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Data-driven Methods

• Data science, as the name suggests, is primarily driven by data, that 
is, it directly learns from raw or transformed data.

• Machine Learning (ML) in a nutshell: Learn a mapping f from pre-
defined input x to output (as known as label) y. That is: y = f(x)

Task Input x Output y

Industrial fault detection Vibration signal of a machine Either “normal” or specific type of fault

Power consumption prediction Power consumption of the last 30 days

(one value per day)

Power consumption of the next 30 days

(one value per day)

Medical image segmentation Original medical image Labels (e.g. is_part_of_tumor, 

not_part_of_tumor) for each pixel

Question answering Question text Answer text

… … …
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• Machine Learning (ML) in a nutshell: Learn a mapping f from pre-
defined input x to output (as known as label) y. That is: y = f(x)

• The classic data-driven ML pipeline:
• Training the ML model: feed it with a training set of known (x, y) pairs, so 

that it learns a mapping f such that for each training example x, the 
difference between f(x) and y is minimized.

• Testing / Predicting with the ML model: feed f with an example x’ that was 
not in the training set, and let it predict its corresponding y’.
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• Data science, as the name suggests, is primarily driven by data, that 
is, it directly learns from raw or transformed data.

• Machine Learning (ML) in a nutshell: Learn a mapping f from pre-
defined input x to output y. 

• The classic data-driven ML pipeline:
• Training the ML model: feed it with a training set of known (x, y) pairs, so 

that it learns a mapping f such that for each training example x, the 
difference between f(x) and y is minimized.

• Testing / Predicting with the ML model: feed f with an example x’ that was 
not in the training set, and let it predict its corresponding y’.

• The ML model only learns from the training examples, without 
drawing on pre-existing domain knowledge.



Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written 
French words into their pronunciations. 

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]

Royal [rwajal]

Objet [ɔbʒε]

Alimentation [alimɑ̃tasjɔ̃]

Papa [papa]

Simulation [simylasjɔ̃]

Affiche [afi∫]

Moyen [mwajɛ̃]

Naïf [naif]

Laïque [laik]

Note: What will be discussed 

should only be considered a toy 

example. This is not how a real 

text-to-speech system works!
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Let’s do this in a purely data-driven (learn-
by-example) manner. That is, we solely 
learn from examples in the training set.
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So far, the purely data-driven approach 
has served us well!
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Let’s see if the purely data-driven 
approach works too on this one.
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Ah oh, how to pronounce s when it is at the 
end of a word?
Do we pronounce it as [s] as in Simulation? 
(News flash: WRONG!)



Data-driven vs Knowledge-driven: A Toy Example

• Suppose we are trying to train a model that transforms written 
French words into their pronunciations. 

Training set

Input x Output y

Ticket [tikε]

Nation [nasjɔ̃]
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Natation [natasjɔ̃]

Pas [pa

Ah oh, how to pronounce s when it is at the 
end of a word?
• Data-driven methods tend not to work 

well on small training sets, where the 
training examples cannot sufficiently 
represent all cases!

• Don’t worry: domain knowledge is here 
to help!
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We now switch to a domain knowledge-
driven approach, utilizing the following pre-
existing knowledge:

In French, except for q, c, l, r and f, the other 
consonant letters are usually not pronounced 
at the end of a word.
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Knowledge-driven methods can excel in the 
face of small training data!
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Another advantage of knowledge-driven 
methods is their high explainability, that is, 
their ability to explain why they make a 
certain prediction (rather than others) for a 
testing example.

E.g. In royal and moyen, why is o seemingly 
pronounced as [wa], rather than [ɔ] as in 
objet?
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In royal and moyen, why is o seemingly pronounced 
as [wa], rather than [ɔ] as in objet?

Domain knowledge: When y is between two vowels, it 
should be treated as i+i in pronunciation.
- Royal = roi+ial; Moyen = moi+ien
So it is not o that is pronounced as [wa], but the 
implicit oi !
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The knowledge-driven method is so cool! 
Why bother using a data-driven one?
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Maïs

Well, let’s see how a knowledge-driven 
method fairs with this one…
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To begin with, we currently do not have knowledge 
on how to pronounce maï, so we need to use a 
data-driven approach to bypass this.

But this is not the main problem with a knowledge-
driven approach. After all, we can always add 
additional domain knowledge to tackle this.
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The real problem with a knowledge-driven 
approach is: How to pronounce the s?

If we draw on our previous knowledge, 

except for q, c, l, r and f, the other consonant 
letters are usually not pronounced at the end of a 
word

we should make it silent, which is WRONG!
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If we draw on our previous knowledge, 

except for q, c, l, r and f, the other consonant 
letters are usually not pronounced at the end of a 
word

we should make it silent, which is WRONG!

This is a special case where the s at the end 
of the word is not silent!
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Domain knowledge can often be (over)-
simplified summarizations of complex real-
world cases, which inevitably leads to a 
degree of error.

Except for q, c, l, r and f, the other consonant 
letters are usually (not always!) not 
pronounced at the end of a word.
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• Suppose we are trying to train a model that transforms written 
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Domain knowledge can often be (over)-
simplified summarizations of complex real-
world cases, which inevitably leads to a 
degree of error.

In such cases, it is usually better to draw on a 
data-driven approach on a larger training set.



