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Machine Learning (ML)

The main idea is to “give machines access to data and let them learn
and improve for themselves”

Relevant to problems which are hard to describe or model e.g., face
detection

Solution: data-driven approach as opposed to model-based approach

Face detection Text recognition Movie recommendation
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Goals of Learning

The two main goals of learning are:
1 Data Understanding: means extracting useful features or patterns

from data to improve our understanding of the data and underlying
process(es) e.g., clustering, dimensionality reduction

2 Prediction: making important decisions about system of interest e.g.,
hand-written digit recognition; wind power forecasting (on new/unseen
data during training)

Challenges: data may be complex/nonstationary, multi-modal,
high-dimensional, noisy and depending on the application may be
prohibitively large or inadequately small.
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Prediction: Classification vs Regression

Classification: problems deal with assigning input data to a specified
category. Here, the output f (x) belong to a discrete set of values or
labels. Examples are

Classifying email as spam or not
Classification of hand written digit

Regression: are prediction problems in which the output f (x)
corresponds to a continuous range of values (continuous variable)
e.g., wind power prediction.

Learning 
Algorithm

x f(x)
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Supervised Learning

Labeled training data includes input along with corresponding correct
output

The training data is used to teach model to yield the desired outputs

Learning 
Algorithm

x f(x)

Learning 
Algorithm f(x;w)

{x} {f(x)}

Weight adjustment

Training

Testing
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Supervised Learning

Input x may be raw input or relevant features from input e.g., scaled
and translated images of digits; average image intensity over
rectangular regions of images for face recognition

Examples:
1. Classification problems (email spam detection, hand-written digit
classification, delivering content that matches users interests in social
media, streaming and online shopping platforms)
2. Regression Problems (stock index price prediction; wind power
forecasting)

Algorithms:
1. Linear Regression, Logistic Regression, Perceptron
2. Neural networks (Multilayer Perceptron, Convolutional NN, Deep
NN, Recurrent NN, Transformers)
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Three approaches to classification

1 Finding a function y(x) called discriminant function which maps a
new input x∗ onto a class label.

2 Generative models: Determining class-conditional densities p(x |Ck)
or joint distributions p(x , Ck), followed by the estimation of posterior
densities:

p(Ck |x) =
p(x |Ck)p(Ck)

p(x)
=

p(x |Ck)p(Ck)∑
j p(x |Cj)p(Cj)

Finally, decision theory is used to determine class membership for new
x .

3 Discriminative models: Obtaining posterior class probabilities
p(Ck |x) directly, followed by discrimination.
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Linear classification

The goal of classification is to assign an input vector x to one of the K
classes Ck , k = 1, . . . ,K :

The input space is divided into K decision regions, separated by
decision boundaries or decision surfaces

Linear models: are those for which decision boundaries are linear
functions of x i.e., wTx + w0

Decision boundaries for a linearly separable data set
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Discriminant Functions: Two classes

Linear discriminant function:

y(x) = wTx + w0

w is called weight vector and w0 is called bias (−w0 is called threshold).

Classification rule:

Assign x to class C1 if y(x) ≥ 0

Assign x to class C2 if y(x) < 0

The decision boundary at y(x) = 0, which corresponds to a
(D − 1)-dimensional hyperplane in RD .
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Discriminant Functions: K > 2 classes

We can extend binary discriminant functions to K -class discriminant
functions using two schemes:

One-versus-rest: Use K − 1 binary discriminant functions, each of
which separating points in Ck and not in that class
One-versus-one: Use K (K − 1)/2 binary discriminant functions, one
for every possible pair of classes Ck , Cj ̸=k .

Alexandros Iosifidis (diiP Summer School) Supervised Learning June 11, 2024 10 / 101



Discriminant Functions: K > 2 classes

Single K class Discriminant: comprises K linear functions of the form:

yk(x) = wT
k x + wk0

The classification rule:
assigning x to class Ck if yk(x) > yj(x) for all j ̸= k .

