cost/Lost function: quantifies how

good your model is; you get to decide

what good means:
➢ Basic: the eventual prediction result

should be as accurate as possible;

➢ the prediction criterion (decision boundary)

should be as simple as possible;

➢ certain important intermediate outputs

should be as accurate as possible;

➢ ...

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Decide how you want to train the

defined model

1. Cost/Lost function: quantifies how

good your model is; you get to decide

what good means:
➢ Basic: the eventual prediction result

should be as accurate as possible;

➢ the prediction criterion (decision boundary)

should be as simple as possible;

➢ certain important intermediate outputs

should be as accurate as possible;

➢ ...

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Decide how you want to train the

defined model

1. Cost/Lost function: quantifies how

good your model is; you get to decide

what good means:
➢ If there are multiple ways to define good,

you can have multiple terms in your cost

function. In this case, the cost function is

the (weighted) sum of all these terms

(and you get to decide the weight of each

term yourself).

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Decide how you want to train the

defined model

1. Cost/Lost function: quantifies how

good your model is; you get to decide

what good means.

2. Learning algorithm: the means by

which the model becomes good (with

good defined by the cost function).

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

While the training can be done

automatically, you can always

evaluate and refine the trained

model after the initial training is

complete！

Integrating Knowledge into a Data-driven pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

We can integrate domain knowledge
into any step of the training process
of a data-driven machine learning
model!

Integrating Knowledge into the training data

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Prepare the training data-label pairs (x,

y) examples.

• The input x can both be the original

data, or features extracted from the

original data.

You can enrich/refine the
dataset with prior knowledge.

Generating New Training Data (Data
Augmentation)
• Case: Image classification

• Input x: an image

• Output y: a label describing the image (e.g. bird)

• Note: many data augmentation methods are not
specific to image classification; they can also be used
for object detection, image segmentation, etc.

• Challenge: requires large numbers of labeled
images to train the model; too laborious for
humans

• Solution: use common sense knowledge to devise
transformation methods that generate new
images carrying the same labels as the original
ones; add the newly generated images.
• E.g. Geometric transformations tend not to alter the

labels of the images.
[1] Kumar, T., Mileo, A., Brennan, R., & Bendechache, M. (2023). Image data augmentation

approaches: A comprehensive survey and future directions. arXiv preprint arXiv:2301.02830.

Filtering Bad Data
• Case: discovery of time series motifs (frequently recurring patterns)

• Input x: a single (very long) time series (i.e. a signal, a waveform, a curve…; e.g. a 48h
electrocardiography/ECG recording)

• Output y: motifs that are ranked; the higher the ranking, the more interesting they are to the user (e.g. the
most typical ECG heartbeat pattern in the recording)

• Note: this is technically not a machine learning use case, but the idea still holds.

• Challenge: The top motif discovered is not what is expected by the domain experts.

• Solution: let domain experts identify segments in time series where expected motifs are likely (or
unlikely) to be found.

[1] Hoang Anh Dau, Eamonn J. Keogh: Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery. KDD 2017: 125-134

In this ECG recording, the

domain expert removed the first

1000 data points, because they

correspond to the calibration

signal at the beginning of the

recording, not the actual

heartbeats.

Dividing The Training Set
• Case: finding faulty parts for truck

engines
• Input x: sensor signals
• Output y: faulty parts

• Challenge: high intra-class
heterogeneity, that is, even if two
engines can have the same kinds of
faulty parts, their symptoms may be
very different because they are of
different models.

• Solution: Using knowledge on engine
model taxonomy to divide the training
set; train an individual classifier for
each engine series/type/model.

[1] Vitali Hirsch, Peter Reimann, Bernhard Mitschang: Exploiting Domain Knowledge to address Multi-Class Imbalance and a Heterogeneous Feature Space in Classification Tasks for Manufacturing Data. Proc.

VLDB Endow. 13(12): 3258-3271 (2020)

Generating Training Labels

• Case: relation extraction
• Input x: some text (e.g. Barack Obama was born in Honolulu.)

• Output y: (subject, predicate, object) triples that characterize the relations (predicates) among
entities (subjects or objects) mentioned in the text. [e.g. (Barack Obama, born in, Honolulu)]

• Challenge: The training of a relation extraction model can require large amounts of training
text. it is highly laborious to manually label (namely, provide the correct triple corresponding to
the text) all of them.

• Solution: We exploit a large pre-existing knowledge base (that contains very many triples) to
generate the labels. This process is called distant supervision.

[1] Mike Mintz, Steven Bills, Rion Snow, Daniel Jurafsky: Distant supervision for relation extraction without labeled data. ACL/IJCNLP 2009: 1003-1011

Generating Training Labels
• Case: relation extraction

• Input x: some text (e.g. Barack Obama was born in Honolulu.)

• Output y: (subject, predicate, object) triples that characterize the relations (predicates) among entities (subjects or objects) mentioned in the text. [e.g.
(Barack Obama, born in, Honolulu)]

• Challenge: The training of a relation extraction model can require large amounts of training text. it is highly laborious to manually label
(namely, provide the correct triple corresponding to the text) all of them.