Data-driven vs Knowledge-driven: A Summary

• Data-driven and knowledge-driven methods nicely complement each 
other. Thus, it is best that we fuse them together by integrating 
knowledge into a data-driven method, hence knowledge-guided data 
science.
• Synonyms of knowledge-guided: informed, knowledge-informed, physics-

informed, physics-guided, mechanism-guided, …

Data-driven Methods Knowledge-driven Methods

General methodology Learn from raw training examples Draw on pre-existing domain knowledge

Robustness against small data Low High

Explainability Low High

Adaptivity to complex real-world cases High Low
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Sources of Knowledge

• Natural sciences:  universal laws of physics, bio-molecular descriptions of 
genetic sequences, material-forming production processes…

• Social Sciences: effects in social networks, the syntax and semantics of 
language…

• Expert Knowledge: working experience of an expert…

• World Knowledge: common sense

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).



Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• E.g. Mass-energy equivalence

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).



Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• E.g. If I am not taller than 185cm, and you are as tall as or shorter than I am, then you are not taller 
than 185cm.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).



Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

Simulated Pedestrian Traffic
Credit:  Louis Berger Group



Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• E.g. Burgers’ equation, useful in fluid mechanics, nonlinear acoustics, gas dynamics, traffic flow, 
etc.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).



Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• Knowledge graphs: mainly from world knowledge, can also come from natural and social sciences

• Knowledge graphs can effectively encode knowledge in the form of (subject, predicate, object) 
triples. E.g.

• Tom is a man.

• A man wears a shirt.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).



Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• Knowledge graphs: mainly from world knowledge, can also come from natural and social sciences

• Probabilistic relations: mainly from expert knowledge, can also come from natural science and world 
knowledge 

• If you experience shifting difficulties when driving your car, you may have a problem with your 
gearbox.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).



Representations of Knowledge
• Algebraic equations: mainly from natural science, can also come from expert knowledge

• Logic rules: mainly from world knowledge, can also come from natural and social sciences

• Simulation results: mainly from natural sciences

• Differential equations: mainly from natural sciences

• Knowledge graphs: mainly from world knowledge, can also come from natural and social sciences

• Probabilistic relations: mainly from expert knowledge, can also come from natural science and world 
knowledge 

• Invariances: mainly from natural science, can also come from world knowledge

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).

E.g. If you rotate an equilateral triangle around its center by 

an angle of 120 degrees, it will look exactly the same.
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• Probabilistic relations: mainly from expert knowledge, can also come from natural science and world 
knowledge 

• Invariances: mainly from natural science, can also come from world knowledge

• Human feedback: mainly from expert knowledge, can also come from world knowledge

• - AI: How do you find the email I generated for you?

- Human: It’s too informal. To start with, you should begin with Dear Sir, not Hi Bob.

[1] Laura von Rueden, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).
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Data-driven Model Training Pipeline

Training data

Model architecture, 
hyperparameters, etc.

Cost function, learning 
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training 

pipeline for an ML model

• Prepare the training data-label pairs (x, 

y) examples.

• The input x can both be the original 

data, or features extracted from the 

original data. 

➢ E.g. If the original data is text, you can 

extract the number of occurrences of 

each word as a feature.
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Data-driven training 

pipeline for an ML model

• Define the model you want to train.

1. Model architecture: 
➢ Shallow models: linear regression, logistic 

regression, support vector machines, etc.

➢ Deep models: convolutional, recurrent, 

transformers ... 

(Note: Deep models can automatically 

extract features from the input data, 

which overlays with the previous step. 

However, in the previous step, the 

features are manually defined; here the 

features are automatically learned.)
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• Define the model you want to train.

1. Model architecture: 
➢ Shallow models: linear regression, logistic 

regression, support vector machines, etc.

➢ Deep models: convolutional, recurrent, 

transformers ... 

2. Hyperparameters
➢ E.g. number of layers in a deep neural 

network, number of neurons in each layer, 

etc.

➢ Hyperparameters vs Parameters

• Hyperparameters: pre-set manually, does 

not change in the training process

• Parameters: variables that are optimized 

during the training process (in fact, training 

an ML model is essentially optimizing its 

parameters so that it aligns with the training 

data).
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• Decide how you want to train the 

defined model

1. Cost/Lost function: quantifies how 

good your model is; you get to decide 

what good means:
➢ Basic: the eventual prediction result 

should be as accurate as possible;

➢ the prediction criterion (decision boundary) 

should be as simple as possible;

➢ certain important intermediate outputs

should be as accurate as possible;

➢ ...
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• Decide how you want to train the 

defined model

1. Cost/Lost function: quantifies how 

good your model is; you get to decide 

what good means:
➢ Basic: the eventual prediction result 

should be as accurate as possible;

➢ the prediction criterion (decision boundary) 

should be as simple as possible;

➢ certain important intermediate outputs

should be as accurate as possible;

➢ ...
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get

Data-driven training 

pipeline for an ML model

• Decide how you want to train the 

defined model

1. Cost/Lost function: quantifies how 

good your model is; you get to decide 

what good means:
➢ If there are multiple ways to define good, 

you can have multiple terms in your cost 

function. In this case, the cost function is 

the (weighted) sum of all these terms 

(and you get to decide the weight of each 

term yourself).
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Data-driven training 

pipeline for an ML model

• Decide how you want to train the 

defined model

1. Cost/Lost function: quantifies how 

good your model is; you get to decide 

what good means.

2. Learning algorithm: the means by 

which the model becomes good (with 

good defined by the cost function).



Data-driven Model Training Pipeline

Training data

Model architecture, 
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Data-driven training 

pipeline for an ML model

While the training can be done 

automatically, you can always 

evaluate and refine the trained 

model after the initial training is 

complete！



Integrating Knowledge into a Data-driven pipeline

Training data
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Data-driven training 

pipeline for an ML model

We can integrate domain knowledge 
into any step of the training process 
of a data-driven machine learning 
model!



Integrating Knowledge into the training data

Training data

Model architecture, 
hyperparameters, etc.