The decision boundary between Ck and Cj is given by yk(x) = yj(x),
corresponding to

(wk − w j)
Tx + (wk0 − wj0) = 0.
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Least Squares for classification

Each class Ck , k = 1, . . . ,K is described by:

yk(x) = wT
k x + wk0 = w̃T

k x̃

where w̃k = [w0k ,wT
k ]

T , and x̃ = [1, xT ]T .

We can group all K outputs together:

y(x) = W̃
T
x̃

where W̃ = [w̃1, . . . , w̃K ].

The classification rule is:
assign x to class Ck if yk(x) > yj(x) for all j ̸= k .
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Least Squares for classification

Problem: Given a training set {xn, tn} for n = 1, . . . ,N, we want to
estimate the parameters W̃ of the regression model.

We use the 1-of-K binary coding scheme for t. Denoting

X̃ =


x̃T
1

x̃T
2
...

x̃T
N

 and T̃ =


t̃T1
t̃T2
...

t̃TN

 (1)

Cost function: The sum-of-squares error for all training data points is

ED(W̃ ) =
1

2
Tr{(X̃W̃ − T )T (X̃W̃ − T )}
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Least Squares for classification

By minimizing the above cost function w.r.t W̃ , we get

W̃ = X̃
†
T

where X̃
†
is the pseudo-inverse of the matrix and is given by

X̃
†
= (X̃

T
X̃ )−1X̃

T

How is this different from the least squares solution for the regression
problem?
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Least Squares for classification

Least squares-based classification is not robust to outliers.

Magenta line corresponds to least squares-based regression and green line corresponds to logistic regression.
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The Perceptron algorithm

Given an input vector x , the Perceptron algorithm:

uses a fixed nonlinear transformation ϕ(x) (also including ϕ0(x) = 1)

uses a generalized linear model:

y(x) = f (wTϕ(x))

where:

f (a) =

{
+1, a ≥ 0

−1, a < 0.

is the nonlinear activation function.

Target values: t = +1 for C1 and t = −1 for C2
Goal: Finding w that is optimal for classification (in some sense).
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The Perceptron algorithm

We want a w such that:

for all xn ∈ C1 we have wTϕ(xn) > 0

for all xn ∈ C2 we have wTϕ(xn) < 0

Using tn ∈ {−1,+1} we can unify the two cases to: wTϕ(xn)tn > 0.

The Perceptron criterion:

assigns zero error for any correclty classified data point

assigns an error equal to −wTϕ(xn)tn to xn if it is misclassified.

EP(w) = −
∑
n∈M

wTϕ(xn)tn

where M is the set of misclassified data points.
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The Perceptron algorithm

1 Randomly initialize w0

2 Iterate (until convergence)
1 shuffle the training vectors xn, n = 1, . . . ,N
2 set EP(w) = 0
3 iterate through the training vectors xτ

4 if xτ is misclassified:

Compute the gradient ∇EP(w) = −ϕ(xτ )tn
Update the weight vector

w (τ) = w (τ−1) − η∇EP(w) = w (τ−1) + ηϕ(xτ )tn

where η > 0 is a learning rate parameter.

Limitations: Applicable only for linearly separable data and for K = 2
classes
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The Perceptron algorithm
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Probabilistic Generative Models

Consider a two-class problem; the posterior probability for C1 is

p(C1|x) =
p(x |C1)p(C1)

p(x |C1)p(C1) + p(x |C2)p(C2)

=
1

1 + exp(−α)
= σ(α)

where:

α = ln
p(x |C1)p(C1)
p(x |C2)p(C2)

and σ(α) is the logistic sigmoid function.
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Logistic sigmoid function

Properties:

squashing function: maps the whole real axis into a finite interval.

σ(−α) = 1− σ(α)

dσ/dα = σ(1− σ)

Inverse (known as logit function): α = ln
(

σ
1−σ

)
α represents the log of the ratio of conditional probabilities for the
two classes:

α(x) = ln

(
p(C1|x)
p(C2|x)

)
also known as the log odds.
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Logistic Regression

We define the error function as the negative log-likelihood, which is
called cross-entropy error function (suitable for minimization):

E (w) = − ln p(t|w) = −
N∑

n=1

(
tn ln yn + (1− tn) ln(1− yn)

)

where yn = σ(αn) and αn = wTxn.