• Solution: We exploit a large pre-existing knowledge base (that contains very many triples) to
generate the labels. This process is called distant supervision.

• Basic assumption: if two entities participate in a relation, any sentence that contain those two
entities might express that relation. E.g.
• Suppose we have the triple (Barack Obama, born in, Honolulu) in the knowledge base.

• The distant supervision algorithm searches the (initially unlabeled) training text for all sentences that
simultaneously mention Barack Obama and Honolulu. E.g.
• Barack Obama was born in Honolulu.

• President Barack Obama was born in Honolulu, Hawaii.

• …

• We can then automatically label these sentences as having the relation born in. Namely, their
corresponding triple is (Barack Obama, born in, Honolulu) .

[1] Mike Mintz, Steven Bills, Rion Snow, Daniel Jurafsky: Distant supervision for relation extraction without labeled data. ACL/IJCNLP 2009: 1003-1011

Knowledge as Model Input

• Knowledge graphs are often directly used as part of the model input.

• Case: Image Classification
• Input x: an image
• Output y: a label describing the image (e.g. bird)

• Challenge: What if for certain labels, there are not enough training images?
• E.g. the training set may only have one image with the label cross walk. This is not enough

to train a data-driven model!

• We input into the model, apart from the images, a knowledge graph encoding
the relationship between the rare target label and more common concepts. E.g.

1. While we do not have enough data for cross walk, we have many for car, person and stop
sign.

2. We also have a knowledge graph telling us that an image containing these objects is likely
to be that of a cross walk.

3. Thus, we can determine if an image is a cross walk or not by detecting car, person and
stop sign from it!

[1] Kenneth Marino, Ruslan Salakhutdinov, Abhinav Gupta: The More You Know: Using Knowledge Graphs for Image Classification. CVPR 2017: 20-28

Generating New Features

• Case: fault diagnosis for wind turbines
• Input x: wind turbine sensor data
• Output y: whether the turbine is faulty or

not

• Based on the directly observable
features, generate new features by
knowledge.

• E.g. Inside the turbine resides two
temperature sensors. Normally their
readings should not differ much. Thus, we
can use the difference between the two
readings as a new feature.

• The generated features are fed into the
machine learning model alongside the
directly observable ones.

[1] R. Lily Hu, Kevin Leahy, Ioannis C. Konstantakopoulos, David M. Auslander, Costas J. Spanos, Alice M. Agogino: Using Domain Knowledge Features for Wind Turbine Diagnostics. ICMLA 2016: 300-307

Integrating Knowledge into a Data-driven pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Define the model you want to train.

1. Model architecture:
➢ Shallow models: linear regression, logistic

regression, support vector machines, etc.

➢ Deep models: convolutional, recurrent,

transformers ...

2. Hyperparameters
➢ E.g. number of layers in a deep neural

network, number of neurons in each layer,

etc.

You can use knowledge to

guide the selection/design

of the model architecture,

etc.

Guiding Model Design

• Case: Modelling power of water
pumps and cooling tower fans in a
chiller plant

• Input x: shaft speed
• Output y: power

• Knowledge: Power y is proportional
to the cube of shaft speed x3.

• By this knowledge, we can simply
construct a polynomial regression
model, rather than a sophisticated
deep learning model.

[1] Hoang Dung Vu, Kok-Soon Chai, Bryan Keating, Nurislam Tursynbek, Boyan Xu, Kaige Yang, Xiaoyan Yang, Zhenjie Zhang: Data Driven Chiller Plant Energy Optimization with Domain Knowledge. CIKM

2017: 1309-1317

Guiding Model Design

• Case: tunnel construction work progress
identification

• Input x: an image taken in the tunnel
• Output y: the type of work shown in the image

• Knowledge: knowledge on the equipment used
in each work type

• Use data-driven methods to identify the
equipment, and use a probabilistic model to
encode the relations between the work
processes and the equipment.

• E.g. Suppose we have identified equipment A in the
image, and by domain knowledge we know A is
usually used in work type B, thus the current work
type has a higher probability to be B.

[1] Renjie We, Yuji Fujita, Kenichi Soga. "Integrating domain knowledge with deep learning models: An interpretable AI system for automatic work progress identification of NATM tunnels." Tunnelling and

Underground Space Technology 105 (2020): 103558.

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models
learn their own features that are directly driven by the eventual task (known as
the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N (which roughly means

normal, but not quite), V (which means ventricular ectopic beat), and S (which means
supraventricular ectopic beat)

[1] Kun Jiang, Shen Liang, Lingxiao Meng, Yanchun Zhang, Peng Wang, Wei Wang: A Two-level Attention-based Sequence-to-Sequence Model for Accurate Inter-patient Arrhythmia Detection. BIBM 2020: 1029-

1033

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

Pre-defined
Feature

Extractor

Shallow
Model

Raw
Input x

Pre-defined
features

Output
label y

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we 3 labels: N, V, S

• This is how a shallow model would undertake this task

Pre-defined
Feature

Extractor

Shallow
Model

Raw
Input x

Pre-defined
features

Output
label y

I need to accurately predict the labels of

the input ECG heartbeats with the pre-

defined features. I can only work on what I

have been given…

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• By contrast, this is how a deep model would do.