Cost function, learning 
algorithm, etc.

Trained model

preprocess

define

execute

get

Data-driven training 

pipeline for an ML model

• Prepare the training data-label pairs (x, 

y) examples.

• The input x can both be the original 

data, or features extracted from the 

original data. 

You can enrich/refine the 
dataset with prior knowledge.



Generating New Training Data (Data 
Augmentation)
• Case: Image classification

• Input x: an image

• Output y: a label describing the image (e.g. bird)

• Note: many data augmentation methods are not 
specific to image classification; they can also be used 
for object detection, image segmentation, etc.

• Challenge: requires large numbers of labeled 
images to train the model; too laborious for 
humans

• Solution: use common sense knowledge to devise 
transformation methods that generate new 
images carrying the same labels as the original 
ones; add the newly generated images.
• E.g. Geometric transformations tend not to alter the 

labels of the images.
[1] Kumar, T., Mileo, A., Brennan, R., & Bendechache, M. (2023). Image data augmentation 

approaches: A comprehensive survey and future directions. arXiv preprint arXiv:2301.02830.



Filtering Bad Data
• Case: discovery of time series motifs (frequently recurring patterns)

• Input x: a single (very long) time series (i.e. a signal, a waveform, a curve…; e.g. a 48h 
electrocardiography/ECG recording)

• Output y: motifs that are ranked; the higher the ranking, the more interesting they are to the user (e.g. the 
most typical ECG heartbeat pattern in the recording)

• Note: this is technically not a machine learning use case, but the idea still holds.

• Challenge: The top motif discovered is not what is expected by the domain experts.

• Solution: let domain experts identify segments in time series where expected motifs are likely (or 
unlikely) to be found.

[1] Hoang Anh Dau, Eamonn J. Keogh: Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery. KDD 2017: 125-134

In this ECG recording, the 

domain expert removed the first 

1000 data points, because they 

correspond to the calibration 

signal at the beginning of the 

recording, not the actual 

heartbeats.



Dividing The Training Set
• Case: finding faulty parts for truck 

engines
• Input x: sensor signals
• Output y: faulty parts

• Challenge: high intra-class 
heterogeneity, that is, even if two 
engines can have the same kinds of 
faulty parts, their symptoms may be 
very different because they are of 
different models.

• Solution: Using knowledge on engine 
model taxonomy to divide the training 
set; train an individual classifier for 
each engine series/type/model.

[1] Vitali Hirsch, Peter Reimann, Bernhard Mitschang: Exploiting Domain Knowledge to address Multi-Class Imbalance and a Heterogeneous Feature Space in Classification Tasks for Manufacturing Data. Proc. 

VLDB Endow. 13(12): 3258-3271 (2020)



Generating Training Labels

• Case: relation extraction
• Input x: some text (e.g. Barack Obama was born in Honolulu.)

• Output y: (subject, predicate, object) triples that characterize the relations (predicates) among 
entities (subjects or objects) mentioned in the text. [e.g. (Barack Obama, born in, Honolulu)]

• Challenge: The training of a relation extraction model can require large amounts of training 
text. it is highly laborious to manually label (namely, provide the correct triple corresponding to 
the text) all of them.

• Solution: We exploit a large pre-existing knowledge base (that contains very many triples) to 
generate the labels. This process is called distant supervision.

[1] Mike Mintz, Steven Bills, Rion Snow, Daniel Jurafsky: Distant supervision for relation extraction without labeled data. ACL/IJCNLP 2009: 1003-1011



Generating Training Labels
• Case: relation extraction

• Input x: some text (e.g. Barack Obama was born in Honolulu.)

• Output y: (subject, predicate, object) triples that characterize the relations (predicates) among entities (subjects or objects) mentioned in the text. [e.g. 
(Barack Obama, born in, Honolulu)]

• Challenge: The training of a relation extraction model can require large amounts of training text. it is highly laborious to manually label 
(namely, provide the correct triple corresponding to the text) all of them.

• Solution: We exploit a large pre-existing knowledge base (that contains very many triples) to 
generate the labels. This process is called distant supervision. 

• Basic assumption: if two entities participate in a relation, any sentence that contain those two 
entities might express that relation. E.g.
• Suppose we have the triple (Barack Obama, born in, Honolulu) in the knowledge base.

• The distant supervision algorithm searches the (initially unlabeled) training text for all sentences that 
simultaneously mention Barack Obama and Honolulu. E.g.
• Barack Obama was born in Honolulu.

• President Barack Obama was born in Honolulu, Hawaii.

• …

• We can then automatically label these sentences as having the relation born in. Namely, their 
corresponding triple is (Barack Obama, born in, Honolulu) .

[1] Mike Mintz, Steven Bills, Rion Snow, Daniel Jurafsky: Distant supervision for relation extraction without labeled data. ACL/IJCNLP 2009: 1003-1011



Knowledge as Model Input

• Knowledge graphs are often directly used as part of the model input.

• Case: Image Classification
• Input x: an image
• Output y: a label describing the image (e.g. bird)

• Challenge: What if for certain labels, there are not enough training images?
• E.g. the training set may only have one image with the label cross walk. This is not enough 

to train a data-driven model!

• We input into the model, apart from the images, a knowledge graph encoding 
the relationship between the rare target label and more common concepts. E.g. 

1. While we do not have enough data for cross walk, we have many for car, person and stop 
sign.

2. We also have a knowledge graph telling us that an image containing these objects is likely 
to be that of a cross walk. 