We optimize the parameters w by applying stochastic gradient
descent. But why not obtain w directly as in LS?

The gradient of error function w.r.t w is

∇E (w) =
N∑

n=1

(yn − tn)xn
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Iterative Reweighted Least Squares∗

Reminder: Newton-Raphson method defines the update rule:

w (τ+1) = w (τ) − H−1∇E (w (τ))

where H is the Hessian matrix having elements Hij =
θ2En(w)
θwiθwj

.

Using the cross-entropy error function:

∇E (w) =
N∑

n=1

(yn − tn)xn = XT (y − t)

H = ∇∇E (w) =
N∑

n=1

yn(1− yn)xnxT
n = XTRX,

where R = diag(yn(1− yn)) is a N × N square diagonal depending on w .
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Iterative Reweighted Least Squares∗

Using the property 0 < yn < 1:

H is positive definite: for any u the value uTHu > 0

the error function E (w) is a convex function of w
the error function has a unique (global) minimum.

The iterative update rule (due to dependence of R on w) is:

w (τ+1) = w (τ) − (XTRX−1XT (y − t)

= (XTRX)−1
(
XTRXw τ − XT (y − t)

)
→

w (τ+1) = (XTRX)−1XTRz

where z ∈ RN :
z = Xw (τ) − R−1(y − t).
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Softmax function

For K > 2 we obtain the normalized exponential:

p(Ck |x) =
p(x |Ck)p(Ck)∑K
j=1 p(x |Cj)p(Cj)

=
exp(αk)∑K
j=1 exp(αj)

where:
αk = ln p(x |Ck)p(Ck)

The normalized exponential is also called softmax function:

when αk ≫ αj for all j ̸= k , then p(Ck |x) ≃ 1 and p(Cj |x) ≃ 0
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Multiclass logistic regression

Using 1-of-K coding for the target vectors tn forming T ∈ RN×K , the
likelihood function is:

p(T |w1, . . . ,wK ) =
N∏

n=1

K∏
k=1

p
(
Ck |xN

)tnk
=

N∏
n=1

K∏
k=1

y tnknk

with ynk = yk(xn), and tnk is the {n, k}-th element of T .

The negative log-likelihood, which is called cross-entropy error function,
(suitable for minimization) is:

E (w1, . . . ,wK ) = − ln p(T |w1, . . . ,wK ) = −
N∑

n=1

K∑
k=1

tnk ln ynk
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Multiclass logistic regression∗

Derivatives of E (w):

∇w jE (w1, . . . ,wK ) =
N∑

n=1

(ynj − tnj)xn

∇wk
∇w jE (w1, . . . ,wK ) = −

N∑
n=1

ynk(Ikj − ynj)xnxT
n .

We can use ∇w jE (w1, . . . ,wK ) for applying SGD-based optimization, or
both ∇w jE (w1, . . . ,wK ) and ∇wk

∇w jE (w1, . . . ,wK ) to apply
IRLS-based optimization.
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The artificial neuron

The basic building block of a neural network is called neuron:

It receives as input a vector, e.g. x ∈ RD and applies the following
transformation:

α =
D∑
i=1

wixi + w0 = wTx+ w0

z = h(α)

where:

{w,w0} are the parameters of the neuron
w is called weight and w0 is called bias
α is known as the activation
h(·) is a nonlinear activation function
h(·) can take many forms, depending on the position of the neuron in
the neural network and the problem at hand
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A two-layer feed-forward neural network

yk(x,w) = σ

 M∑
j=1

W
(2)
kj h

(
D∑
i=1

W
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0


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Multi-layer feed-forward neural network
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Multi-layer feed-forward neural network

Alexandros Iosifidis (diiP Summer School) Supervised Learning June 11, 2024 31 / 101