Deep Model

Feature
Learner

Downstream
Task Solver

Raw
Input x

Learned
Features

Output
label y

Hey Feature Learner, give me

some features that can help me

accurately predict the labels of

these ECG heartbeats!

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• By contrast, this is how a deep model would do.

Deep Model

Feature
Learner

Downstream
Task Solver

Raw
Input x

Learned
Features

Output
label y

Hey Feature Learner, give me

some features that can help me

accurately predict the labels of

these ECG heartbeats!

You got it,

boss!

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• By contrast, this is how a deep model would do.

Deep Model

Feature
Learner

Downstream
Task Solver

Raw
Input x

Learned
Features

Output
label y

Hey Feature Learner, give me

some features that can help me

accurately predict the labels of

these ECG heartbeats!

You got it,

boss!

I don’t just work with

what I’m given. I ask

for what I need so as

to best do my job!

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• This is how a deep model would do.

• The features are tailored to the downstream task (e.g. For ECG heartbeat classification, the
features are tailored to maximizing the accuracy of the prediction of the heartbeat labels).

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• This is how a deep model would do.

• The features are tailored to the downstream task (e.g. For ECG heartbeat classification, the
features are tailored to maximizing the accuracy of the prediction of the heartbeat labels).

• Compared with pre-defined features in shallow models, which are decoupled from the
downstream task (which means they may or may not be useful in undertaking the task), the
deep learned features can usually better contribute to the eventual prediction.

• However, deep learned features have weaknesses as compared with pre-defined ones.

Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• This is how a deep model would do.

• However, deep learned features have weaknesses as compared with pre-defined ones.
• Poor explainability: deep learning are notorious for being black-box models; in particular,

it is often hard for humans to understand what the deep learned features mean.

Fusing Domain-specific Features with Deep Learning

• Deep learned features have weaknesses as compared with pre-defined ones.
• Poor explainability: deep learning are notorious for being black-box models; in particular, it

is often hard for humans to understand what the deep learned features mean.

• Limitations in model architecture: the quality of the learned features (i.e. their usefulness
in solving the downstream task) is closely related to the architecture of the feature
learner. If there are intrinsic limitations in the feature learner, the usefulness of the
features are likely to be limited.

Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• Poor explainability: deep learning are notorious for being black-box models; in particular, it
is often hard for humans to understand what the deep learned features mean.

• Limitations in model architecture: the quality of the learned features (i.e. their usefulness
in solving the downstream task) is closely related to the architecture of the feature
learner. If there are intrinsic limitations in the feature learner, the usefulness of the
features are likely to be limited.

• For example, in ECG heartbeat classification where we label each heartbeat as one of
(N, V, S), the periodicity of multiple heartbeats are equally important as the
morphology of singular heartbeats.

• In particular, N and S can often have very similar morphology, while the distinction
between the two heavily relies on their periodical differences.

The key distinction between the S

example and its N context is that the S

example is slightly closer to its preceding

heartbeat!

[1] Kun Jiang, Shen Liang, Lingxiao Meng, Yanchun Zhang, Peng Wang, Wei Wang: A Two-level Attention-based Sequence-to-Sequence Model for Accurate Inter-patient Arrhythmia Detection. BIBM 2020: 1029-

1033

Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• Poor explainability: deep learning are notorious for being black-box models; in particular, it
is often hard for humans to understand what the deep learned features mean.

• Limitations in model architecture: the quality of the learned features (i.e. their usefulness
in solving the downstream task) is closely related to the architecture of the feature
learner. If there are intrinsic limitations in the feature learner, the usefulness of the
features are likely to be limited.

• For example, in ECG heartbeat classification where we label each heartbeat as one of
(N, V, S), the periodicity of multiple heartbeats are equally important as the
morphology of singular heartbeats.

• In particular, N and S can often have very similar morphology, while the distinction
between the two heavily relies on their periodical differences.

• However, most deep ECG feature learners (especially those that only take a single
heartbeat as input) can not effectively capture the periodical characteristics, leading
to poor performance when predicting S examples.

Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• Poor explainability: deep learning are notorious for being black-box models; in particular, it
is often hard for humans to understand what the deep learned features mean.

• Limitations in model architecture: the quality of the learned features (i.e. their usefulness
in solving the downstream task) is closely related to the architecture of the feature
learner. If there are intrinsic limitations in the feature learner, the usefulness of the
features are likely to be limited.

• To address these issues, we may integrate pre-defined features (especially
those defined using domain knowledge) into deep learning!

Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• To address these issues, we may integrate pre-defined features (especially
those defined using domain knowledge) into deep learning!

• A conventional way of fusing pre-defined features is to use pre-defined
features (rather than raw data) as the input of a deep model, as if the deep
model were a shallow model. This way, the deep model can refine the pre-
defined features with its feature learner.

Pre-defined
Feature

Extractor

Deep
Model

Raw
Input x

Pre-defined
features

Output
label y

Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• To address these issues, we may integrate pre-defined features (especially those defined using domain knowledge) into deep learning!

• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as
if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use
the pre-defined features as part of the deep model, directly fusing them (e.g.
concatenating) with the deep learned features.

Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• To address these issues, we may integrate pre-defined features (especially those defined using domain knowledge) into deep learning!

• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as
if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use
the pre-defined features as part of the deep model, directly fusing them (e.g.
concatenating) with the deep learned features.

• In this setting, the pre-defined features are parallel complements to the
learned features. In particular, if the pre-defined features are based on domain
knowledge, then we are directly injecting knowledge into the network.

Fusing Domain-specific Features with Deep Learning
• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as

if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use the pre-defined features as part of the deep model,
directly fusing them (e.g. concatenating) with the deep learned features.

• In this setting, the pre-defined features are parallel complements to the learned features. In particular, if the pre-defined features are
based on domain knowledge, then we are directly injecting knowledge into the network.

• Let’s go back to the ECG heartbeat classification task. While the neural network may not be
able to capture the periodicity characteristics vital to distinguishing between N and S
heartbeats, there are domain-specific features called RR-intervals in cardiology that can.

The S example has a smaller RR-interval with its preceding heartbeat than N examples.

[1] Genshen Yan, Shen Liang, Yanchun Zhang, Fan Liu: Fusing Transformer Model with Temporal Features for ECG Heartbeat Classification. BIBM 2019: 898-905

[2] Kun Jiang, Shen Liang, Lingxiao Meng, Yanchun Zhang, Peng Wang, Wei Wang: A Two-level Attention-based Sequence-to-Sequence Model for Accurate Inter-patient Arrhythmia Detection. BIBM 2020: 1029-1033

Fusing Domain-specific Features with Deep Learning
• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as

if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use the pre-defined features as part of the deep model,
directly fusing them (e.g. concatenating) with the deep learned features.

• In this setting, the pre-defined features are parallel complements to the learned features. In particular, if the pre-defined features are
based on domain knowledge, then we are directly injecting knowledge into the network.

• Let’s go back to the ECG heartbeat classification task. While the neural network may not be able to capture the periodicity
characteristics vital to distinguishing between N and S heartbeats, there are domain-specific features called RR-intervals in cardiology
that can.

• Accordingly, we can fuse (e.g. concatenate) the RR-interval values with the deep learned features. This
way, the deep feature learner can mainly focus on capturing morphological features (which is what is it
good at), while the periodicity features are left in the capable hands of the domain-specific RR-interval
features!

[1] Genshen Yan, Shen Liang, Yanchun Zhang, Fan Liu: Fusing Transformer Model with Temporal Features for ECG Heartbeat Classification. BIBM 2019: 898-905

Fusing Domain-specific Features with Deep Learning
• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as

if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use the pre-defined features as part of the deep model,
directly fusing them (e.g. concatenating) with the deep learned features.

• In this setting, the pre-defined features are parallel complements to the learned features. In particular, if the pre-defined features are
based on domain knowledge, then we are directly injecting knowledge into the network.

• Going back to the ECG heartbeat classification task. While the neural network may not be able to capture the periodicity characteristics
vital to distinguishing between N and S heartbeats, there are domain-specific features called RR-intervals in cardiology that can.

• Accordingly, we can fuse (e.g. concatenate) the RR-interval values with the deep learned features. This way, the deep feature learner
can mainly focus on capturing morphological features (which is what is it good at), while the periodicity features are left in the capable
hands of the domain-specific RR-interval features!

• An added benefit of fusing domain-specific features from within the deep model is that they can
seamlessly interact with and enhance the deep-learned features.

• For example, by fusing RR-intervals with deep-learned features, not only do the deep-learned
features encode morphological characteristics, it can also encode some periodicity characteristics
passed on to it by the RR-intervals.

[1] Genshen Yan, Shen Liang, Yanchun Zhang, Fan Liu: Fusing Transformer Model with Temporal Features for ECG Heartbeat Classification. BIBM 2019: 898-905

Knowledge as Layers in Deep Networks

• As mentioned previously, conventional deep neural networks, with every
(hidden) layer being data-driven, tend to be black boxes. That is, we cannot
fully comprehend (and thus have limited control of) how the deep model maps
input x to output y.

Raw
Input x

Output
label y

Black-box Deep Model

Data-

driven

Layer

Data-

driven

Layer

…

Knowledge as Layers in Deep Networks
• As mentioned previously, conventional deep neural networks, with every (hidden) layer being data-

driven, tend to be black boxes. That is, we cannot fully comprehend (and thus have limited control of)
how the deep model maps input x to output y.

• However, if we have some domain knowledge that offers us viable options on
the intermediate steps to take when mapping x to y, we can encode such
intermediate steps as (hidden) layers in the deep model, creating grey-box
models.

Grey-box Deep Model

Data-

driven

Layer

Knowledge-

guided Layer

Data-

driven

Layer

Knowledge-

guided Layer
…

Raw
Input x

Output
label y

Knowledge as Layers in Deep Networks
• However, if we have some domain knowledge that offers us viable options on the intermediate

steps to take when mapping x to y, we can encode such intermediate steps as (hidden) layers
in the deep model, creating grey-box models.