3. Thus, we can determine if an image is a cross walk or not by detecting car, person and 
stop sign from it!

[1] Kenneth Marino, Ruslan Salakhutdinov, Abhinav Gupta: The More You Know: Using Knowledge Graphs for Image Classification. CVPR 2017: 20-28



Generating New Features

• Case: fault diagnosis for wind turbines
• Input x: wind turbine sensor data
• Output y: whether the turbine is faulty or 

not 

• Based on the directly observable 
features, generate new features by 
knowledge.

• E.g. Inside the turbine resides two 
temperature sensors. Normally their 
readings should not differ much. Thus, we 
can use the difference between the two 
readings as a new feature.

• The generated features are fed into the 
machine learning model alongside the 
directly observable ones.

[1] R. Lily Hu, Kevin Leahy, Ioannis C. Konstantakopoulos, David M. Auslander, Costas J. Spanos, Alice M. Agogino: Using Domain Knowledge Features for Wind Turbine Diagnostics. ICMLA 2016: 300-307



Integrating Knowledge into a Data-driven pipeline

Training data

Model architecture, 
hyperparameters, etc.

Cost function, learning 
algorithm, etc.
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Data-driven training 

pipeline for an ML model

• Define the model you want to train.

1. Model architecture: 
➢ Shallow models: linear regression, logistic 

regression, support vector machines, etc.

➢ Deep models: convolutional, recurrent, 

transformers ... 

2. Hyperparameters
➢ E.g. number of layers in a deep neural 

network, number of neurons in each layer, 

etc.

You can use knowledge to 

guide the selection/design 

of the model architecture, 

etc.



Guiding Model Design

• Case: Modelling power of water 
pumps and cooling tower fans in a 
chiller plant

• Input x: shaft speed
• Output y: power

• Knowledge: Power y is proportional 
to the cube of shaft speed x3.

• By this knowledge, we can simply 
construct a polynomial regression 
model, rather than a sophisticated 
deep learning model.

[1] Hoang Dung Vu, Kok-Soon Chai, Bryan Keating, Nurislam Tursynbek, Boyan Xu, Kaige Yang, Xiaoyan Yang, Zhenjie Zhang: Data Driven Chiller Plant Energy Optimization with Domain Knowledge. CIKM 

2017: 1309-1317



Guiding Model Design

• Case: tunnel construction work progress 
identification

• Input x: an image taken in the tunnel
• Output y: the type of work shown in the image

• Knowledge: knowledge on the equipment used 
in each work type

• Use data-driven methods to identify the 
equipment, and use a probabilistic model to 
encode the relations between the work 
processes and the equipment.

• E.g. Suppose we have identified equipment A in the 
image, and by domain knowledge we know A is 
usually used in work type B, thus the current work 
type has a higher probability to be B. 

[1] Renjie We, Yuji Fujita, Kenichi Soga. "Integrating domain knowledge with deep learning models: An interpretable AI system for automatic work progress identification of NATM tunnels." Tunnelling and 

Underground Space Technology 105 (2020): 103558.



Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models 
learn their own features that are directly driven by the eventual task (known as 
the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N (which roughly means 

normal, but not quite), V (which means ventricular ectopic beat), and S (which means 
supraventricular ectopic beat)

[1] Kun Jiang, Shen Liang, Lingxiao Meng, Yanchun Zhang, Peng Wang, Wei Wang: A Two-level Attention-based Sequence-to-Sequence Model for Accurate Inter-patient Arrhythmia Detection. BIBM 2020: 1029-

1033



Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own 
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task
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Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own 
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we 3 labels: N, V, S

• This is how a shallow model would undertake this task

Pre-defined 
Feature 

Extractor

Shallow
Model

Raw
Input x

Pre-defined 
features

Output
label y

I need to accurately predict the labels of 

the input ECG heartbeats with the pre-

defined features. I can only work on what I 

have been given…



Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own 
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• By contrast, this is how a deep model would do.
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Hey Feature Learner, give me 

some features that can help me 

accurately predict the labels of

these ECG heartbeats!
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Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own 
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• By contrast, this is how a deep model would do.

Deep Model

Feature
Learner

Downstream 
Task Solver

Raw
Input x

Learned 
Features

Output
label y

Hey Feature Learner, give me 

some features that can help me 

accurately predict the labels of

these ECG heartbeats!

You got it, 

boss!

I don’t just work with 

what I’m given. I ask 

for what I need so as 

to best do my job!



Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own 
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• This is how a deep model would do.

• The features are tailored to the downstream task (e.g. For ECG heartbeat classification, the 
features are tailored to maximizing the accuracy of the prediction of the heartbeat labels).



Fusing Domain-specific Features with Deep Learning

• Unlike shallow models that rely on pre-defined features, deep learning models learn their own 
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• This is how a deep model would do.

• The features are tailored to the downstream task (e.g. For ECG heartbeat classification, the 
features are tailored to maximizing the accuracy of the prediction of the heartbeat labels).

• Compared with pre-defined features in shallow models, which are decoupled from the 
downstream task (which means they may or may not be useful in undertaking the task), the 
deep learned features can usually better contribute to the eventual prediction.

• However, deep learned features have weaknesses as compared with pre-defined ones.
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• Unlike shallow models that rely on pre-defined features, deep learning models learn their own 
features that are directly driven by the eventual task (known as the “downstream task”).

• E.g. ECG heartbeat classification for cardiac arrhythmia detection
• Input x: an electrocardiograph (ECG) signal that encompasses one or more heartbeats
• Output y: the label of each input heartbeat. Here we have 3 labels: N, V, S

• This is how a shallow model would undertake this task

• This is how a deep model would do.

• However, deep learned features have weaknesses as compared with pre-defined ones.
• Poor explainability: deep learning are notorious for being black-box models; in particular, 

it is often hard for humans to understand what the deep learned features mean.