Activation functions
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Activation functions
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A two-layer feed-forward neural network

If we ‘absorb’ the bias parameters in the corresponding weight vectors
using additional dimensions (having a value equal to 1) on the input and
hidden-layer output vectors:

yk(x,w) = σ

 M∑
j=0

W
(2)
kj h

(
D∑
i=0

W
(1)
ji xi

) = σ
(
W(2)T h(W(1)T x̃)︸ ︷︷ ︸

z̃

)

where z̃ ∈ RM+1 and:

W(1) = [w
(1)
1 , . . . ,w

(1)
M ] ∈ R(D+1)×M

W(2) = [w
(2)
1 , . . . ,w

(2)
K ] ∈ R(M+1)×K

Note that the activation functions are applied element-wise (on each
dimension

Alexandros Iosifidis (diiP Summer School) Supervised Learning June 11, 2024 34 / 101



Multilayer Perceptron

The above neural network is called Multilayer Perceptron (or MLP):

an important property is that the activation functions of all neurons
are differentiable w.r.t. their parameters

The use of nonlinear activation functions is crucial:

If we use linear activation functions in the above two-layer neural
network:

yk(x,w) = W(2)TW(1)T x̃ = WT x̃

where W = W(2)TW(1)T ∈ R(D+1)×K .

Thus, any neural network with more than one layers and linear
activation functions correspond to an one-layer neural network.
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Skip connections

The connections in the network do not need to be restricted between
neurons of successive layers (however they need to be feed-forward):
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Neural Network Training: Regression∗

Given a set of data points xn, n = 1, . . . ,N, the corresponding target
values tn and including all the weights of the neural network in a
parameter w:

we assume that t follows a Gaussian distribution:

p(t|x,w) = N (t|y(x,w), β−1)

where β is the precision (inverse variance) of the distribution.
The likelihood function is (we use linear output neurons):

p(t|X,w, β) =
N∏

n=1

p(tn|xn,w, β)

The error function is the negative log-likelihood (discarding the terms
not depending on w and scaling factors):

E (w) =
1

2

N∑
n=1

(
y(xn,w)− tn

)2
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Neural Network Training: Regression∗

Minimizing E (w) will lead to wML:

Due to the use of nonlinear activation functions for the hidden
neurons, wML will be a local minimum of E (w) (non-convex
optimization)

Using wML we can optimize for β by minimizing the negative
log-likelihood function:

1

βML
=

1

N

N∑
n=1

(
y(xn,wML)− tn

)2

The optimizations w.r.t. w and β are performed by using an iterative
optimization process.
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Neural Network Training: Regression∗

When the targets are vectors tn, n = 1, . . . ,N:

We obtain wML by minimizing the mean-squared error between
the outputs and the targets:

E (w) =
1

2

N∑
n=1

∥y(xn,w)− tn∥2

We use wML to optimize for βML:

1

βML
=

1

NK
∥y(xn,wML)− tn∥2
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Neural Network Training: Binary classification∗

Consider that the targets are tn ∈ {0, 1}, where:
tn = 1 means that xn ∈ C1
tn = 0 means that xn ∈ C2

The neural network will have one output neuron with logistic sigmoid
activation function:

y = σ(α) =
1

1 + exp(−α)

ensuring that 0 ≤ y(x,w) ≤ 1.
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Neural Network Training: Binary classification∗

The conditional distribution of t w.r.t. x and w is then a Bernoulli
distribution:

p(t|x,w) = y(x,w)t (1− y(x,w))1−t

The negative log-likelihood function becomes the cross-entropy error
function:

E (w) = −
N∑

n=1

(
tn ln y(xn,w) + (1− tn) ln(1− y(xn,w))

)
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Neural Network Training: Multi-class classification∗

The target vectors tn ∈ RK follow the 1-of-K coding scheme.