• The benefits of such a model are two-fold:
• it has better explanability than a black-box mode;

• it gives us more control over the model, enabling us to use carefully curated domain
knowledge to enhance the deep model (e.g. improve its performance on small training
sets).

Grey-box Deep Model

Data-

driven

Layer

Knowledge-

guided Layer

Data-

driven

Layer

Knowledge-

guided Layer
…

Raw
Input x

Output
label y

Knowledge as Layers in Deep Networks
• However, if we have some domain knowledge that offers us viable options on the intermediate

steps to take when mapping x to y, we can encode such intermediate steps as (hidden) layers
in the deep model, creating grey-box models.

• We usually have two types domain knowledge that can serve as layers in deep
networks.

• Important intermediate outputs

• Domain-specific mathematical models

Grey-box Deep Model

Data-

driven

Layer

Knowledge-

guided Layer

Data-

driven

Layer

Knowledge-

guided Layer
…

Raw
Input x

Output
label y

Knowledge as Layers in Deep Networks
• However, if we have some domain knowledge that offers us viable options on the intermediate

steps to take when mapping x to y, we can encode such intermediate steps as (hidden) layers
in the deep model, creating grey-box models.

• We usually have two types domain knowledge that can serve as layers in deep
networks.

• Important intermediate outputs

• Domain-specific mathematical models

Grey-box Deep Model

Data-

driven

Layer

Knowledge-

guided Layer

Data-

driven

Layer

Knowledge-

guided Layer
…

Raw
Input x

Output
label y

Knowledge as Layers in Deep Networks

• Case: particle drag force prediction in assembly
• Background: we are interested in a single particle among a collection of particles in a fluid

• Input x: spatial arrangement of particles near the particle-of-interest

• Output y: the drag force experienced by the particle-of-interest

• Important intermediate outputs: pressure and velocity fields, shear component

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Knowledge as Layers in Deep Networks
• Case: particle drag force prediction in assembly

• Background: we are interested in a single particle among a collection of particles in a fluid

• Input x: spatial arrangement of particles near the particle-of-interest

• Output y: the drag force experienced by the particle-of-interest

• The benefit of having important intermediate outputs (especially if we know their groundtruth values) is that we can monitor their
predicted values, compare them with their groundtruth values, and guide the network to reduce the prediction error of not only the
eventual output y, but also the prediction errors of the intermediate outputs.

• This can be done by altering the cost function of the deep model, which we will discuss later!

• In this way, not only can we get multiple outputs with one single network, but we can reduce the chance of the model overfitting the
training set (that is, the model only works far worse on unseen examples than on training data).

• Moreover, we can roughly know what each sub-network is doing in the deep
model, enhancing explainability.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Knowledge as Layers in Deep Networks
• By integrating intermediate outputs into the network, not only can we get multiple outputs with one single network, but we can reduce

the chance of the model overfitting the training set (that is, the model only works far worse on unseen examples than on training data).

• Moreover, we can roughly know what each sub-network is doing in the deep
model, enhancing explainability.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

This sub-network focuses on predicting the

pressure and velocity fields.
This sub-network focuses on predicting the

shear component.

This sub-network focuses on

predicting the final output.

Knowledge as Layers in Deep Networks
• However, if we have some domain knowledge that offers us viable options on the intermediate

steps to take when mapping x to y, we can encode such intermediate steps as (hidden) layers
in the deep model, creating grey-box models.

• We usually have two types domain knowledge that can serve as layers in deep
networks.

• Important intermediate outputs

• Domain-specific mathematical models

Grey-box Deep Model

Data-

driven

Layer

Knowledge-

guided Layer

Data-

driven

Layer

Knowledge-

guided Layer
…

Raw
Input x

Output
label y

Knowledge as Layers in Deep Networks

• In many applications, there are domain-specific mathematical models (often
called mechanism models) that directly maps the input x to output y. They take
on the general form of

𝑦 = 𝑓(𝑥; 𝜃)

where f is the mapping from x to y, with 𝜃 being model parameters whose values
must be either manually set or, more often than not, automatically found.

• E.g. One way of predicting the viscosity of melts is to use the VFT model:

𝑦 = 𝐴 +
(12 − 𝐴)(𝑇𝑔 − 𝐶)

𝑥 − 𝐶

where input x is the temperature, output y is the base-10 logarithm of the melt viscosity
(namely, the actual viscosity is 10𝑦)， while A, C, Tg are model parameters.

[1] Hans Vogel. Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten. Physikalische Zeitschrift 22 ([n. d.]), 645–646.

Knowledge as Layers in Deep Networks

• In many applications, there are domain-specific mathematical models (often called mechanism
models) that directly maps the input x to output y. They take on the general form of

𝑦 = 𝑓(𝑥; 𝜃)

where f is the mapping from x to y, with 𝜃 being model parameters whose values must be either
manually set or, more often than not, automatically found.

• The use of mechanism models is often made challenging by two factors.
• The accuracy of mechanism models are directly related to the setting of model parameters

𝜃. Traditionally, this is done with classic mathematical optimization methods (e.g. least
squares, likelihood maximization…), whose effectiveness may be limited.