Fusing Domain-specific Features with Deep Learning

• Deep learned features have weaknesses as compared with pre-defined ones.
• Poor explainability: deep learning are notorious for being black-box models; in particular, it 

is often hard for humans to understand what the deep learned features mean.

• Limitations in model architecture: the quality of the learned features (i.e. their usefulness 
in solving the downstream task) is closely related to the architecture of the feature 
learner. If there are intrinsic limitations in the feature learner, the usefulness of the 
features are likely to be limited.



Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• Poor explainability: deep learning are notorious for being black-box models; in particular, it 
is often hard for humans to understand what the deep learned features mean.

• Limitations in model architecture: the quality of the learned features (i.e. their usefulness 
in solving the downstream task) is closely related to the architecture of the feature 
learner. If there are intrinsic limitations in the feature learner, the usefulness of the 
features are likely to be limited.

• For example, in ECG heartbeat classification where we label each heartbeat as one of 
(N, V, S), the periodicity of multiple heartbeats are equally important as the 
morphology of singular heartbeats. 

• In particular, N and S can often have very similar morphology, while the distinction 
between the two heavily relies on their periodical differences. 

The key distinction between the S

example and its N context is that the S

example is slightly closer to its preceding 

heartbeat!

[1] Kun Jiang, Shen Liang, Lingxiao Meng, Yanchun Zhang, Peng Wang, Wei Wang: A Two-level Attention-based Sequence-to-Sequence Model for Accurate Inter-patient Arrhythmia Detection. BIBM 2020: 1029-

1033



Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• Poor explainability: deep learning are notorious for being black-box models; in particular, it 
is often hard for humans to understand what the deep learned features mean.

• Limitations in model architecture: the quality of the learned features (i.e. their usefulness 
in solving the downstream task) is closely related to the architecture of the feature 
learner. If there are intrinsic limitations in the feature learner, the usefulness of the 
features are likely to be limited.

• For example, in ECG heartbeat classification where we label each heartbeat as one of 
(N, V, S), the periodicity of multiple heartbeats are equally important as the 
morphology of singular heartbeats. 

• In particular, N and S can often have very similar morphology, while the distinction 
between the two heavily relies on their periodical differences. 

• However, most deep ECG feature learners (especially those that only take a single 
heartbeat as input) can not effectively capture the periodical characteristics, leading 
to poor performance when predicting S examples.



Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• Poor explainability: deep learning are notorious for being black-box models; in particular, it 
is often hard for humans to understand what the deep learned features mean.

• Limitations in model architecture: the quality of the learned features (i.e. their usefulness 
in solving the downstream task) is closely related to the architecture of the feature 
learner. If there are intrinsic limitations in the feature learner, the usefulness of the 
features are likely to be limited.

• To address these issues, we may integrate pre-defined features (especially 
those defined using domain knowledge) into deep learning!



Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• To address these issues, we may integrate pre-defined features (especially 
those defined using domain knowledge) into deep learning!

• A conventional way of fusing pre-defined features is to use pre-defined 
features (rather than raw data) as the input of a deep model, as if the deep 
model were a shallow model. This way, the deep model can refine the pre-
defined features with its feature learner.
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Fusing Domain-specific Features with Deep Learning
• Deep learned features have weaknesses as compared with pre-defined ones.

• To address these issues, we may integrate pre-defined features (especially those defined using domain knowledge) into deep learning!

• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as 
if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use 
the pre-defined features as part of the deep model, directly fusing them (e.g. 
concatenating) with the deep learned features.
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• Deep learned features have weaknesses as compared with pre-defined ones.

• To address these issues, we may integrate pre-defined features (especially those defined using domain knowledge) into deep learning!

• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as 
if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use 
the pre-defined features as part of the deep model, directly fusing them (e.g. 
concatenating) with the deep learned features.

• In this setting, the pre-defined features are parallel complements to the 
learned features. In particular, if the pre-defined features are based on domain 
knowledge, then we are directly injecting knowledge into the network.



Fusing Domain-specific Features with Deep Learning
• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as 

if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use the pre-defined features as part of the deep model, 
directly fusing them (e.g. concatenating) with the deep learned features.

• In this setting, the pre-defined features are parallel complements to the learned features. In particular, if the pre-defined features are 
based on domain knowledge, then we are directly injecting knowledge into the network.

• Let’s go back to the ECG heartbeat classification task. While the neural network may not be 
able to capture the periodicity characteristics vital to distinguishing between N and S
heartbeats, there are domain-specific features called RR-intervals in cardiology that can.

The S example has a smaller RR-interval with its preceding heartbeat than N examples.

[1] Genshen Yan, Shen Liang, Yanchun Zhang, Fan Liu: Fusing Transformer Model with Temporal Features for ECG Heartbeat Classification. BIBM 2019: 898-905

[2] Kun Jiang, Shen Liang, Lingxiao Meng, Yanchun Zhang, Peng Wang, Wei Wang: A Two-level Attention-based Sequence-to-Sequence Model for Accurate Inter-patient Arrhythmia Detection. BIBM 2020: 1029-1033



Fusing Domain-specific Features with Deep Learning
• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as 

if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use the pre-defined features as part of the deep model, 
directly fusing them (e.g. concatenating) with the deep learned features.

• In this setting, the pre-defined features are parallel complements to the learned features. In particular, if the pre-defined features are 
based on domain knowledge, then we are directly injecting knowledge into the network.

• Let’s go back to the ECG heartbeat classification task. While the neural network may not be able to capture the periodicity 
characteristics vital to distinguishing between N and S heartbeats, there are domain-specific features called RR-intervals in cardiology 
that can.