The error function is:

E (w) = −
N∑

n=1

K∑
k=1

tkn ln yk(xn,w)

The output neuron activation function is the softmax function:

yk(x,w) =
exp(αk(x,w))∑
j exp(αj(x,w))

ensuring that 0 ≤ yk(x,w) ≤ 1 and
∑

k yk(x,w) = 1.
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Parameter optimization

Local minima correspond to ∇E (w) = 0.
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Parameter optimization

Process:

1 Choose an initial set of parameter values w(0)

2 Update the parameters until reaching a local minimum using:

w(τ+1) = wτ +∆w(τ)

Several optimization techniques which use different choices for ∆w(τ):

Local quadratic approximation

Gradient descent optimization

Error Backpropagation

Recent schemes: RMSprop, Adagrad, Adadelta, Adam, Adamax,
Nadam
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Parameter optimization: Gradient descent

Gradient descent updates w using:

w(τ+1) = wτ − η∇E (w(τ))

To find a sufficiently good minimum, it may be necessary to run a
gradient-based algorithm multiple times, each time using a different
randomly chosen starting point.

When

E (w) =
N∑

n=1

En(w)

stochastic gradient descent (SGD) can be used:

w(τ+1) = wτ − η∇En(w
(τ))

Mini-batch gradient descent uses small chunks (e.g. 64) data points for
each update.
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Parameter optimization: Learning Rate

In the gradient descent equation w(τ+1) = wτ − η∇E (w(τ)), η is the
learning rate which determines the size of the update step.

Small learning rates:

Lead to slow convergence and to a long training time

Get easier stuck in local minima

Large learning rates:

Lead to unstable training

Are easier to diverge

How can we find the correct learning rate?

Try multiple learning rates and pick the best one (hyper-parameter
optimization).

Adapt the learning rate to the landscape.
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Error Backpropagation

Iterative process for updating the weights of a neural network formed by
two steps:

Step 1: Evaluate the derivatives of the error function with respect to
the weights

Step 2: Adjust the weights using the derivatives

The contribution of the Backpropagation algorithm is that it provides a
computationally efficient method for evaluating the derivatives.

Backpropagation algorithm can be used for:

a general network having arbitrary feed-forward topology

arbitrary differentiable nonlinear activation functions,

a broad class of error functions
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Error Backpropagation∗

Forward and backward pass at a neuron
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Error Backpropagation∗

At neuron j the forward pass is:

αj =
∑
i

wijzi zj = h(αj).

The gradient of En w.r.t. wji can be expressed as (chain rule):

θEn

θwji
=

θEn

θαj︸︷︷︸
δj

θαj

θwji︸︷︷︸
zi

= δjzi

Calculating the derivative of the error at neuron j is equal to mutliplying
the value of the error signal at neuron j (δj) with the value of the output
of neuron j (zj , for ‘dummy’ neurons interacting with the bias z = 1).
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Error Backpropagation∗

The error signal at neuron j is given by:

δj =
θEn

θαj
=
∑
k

θEn

θαk

θαk

θαj
= h′(αj)

∑
k

wkjδk

Thus, the error signals at a neuron j are obtained by bakcpropagating the
error signals from units higher up in the network.

For (mini-)batch methods, when E (W) =
∑

n En(w) we have:

θE

θwji
=
∑
n

θEn

θwji
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Error Backpropagation: Example∗
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Error Backpropagation: Example∗

We use:

Sum-of-squares error:

En =
1

2

K∑
k=1

(yk − tk)
2

linear output neurons

hidden neurons with activation function:

h(α) = tanh(α) =
eα − e−α

eα + e−α
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Error Backpropagation: Example∗

Forward pass:

For each input data point xn calculate:

αj =
D∑
i=0

W
(1)
ji xi , zj = tanh(αj), yk =

M∑
j=1

W
(2)
kj zj

Calculate the error signals for each output neurons: δk = yk − tk .