[1] Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, Wen Lu: Towards a Generic Framework for Mechanism-guided Deep Learning for

Manufacturing Applications. KDD 2023: 5532-5543

Knowledge as Layers in Deep Networks

• In many applications, there are domain-specific mathematical models (often called mechanism
models) that directly maps the input x to output y. They take on the general form of

𝑦 = 𝑓(𝑥; 𝜃)

where f is the mapping from x to y, with 𝜃 being model parameters whose values must be either
manually set or, more often than not, automatically found.

• The use of mechanism models is often made challenging by two factors.
• The accuracy of mechanism models are directly related to the setting of model parameters

𝜃. Traditionally, this is done with classic mathematical optimization methods (e.g. least
squares, likelihood maximization…), whose effectiveness may be limited.

• Mechanism models are often (overly) simplified summary of complex real-world data, thus
they inherently entail a level of error. In fact, many mechanism models have explicit error
terms in them. However, even these error terms can rely on overly simplified assumptions
(e.g. the error distribution is Gaussian).

[1] Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, Wen Lu: Towards a Generic Framework for Mechanism-guided Deep Learning for

Manufacturing Applications. KDD 2023: 5532-5543

Knowledge as Layers in Deep Networks

• The use of mechanism models is often made challenging by two factors.

• The accuracy of mechanism models are directly related to the setting of model parameters 𝜃. Traditionally, this is
done with classic mathematical optimization methods (e.g. least squares, likelihood maximization…), whose
effectiveness may be limited.

• Mechanism models are often (overly) simplified summary of complex real-world data, thus they inherently entail
a level of error. In fact, many mechanism models have explicit error terms in them. However, even these error
terms can rely on overly simplified assumptions (e.g. the error distribution is Gaussian).

• To address these issues, note that many mechanism models can directly fit into neural
networks (without causing your code to report error when training the networks).

• Thus, we can use the mechanism model as the core of a neural network, while using data-
driven deep sub-networks to optimize its parameters 𝜃, and estimate its error.

• Compared with conventional non-deep parameter optimization and error estimation methods,
these deep sub-networks tend to yield better outcomes due to their adaptability to complex
real-world data.

[1] Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, Wen Lu: Towards a Generic Framework for Mechanism-guided Deep Learning for

Manufacturing Applications. KDD 2023: 5532-5543

Knowledge as Layers in Deep Networks

• We can use the mechanism model as the core of a neural network, while using
data-driven deep sub-networks to optimize its parameters 𝜃, and estimate its
error.

[1] Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, Wen Lu: Towards a Generic Framework for Mechanism-guided Deep Learning for

Manufacturing Applications. KDD 2023: 5532-5543

Knowledge as the Entire Deep Model

• Sometimes, the domain knowledge can be hard to directly exploit in
its original form. In such cases, we can use an entire deep model to
emulate it, which can be easier to handle than in its original form.

• A typical example of this is the Physic-Informed Neural Networks
(PINNs).
• In physics related domains, knowledge is often presented as Partial

Differential Equations (PDEs), which can be hard to solve in their raw form.
• PINNs emulate PDEs as deep neural networks, and use the computational

power of modern deep learning frameworks (PyTorch, Tensorflow, etc.) to
efficiently solve the PDEs.

• We will look into how PINNs work in detail in our hands-on session!

[1] Maziar Raissi, Paris Perdikaris, George E. Karniadakis: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378: 686-

707 (2019)

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

• Decide how you want to train the

defined model

1. Cost/Lost function: quantifies how

good your model is; you get to decide

what good means.
➢ If there are multiple ways to define good, you

can have multiple terms in your cost function.

In this case, the cost function is the (weighted)

sum of all these terms (and you get to decide

the weight of each term yourself).

2. Learning algorithm: the means by

which the model becomes good (with

good defined by the cost function).

You can integrate

knowledge into the cost

function, etc.

Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with

domain knowledge.

• Recall that we can use important intermediate results as layers in deep
networks. In such cases, we can define good as being able to accurately predict
these intermediate results.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Main loss term:

Prediction error for the

final output y

Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with

domain knowledge.

• Recall that we can use important intermediate results as layers in deep
networks. In such cases, we can define good as being able to accurately predict
these intermediate results.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Secondary loss terms:

Prediction errors on important intermediate outputs

Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with

domain knowledge.

• Recall that we can use important intermediate results as layers in deep
networks. In such cases, we can define good as being able to accurately predict
these intermediate results.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Weights of the secondary loss terms, indicating their

importance as compared with the main loss term

Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with

domain knowledge.

• Recall that we can use important intermediate results as layers in deep
networks. In such cases, we can define good as being able to accurately predict
these intermediate results.

• The eventual loss function is all loss terms added together in a weighted
fashion. To train the model is to minimize the loss function.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with domain knowledge.

• Recall that we can use important intermediate results as layers in deep networks. In such cases, we can define good as being able to
accurately predict these intermediate results.

• Another way to define good is being able to comply with domain-specific rules
and regulations (e.g. physics laws, manufacturing specification limits, security
protocols, non-discrimination policies, …).

Knowledge as Loss Function Terms
• Another way to define good is being able to comply with domain-specific rules and regulations (e.g.

physics laws, manufacturing specification limits, security protocols, non-discrimination policies, …).