• Accordingly, we can fuse (e.g. concatenate) the RR-interval values with the deep learned features. This 
way, the deep feature learner can mainly focus on capturing morphological features (which is what is it 
good at), while the periodicity features are left in the capable hands of the domain-specific RR-interval 
features!

[1] Genshen Yan, Shen Liang, Yanchun Zhang, Fan Liu: Fusing Transformer Model with Temporal Features for ECG Heartbeat Classification. BIBM 2019: 898-905



Fusing Domain-specific Features with Deep Learning
• A conventional way of fusing pre-defined features is to use pre-defined features (rather than raw data) as the input of a deep model, as 

if the deep model were a shallow model. This way, the deep model can refine the pre-defined features with its feature learner.

• However, there is another way to fuse the pre-defined features, which is to use the pre-defined features as part of the deep model, 
directly fusing them (e.g. concatenating) with the deep learned features.

• In this setting, the pre-defined features are parallel complements to the learned features. In particular, if the pre-defined features are 
based on domain knowledge, then we are directly injecting knowledge into the network.

• Going back to the ECG heartbeat classification task. While the neural network may not be able to capture the periodicity characteristics 
vital to distinguishing between N and S heartbeats, there are domain-specific features called RR-intervals in cardiology that can.

• Accordingly, we can fuse (e.g. concatenate) the RR-interval values with the deep learned features. This way, the deep feature learner 
can mainly focus on capturing morphological features (which is what is it good at), while the periodicity features are left in the capable 
hands of the domain-specific RR-interval features!

• An added benefit of fusing domain-specific features from within the deep model is that they can 
seamlessly interact with and enhance the deep-learned features.

• For example, by fusing RR-intervals with deep-learned features, not only do the deep-learned 
features encode morphological characteristics, it can also encode some periodicity characteristics 
passed on to it by the RR-intervals.

[1] Genshen Yan, Shen Liang, Yanchun Zhang, Fan Liu: Fusing Transformer Model with Temporal Features for ECG Heartbeat Classification. BIBM 2019: 898-905



Knowledge as Layers in Deep Networks

• As mentioned previously, conventional deep neural networks, with every 
(hidden) layer being data-driven, tend to be black boxes. That is, we cannot 
fully comprehend (and thus have limited control of) how the deep model maps 
input x to output y.

Raw
Input x

Output
label y

Black-box Deep Model

Data-

driven 

Layer

Data-

driven 

Layer

…



Knowledge as Layers in Deep Networks
• As mentioned previously, conventional deep neural networks, with every (hidden) layer being data-

driven, tend to be black boxes. That is, we cannot fully comprehend (and thus have limited control of)
how the deep model maps input x to output y.

• However, if we have some domain knowledge that offers us viable options on 
the intermediate steps to take when mapping x to y, we can encode such 
intermediate steps as (hidden) layers in the deep model, creating grey-box 
models.
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Knowledge as Layers in Deep Networks
• However, if we have some domain knowledge that offers us viable options on the intermediate 

steps to take when mapping x to y, we can encode such intermediate steps as (hidden) layers 
in the deep model, creating grey-box models.

• The benefits of such a model are two-fold: 
• it has better explanability than a black-box mode; 

• it gives us more control over the model, enabling us to use carefully curated domain 
knowledge to enhance the deep model (e.g. improve its performance on small training
sets).
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Knowledge as Layers in Deep Networks
• However, if we have some domain knowledge that offers us viable options on the intermediate 

steps to take when mapping x to y, we can encode such intermediate steps as (hidden) layers 
in the deep model, creating grey-box models.

• We usually have two types domain knowledge that can serve as layers in deep 
networks.

• Important intermediate outputs

• Domain-specific mathematical models
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Knowledge as Layers in Deep Networks
• However, if we have some domain knowledge that offers us viable options on the intermediate 

steps to take when mapping x to y, we can encode such intermediate steps as (hidden) layers 
in the deep model, creating grey-box models. 

• We usually have two types domain knowledge that can serve as layers in deep 
networks.

• Important intermediate outputs

• Domain-specific mathematical models
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Knowledge as Layers in Deep Networks

• Case: particle drag force prediction in assembly
• Background: we are interested in a single particle among a collection of particles in a fluid

• Input x: spatial arrangement of particles near the particle-of-interest

• Output y: the drag force experienced by the particle-of-interest

• Important intermediate outputs: pressure and velocity fields, shear component

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567



Knowledge as Layers in Deep Networks
• Case: particle drag force prediction in assembly

• Background: we are interested in a single particle among a collection of particles in a fluid

• Input x: spatial arrangement of particles near the particle-of-interest

• Output y: the drag force experienced by the particle-of-interest 

• The benefit of having important intermediate outputs (especially if we know their groundtruth values) is that we can monitor their 
predicted values, compare them with their groundtruth values, and guide the network to reduce the prediction error of not only the 
eventual output y, but also the prediction errors of the intermediate outputs.

• This can be done by altering the cost function of the deep model, which we will discuss later!

• In this way, not only can we get multiple outputs with one single network, but we can reduce the chance of the model overfitting the 
training set (that is, the model only works far worse on unseen examples than on training data). 

• Moreover, we can roughly know what each sub-network is doing in the deep 
model, enhancing explainability.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567



Knowledge as Layers in Deep Networks
• By integrating intermediate outputs into the network, not only can we get multiple outputs with one single network, but we can reduce 

the chance of the model overfitting the training set (that is, the model only works far worse on unseen examples than on training data). 

• Moreover, we can roughly know what each sub-network is doing in the deep 
model, enhancing explainability.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567
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Knowledge as Layers in Deep Networks
• However, if we have some domain knowledge that offers us viable options on the intermediate 

steps to take when mapping x to y, we can encode such intermediate steps as (hidden) layers 
in the deep model, creating grey-box models. 