Backward pass:

Backpropagate the error signals:

δj = (1− z2j )
K∑

k=1

wkjδk

Calculate the gradients w.r.t. the weights W(1) and W(2):

θEn

θW
(1)
ji

= δjxi ,
θEn

θW
(2)
ji

= δkzj
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Regularization in Neural Networks

Weight decay:

Ẽ (w) = E (w) +
λ

2
wTw

To allow the regularizer to be invariant under linear transformations of the
input data (for a network with L layers):

λ1

2

∑
w∈W1

w2 +
λ2

2

∑
w∈W2

w2 + · · ·+ λL

2

∑
w∈WL

w2

where Wl denotes the set of weights in layer l .
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Regularization in Neural Networks

Early stopping:

Left: Error function on the training data
Right: Error function on the validation data
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Regularization in Neural Networks: Dropout

Dropout in iterative optimization: A probabilistic process to ‘augment’ the
training set during iterative training and increase invariance:
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Regularization in Neural Networks: Training set size

When the number of training samples is small (smaller than the number of
the model’s parameters) the model tends to overfit (under-determined
problem).
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Regularization in Neural Networks: Training set size

In neural networks, this problem is usually addressed by using:

Data augmentation: create new samples by applying small variations
on the training data. For example, for images: geometric variations
(shift, rotations, scaling), crops, noise

Transfer learning:
1 Initialize the model’s parameters with those of a pre-trained model on a

big data set (having similar properties to the problem we want to solve)
2 fine-tune the model using the small data set
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Convolution Operation
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Convolutional Neural Networks

Convolutional Neural Network (CNN, ConvNet):

A neural network with at least one layer where the matrix
multiplication operation is replaced by the convolution operator.

Figure: LeNet
Figure created using http://alexlenail.me/NN-SVG/LeNet.html

Alexandros Iosifidis (diiP Summer School) Supervised Learning June 11, 2024 60 / 101

http://alexlenail.me/NN-SVG/LeNet.html


Convolutional Neural Networks

Convolutional Neural Network (CNN, ConvNet):

A neural network with at least one layer where the matrix
multiplication operation is replaced by the convolution operator.

Alexandros Iosifidis (diiP Summer School) Supervised Learning June 11, 2024 61 / 101



The Convolution Layer

A tensor filter convolves the input third-order tensor (which is the image in
the first layer):

at each position it produces a value.

follows a sliding window approach to process all the locations in the
input tensor.

leads to one output map (either a matrix or a third-order tensor with
its last dimension equal to 1).

Convolving an input third-order tensor with K tensor filters leads to the
creation of K output maps (a third-order tensor with its last dimension
equal to K )
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The Convolution Layer

A convolution with 9 filters, each having a size of 11× 11× 3:
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Pooling

Pooling is used to:

Reduces the memory footprint of the CNN over the successive layers.

Summarizes information in local neighborhoods (leads to small
invariance w.r.t. shifting the input signal).

At later layers of the CNN, each tensor fiber encodes information of a
larger area in the input image (receptive field).
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Convolution stride

Convolution with a stride of one:
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Convolution with a stride of one:
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Convolution stride

Convolution with a stride of one:
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Convolution stride

Convolution with a stride of one:
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Convolution stride

We can achieve similar effects to pooling by using a stride greater than
one:
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Convolution stride

We can achieve similar effects to pooling by using a stride greater than
one:
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Zero padding

To create an output tensor for which the first two dimensions match those
of the input tensor we use zero padding with size:

#zeros = (#image dims−#filter dims)/stride+ 1
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AlexNet

State-of-the-art (SOTA) neural network for image classification in 2012
using convolutions, pooling and MLP.

Figure: AlexNet Architecture
Image taken from “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS
2012
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VGG

SOTA neural network for image classification in 2014, using the same
architectural elements but more layers.

Figure: VGG Architecture
Image taken from “Automatic localization of casting defects with convolutional neural
networks”, IEEE Big Data 2017
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Residual Connections

Residual connections make training more stable, allowing for deeper
networks.

Figure: Residual Connection
Image taken from “Deep Residual Learning for Image Recognition”, CVPR 2016
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ResNet

Using residual connections, ResNet can have many more layers than VGG.