• Case: lake temperature modeling
• Input x: physical variables governing the dynamics of lake temperature

• Output y: water temperature (at a given depth d and a certain time t)

• The water density 𝜌 is has a one-to-one mapping from temperature y (for each y, there is a unique 𝜌
corresponding to it; and vice-versa), which means by predicting y, we can implicitly predict 𝜌.

• This comes in handy as there is a physics rule concerning the relationship between density 𝜌 and the
depth d that can help us define a knowledge-guided loss function for y. Specifically:

• At a given time t, the large d is, the larger 𝜌 is (namely: the deeper the water, the denser).

[1] Anuj Karpatne, William Watkins, Jordan S. Read, Vipin Kumar: Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. CoRR abs/1710.11431 (2017)

Knowledge as Loss Function Terms
• The water density 𝜌 is has a one-to-one mapping from temperature y (for each y, there is a unique 𝜌

corresponding to it; and vice-versa), which means by predicting y, we can implicitly predict 𝜌.

• This comes in handy as there is a physics rule concerning the relationship between density 𝜌 and the
depth d that can help us define a knowledge-guided loss function for y. Specifically:
• At a given time t, the large d is, the larger 𝜌 is

• Based on this rule, we can define the following loss term (in which ො𝜌 is the predicted 𝜌 value, derived from
the predicted y):

Re𝐿𝑈(ො𝜌 𝑑𝑖 , 𝑡 − ො𝜌 𝑑𝑖+1, 𝑡)

• ො𝜌 𝑑𝑖 , 𝑡 − ො𝜌 𝑑𝑖+1, 𝑡 is the difference between the predicted densities from a smaller to a large depth. It
is expected to be non-positive by the physics rule.

• ReLU is a commonly used function in neural networks that is defined as ReLU z = ቊ
𝑧, 𝑖𝑓 𝑧 > 0
0, 𝑖𝑓 𝑧 ≤ 0

• By applying ReLU, we note that the loss term is 0 if ො𝜌 𝑑𝑖 , 𝑡 − ො𝜌 𝑑𝑖+1, 𝑡 is non-positive as expected;
otherwise, the loss term is positive.

• To minimize the loss term, the model must make the best effort to keep ො𝜌 𝑑𝑖 , 𝑡 − ො𝜌 𝑑𝑖+1, 𝑡 is non-
positive, as it should do!

[1] Anuj Karpatne, William Watkins, Jordan S. Read, Vipin Kumar: Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. CoRR abs/1710.11431 (2017)

Data-driven Model Training Pipeline

Training data

Model architecture,
hyperparameters, etc.

Cost function, learning
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training

pipeline for an ML model

While the training can be done

automatically, you can always

evaluate and refine the trained

model after the initial training is

complete！

You can evaluate and

refine the model with

knowledge!

Model Evaluation

• Like what we did in the cost function, when we evaluate a trained
model, we also have multiple ways to define good, and again, one of
them is being able to comply with domain-specific rules and
regulations.

• Consider our previous lake temperature modeling case, where we
had the physics rule:

• For model evaluation, we can use the number of times this rule is
violated as an evaluation metric.

[1] Anuj Karpatne, William Watkins, Jordan S. Read, Vipin Kumar: Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. CoRR abs/1710.11431 (2017)

Model Enhancement

• For a trained model, we can enhance it with expert knowledge. Specifically, we
can identify the examples that have been incorrectly predicted by the model,
and present them to a domain expert, who can tell us why they have been
incorrectly predicted.
• If the expert actually agrees with the model’s prediction, then this means the labels of the

examples in the dataset (which serve as groundtruth) are wrong. We should then correct
that label in the dataset.

• If the expert determines that an inevitable external factor (that cannot be handled by the
model itself) has caused the false prediction, we then have a better understanding of the
intrinsic limitations of the model. We should then inform the users of these limitations.

• If the expert determines that the model fails to take into account certain factors (that it
theoretically can), then we know there are flaws in our model training. We should make
improvements and retrain the model according.

[1] Barbaros Yet, Zane Perkins, Norman E. Fenton, Nigel Tai, William Marsh: Not just data: A method for improving prediction with knowledge. J. Biomed. Informatics 48: 28-37 (2014)

Outline

• Motivation for Knowledge-guided Data Science

• Knowledge Sources and Representations

• Fusing Knowledge with Data

• Conclusion

Conclusion

• Domain knowledge is a powerful tool to help address challenges in
data-driven methods, such as small data, lack of explanability, etc.

• On the other hand, data-driven methods can help exploit overly
simplified domain knowledge to better address complex real-world
scenarios.

• It is thus desirable to fuse the two together. This can be done in any
step of the data-driven machine learning pipeline!

Thanks!

Knowledge-guide Data Science

Shen Liang

diiP Summer School (dSDS 2024), Jun. 12, 2024. UPCité, Paris, France.