• We usually have two types domain knowledge that can serve as layers in deep 
networks.

• Important intermediate outputs

• Domain-specific mathematical models
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Knowledge as Layers in Deep Networks

• In many applications, there are domain-specific mathematical models (often 
called mechanism models) that directly maps the input x to output y. They take 
on the general form of 

𝑦 = 𝑓(𝑥; 𝜃)

where f is the mapping from x to y, with 𝜃 being model parameters whose values 
must be either manually set or, more often than not, automatically found.

• E.g. One way of predicting the viscosity of melts is to use the VFT model:

𝑦 = 𝐴 +
(12 − 𝐴)(𝑇𝑔 − 𝐶)

𝑥 − 𝐶

where input x is the temperature, output y is the base-10 logarithm of the melt viscosity 
(namely, the actual viscosity is 10𝑦)， while A, C, Tg are model parameters.

[1] Hans Vogel. Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten. Physikalische Zeitschrift 22 ([n. d.]), 645–646.



Knowledge as Layers in Deep Networks

• In many applications, there are domain-specific mathematical models (often called mechanism 
models) that directly maps the input x to output y. They take on the general form of 

𝑦 = 𝑓(𝑥; 𝜃)

where f is the mapping from x to y, with 𝜃 being model parameters whose values must be either 
manually set or, more often than not, automatically found.

• The use of mechanism models is often made challenging by two factors.
• The accuracy of mechanism models are directly related to the setting of model parameters 

𝜃. Traditionally, this is done with classic mathematical optimization methods (e.g. least 
squares, likelihood maximization…), whose effectiveness may be limited.

[1] Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, Wen Lu: Towards a Generic Framework for Mechanism-guided Deep Learning for 

Manufacturing Applications. KDD 2023: 5532-5543



Knowledge as Layers in Deep Networks

• In many applications, there are domain-specific mathematical models (often called mechanism 
models) that directly maps the input x to output y. They take on the general form of 

𝑦 = 𝑓(𝑥; 𝜃)

where f is the mapping from x to y, with 𝜃 being model parameters whose values must be either 
manually set or, more often than not, automatically found.

• The use of mechanism models is often made challenging by two factors.
• The accuracy of mechanism models are directly related to the setting of model parameters 

𝜃. Traditionally, this is done with classic mathematical optimization methods (e.g. least 
squares, likelihood maximization…), whose effectiveness may be limited.

• Mechanism models are often (overly) simplified summary of complex real-world data, thus 
they inherently entail a level of error. In fact, many mechanism models have explicit error 
terms in them. However, even these error terms can rely on overly simplified assumptions 
(e.g. the error distribution is Gaussian).

[1] Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, Wen Lu: Towards a Generic Framework for Mechanism-guided Deep Learning for 

Manufacturing Applications. KDD 2023: 5532-5543



Knowledge as Layers in Deep Networks

• The use of mechanism models is often made challenging by two factors.

• The accuracy of mechanism models are directly related to the setting of model parameters 𝜃. Traditionally, this is 
done with classic mathematical optimization methods (e.g. least squares, likelihood maximization…), whose 
effectiveness may be limited.

• Mechanism models are often (overly) simplified summary of complex real-world data, thus they inherently entail 
a level of error. In fact, many mechanism models have explicit error terms in them. However, even these error 
terms can rely on overly simplified assumptions (e.g. the error distribution is Gaussian).

• To address these issues, note that many mechanism models can directly fit into neural 
networks (without causing your code to report error when training the networks). 

• Thus, we can use the mechanism model as the core of a neural network, while using data-
driven deep sub-networks to optimize its parameters 𝜃, and estimate its error.

• Compared with conventional non-deep parameter optimization and error estimation methods, 
these deep sub-networks tend to yield better outcomes due to their adaptability to complex 
real-world data.

[1] Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, Wen Lu: Towards a Generic Framework for Mechanism-guided Deep Learning for 

Manufacturing Applications. KDD 2023: 5532-5543



Knowledge as Layers in Deep Networks

• We can use the mechanism model as the core of a neural network, while using 
data-driven deep sub-networks to optimize its parameters 𝜃, and estimate its 
error.

[1] Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, Wen Lu: Towards a Generic Framework for Mechanism-guided Deep Learning for 

Manufacturing Applications. KDD 2023: 5532-5543



Knowledge as the Entire Deep Model

• Sometimes, the domain knowledge can be hard to directly exploit in 
its original form. In such cases, we can use an entire deep model to 
emulate it, which can be easier to handle than in its original form.

• A typical example of this is the Physic-Informed Neural Networks 
(PINNs).
• In physics related domains, knowledge is often presented as Partial 

Differential Equations (PDEs), which can be hard to solve in their raw form.
• PINNs emulate PDEs as deep neural networks, and use the computational 

power of modern deep learning frameworks (PyTorch, Tensorflow, etc.) to 
efficiently solve the PDEs.

• We will look into how PINNs work in detail in our hands-on session!

[1] Maziar Raissi, Paris Perdikaris, George E. Karniadakis: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378: 686-

707 (2019)
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Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with 

domain knowledge.

• Recall that we can use important intermediate results as layers in deep 
networks. In such cases, we can define good as being able to accurately predict 
these intermediate results.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Main loss term: 

Prediction error for the 

final output y



Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with 

domain knowledge.

• Recall that we can use important intermediate results as layers in deep 
networks. In such cases, we can define good as being able to accurately predict 
these intermediate results.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Secondary loss terms: 

Prediction errors on important intermediate outputs



Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with 

domain knowledge.