Figure: Residual Connection
Image taken from “Deep Residual Learning for Image Recognition”, CVPR 2016
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Inception

It is difficult to determine the convolution parameters (e.g. filter size).

The Inception module includes multiple possibilities in parallel.

Figure: Inception Module
Image taken from “Going deeper with convolutions”, CVPR 2015
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3D Convolution

An image is represented by a 3D tensor H×W×C.

A video can be represented as a series of images, resulting in a 4D tensor
T×H×W×C, where T is the temporal dimension.

To process a video with deep learning, it is not enough to process each
image individually, as the changes that occur between frames over time
contain valuable information.

3D convolution is a type of convolution where the kernel slides in three
dimensions instead of two, and can be used for processing videos.
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3D Convolution

Figure: 3D convolution, image taken from: L. Fan, Z. Xia, X. Zhang and X. Feng, ”Lung nodule
detection based on 3D convolutional neural networks,” 2017 International Conference on the
Frontiers and Advances in Data Science (FADS), 2017, pp. 7-10.
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Continual 3D CNNs

3D CNNs perform redundant computations for a temporal convolution
during online inference.

Figure: Redundant computation, image taken from: Hedegaard, Lukas, and Alexandros Iosifidis.
“Continual 3D Convolutional Neural Networks for Real-Time Processing of Videos.” European
Conference on Computer Vision (ECCV), 2022.
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Continual 3D CNNs

This redundancy can be removed by using continual convolutions instead.
The intermediate feature maps corresponding to all but the last temporal
position are stored, while the last feature map and prior memory are
summed to produce the resulting output.

Figure: Continual convolution, image taken from: Hedegaard, Lukas, and Alexandros Iosifidis.
“Continual 3D Convolutional Neural Networks for Real-Time Processing of Videos.” European
Conference on Computer Vision (ECCV), 2022.
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Vision Transformer

Alternative architecture for computer vision tasks that does not include
convolutions.

Based on the Transformer architecture which has been widely used in
natural language processing since 2017.

Figure: Image taken from “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale ”, ICLR 2021
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Vision Transformer: Self-Attention

If the key, query and value vectors are packed into matrices Q = XWQ ,
K = XWK and V = XW V , where WQ , WK and W V are learnable
weight matrices, the self-attention operation can be rephrased as follows:

Z = softmax

(
QKT

√
dk

)
V

Self-attention is extended to multi-head attention in order to enable the
model to capture more than one type of relationship between the entities
in the sequence.

Positional embeddings are additional learnable parameters that are added
to each patch in order to solve this issue.

Classification token is an additional token which is added alongside the
input sequence of tokens.
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Continual Transformers
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Figure: Continual Transformer, image taken from: Hedegaard, Lukas, Arian Bakhtiarnia, and
Alexandros Iosifidis. ”Continual Transformers: Redundancy-Free Attention for Online
Inference.” arXiv preprint arXiv:2201.06268 (2022).
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Hands-on examples

Regression-based classification

Perceptron-based classification

Multilayer Perceptron and CNN on MNIST

Transfer Learning for image classification on CIFAR10

3D Convolutional Neural Network based classification on 3D MNIST

Vision Transformer for image classification on CIFAR10
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https://colab.research.google.com/github/AU-MaLeCI/diiP2024_SL_Solutions/blob/main/problems/regression_based_classification.ipynb 
https://colab.research.google.com/github/AU-MaLeCI/diiP2024_SL_Solutions/blob/main/problems/perceptron.ipynb
https://colab.research.google.com/github/AU-MaLeCI/diiP2024_SL_Solutions/blob/main/problems/mnist.ipynb
https://colab.research.google.com/github/AU-MaLeCI/diiP2024_SL_Solutions/blob/main/problems/cifar10.ipynb
https://colab.research.google.com/github/AU-MaLeCI/diiP2024_SL_Solutions/blob/main/problems/cnn_3d.ipynb
https://colab.research.google.com/github/AU-MaLeCI/diiP2024_SL_Solutions/blob/main/vit.ipynb