	幻灯片 1: Knowledge-guided Data Science
	幻灯片 2: Outline
	幻灯片 3: Outline
	幻灯片 4: Data-driven Methods
	幻灯片 5: Data-driven Methods
	幻灯片 6: Data-driven Methods
	幻灯片 7: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 8: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 9: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 10: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 11: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 12: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 13: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 14: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 15: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 16: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 17: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 18: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 19: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 20: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 21: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 22: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 23: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 24: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 25: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 26: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 27: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 28: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 29: Data-driven vs Knowledge-driven: A Toy Example
	幻灯片 30: Data-driven vs Knowledge-driven: A Summary
	幻灯片 31: Outline
	幻灯片 32: Sources of Knowledge
	幻灯片 33: Representations of Knowledge
	幻灯片 34: Representations of Knowledge
	幻灯片 35: Representations of Knowledge
	幻灯片 36: Representations of Knowledge
	幻灯片 37: Representations of Knowledge
	幻灯片 38: Representations of Knowledge
	幻灯片 39: Representations of Knowledge
	幻灯片 40: Representations of Knowledge
	幻灯片 41: Representations of Knowledge
	幻灯片 42: Outline
	幻灯片 43: Data-driven Model Training Pipeline
	幻灯片 44: Data-driven Model Training Pipeline
	幻灯片 45: Data-driven Model Training Pipeline
	幻灯片 46: Data-driven Model Training Pipeline
	幻灯片 47: Data-driven Model Training Pipeline
	幻灯片 48: Data-driven Model Training Pipeline
	幻灯片 49: Data-driven Model Training Pipeline
	幻灯片 50: Data-driven Model Training Pipeline
	幻灯片 51: Integrating Knowledge into a Data-driven pipeline
	幻灯片 52: Integrating Knowledge into the training data
	幻灯片 53: Generating New Training Data (Data Augmentation)
	幻灯片 54: Filtering Bad Data
	幻灯片 55: Dividing The Training Set
	幻灯片 56: Generating Training Labels
	幻灯片 57: Generating Training Labels
	幻灯片 58: Knowledge as Model Input
	幻灯片 59: Generating New Features
	幻灯片 60: Integrating Knowledge into a Data-driven pipeline
	幻灯片 61: Guiding Model Design
	幻灯片 62: Guiding Model Design
	幻灯片 63: Fusing Domain-specific Features with Deep Learning
	幻灯片 64: Fusing Domain-specific Features with Deep Learning
	幻灯片 65: Fusing Domain-specific Features with Deep Learning
	幻灯片 66: Fusing Domain-specific Features with Deep Learning
	幻灯片 67: Fusing Domain-specific Features with Deep Learning
	幻灯片 68: Fusing Domain-specific Features with Deep Learning
	幻灯片 69: Fusing Domain-specific Features with Deep Learning
	幻灯片 70: Fusing Domain-specific Features with Deep Learning
	幻灯片 71: Fusing Domain-specific Features with Deep Learning
	幻灯片 72: Fusing Domain-specific Features with Deep Learning
	幻灯片 73: Fusing Domain-specific Features with Deep Learning
	幻灯片 74: Fusing Domain-specific Features with Deep Learning
	幻灯片 75: Fusing Domain-specific Features with Deep Learning
	幻灯片 76: Fusing Domain-specific Features with Deep Learning
	幻灯片 77: Fusing Domain-specific Features with Deep Learning
	幻灯片 78: Fusing Domain-specific Features with Deep Learning
	幻灯片 79: Fusing Domain-specific Features with Deep Learning
	幻灯片 80: Fusing Domain-specific Features with Deep Learning
	幻灯片 81: Fusing Domain-specific Features with Deep Learning
	幻灯片 82: Knowledge as Layers in Deep Networks
	幻灯片 83: Knowledge as Layers in Deep Networks
	幻灯片 84: Knowledge as Layers in Deep Networks
	幻灯片 85: Knowledge as Layers in Deep Networks
	幻灯片 86: Knowledge as Layers in Deep Networks
	幻灯片 87: Knowledge as Layers in Deep Networks
	幻灯片 88: Knowledge as Layers in Deep Networks
	幻灯片 89: Knowledge as Layers in Deep Networks
	幻灯片 90: Knowledge as Layers in Deep Networks
	幻灯片 91: Knowledge as Layers in Deep Networks
	幻灯片 92: Knowledge as Layers in Deep Networks
	幻灯片 93: Knowledge as Layers in Deep Networks
	幻灯片 94: Knowledge as Layers in Deep Networks
	幻灯片 95: Knowledge as Layers in Deep Networks
	幻灯片 96: Knowledge as the Entire Deep Model
	幻灯片 97: Data-driven Model Training Pipeline
	幻灯片 98: Knowledge as Loss Function Terms
	幻灯片 99: Knowledge as Loss Function Terms
	幻灯片 100: Knowledge as Loss Function Terms
	幻灯片 101: Knowledge as Loss Function Terms
	幻灯片 102: Knowledge as Loss Function Terms
	幻灯片 103: Knowledge as Loss Function Terms
	幻灯片 104: Knowledge as Loss Function Terms
	幻灯片 105: Data-driven Model Training Pipeline
	幻灯片 106: Model Evaluation
	幻灯片 107: Model Enhancement
	幻灯片 108: Outline
	幻灯片 109: Conclusion
	幻灯片 110: Thanks!