• Recall that we can use important intermediate results as layers in deep 
networks. In such cases, we can define good as being able to accurately predict 
these intermediate results.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567

Weights of the secondary loss terms, indicating their 

importance as compared with the main loss term



Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with 

domain knowledge.

• Recall that we can use important intermediate results as layers in deep 
networks. In such cases, we can define good as being able to accurately predict 
these intermediate results.

• The eventual loss function is all loss terms added together in a weighted 
fashion. To train the model is to minimize the loss function.

[1] Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh K. Tafti, Anuj Karpatne: PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. SDM 2020: 559-567



Knowledge as Loss Function Terms
• One way to define good in the loss function is for the model to comply with domain knowledge.

• Recall that we can use important intermediate results as layers in deep networks. In such cases, we can define good as being able to 
accurately predict these intermediate results.

• Another way to define good is being able to comply with domain-specific rules
and regulations (e.g. physics laws, manufacturing specification limits, security 
protocols, non-discrimination policies, …).



Knowledge as Loss Function Terms
• Another way to define good is being able to comply with domain-specific rules and regulations (e.g. 

physics laws, manufacturing specification limits, security protocols, non-discrimination policies, …).

• Case: lake temperature modeling
• Input x: physical variables governing the dynamics of lake temperature

• Output y: water temperature (at a given depth d and a certain time t)

• The water density 𝜌 is has a one-to-one mapping from temperature y (for each y, there is a unique 𝜌
corresponding to it; and vice-versa), which means by predicting y, we can implicitly predict 𝜌.

• This comes in handy as there is a physics rule concerning the relationship between density 𝜌 and the 
depth d that can help us define a knowledge-guided loss function for y. Specifically:

• At a given time t, the large d is, the larger 𝜌 is (namely: the deeper the water, the denser).

[1] Anuj Karpatne, William Watkins, Jordan S. Read, Vipin Kumar: Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. CoRR abs/1710.11431 (2017)



Knowledge as Loss Function Terms
• The water density 𝜌 is has a one-to-one mapping from temperature y (for each y, there is a unique 𝜌

corresponding to it; and vice-versa), which means by predicting y, we can implicitly predict 𝜌.

• This comes in handy as there is a physics rule concerning the relationship between density 𝜌 and the 
depth d that can help us define a knowledge-guided loss function for y. Specifically:
• At a given time t, the large d is, the larger 𝜌 is

• Based on this rule, we can define the following loss term (in which ො𝜌 is the predicted 𝜌 value, derived from 
the predicted y):

Re𝐿𝑈( ො𝜌 𝑑𝑖 , 𝑡 − ො𝜌 𝑑𝑖+1, 𝑡 )

• ො𝜌 𝑑𝑖 , 𝑡 − ො𝜌 𝑑𝑖+1, 𝑡 is the difference between the predicted densities from a smaller to a large depth. It 
is expected to be non-positive by the physics rule.

• ReLU is a commonly used function in neural networks that is defined as ReLU z = ቊ
𝑧, 𝑖𝑓 𝑧 > 0
0, 𝑖𝑓 𝑧 ≤ 0

• By applying ReLU, we note that the loss term is 0 if ො𝜌 𝑑𝑖 , 𝑡 − ො𝜌 𝑑𝑖+1, 𝑡 is non-positive as expected; 
otherwise, the loss term is positive.

• To minimize the loss term, the model must make the best effort to keep ො𝜌 𝑑𝑖 , 𝑡 − ො𝜌 𝑑𝑖+1, 𝑡 is non-
positive, as it should do!

[1] Anuj Karpatne, William Watkins, Jordan S. Read, Vipin Kumar: Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. CoRR abs/1710.11431 (2017)
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Model Evaluation

• Like what we did in the cost function, when we evaluate a trained 
model, we also have multiple ways to define good, and again, one of 
them is being able to comply with domain-specific rules and 
regulations.

• Consider our previous lake temperature modeling case, where we 
had the physics rule:  

• For model evaluation, we can use the number of times this rule is 
violated as an evaluation metric.

[1] Anuj Karpatne, William Watkins, Jordan S. Read, Vipin Kumar: Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. CoRR abs/1710.11431 (2017)



Model Enhancement

• For a trained model, we can enhance it with expert knowledge. Specifically, we 
can identify the examples that have been incorrectly predicted by the model, 
and present them to a domain expert, who can tell us why they have been 
incorrectly predicted.
• If the expert actually agrees with the model’s prediction, then this means the labels of the 

examples in the dataset (which serve as groundtruth) are wrong. We should then correct 
that label in the dataset.

• If the expert determines that an inevitable external factor (that cannot be handled by the
model itself) has caused the false prediction, we then have a better understanding of the
intrinsic limitations of the model. We should then inform the users of these limitations.

• If the expert determines that the model fails to take into account certain factors (that it 
theoretically can), then we know there are flaws in our model training. We should make 
improvements and retrain the model according.

[1] Barbaros Yet, Zane Perkins, Norman E. Fenton, Nigel Tai, William Marsh: Not just data: A method for improving prediction with knowledge. J. Biomed. Informatics 48: 28-37 (2014)
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Conclusion

• Domain knowledge is a powerful tool to help address challenges in
data-driven methods, such as small data, lack of explanability, etc.

• On the other hand, data-driven methods can help exploit overly 
simplified domain knowledge to better address complex real-world 
scenarios.

• It is thus desirable to fuse the two together. This can be done in any 
step of the data-driven machine learning pipeline!



Thanks!

Knowledge-guide Data Science

Shen Liang

diiP Summer School (dSDS 2024), Jun. 12, 2024. UPCité, Paris, France.
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