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Representing the world with vectors
Classification for botanists

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

103 7.10 3.00 5.90 2.10 virginica

43 4.40 3.20 1.30 0.20 setosa

71 5.90 3.20 4.80 1.80 versicolor

136 7.70 3.00 6.10 2.30 virginica

35 4.90 3.10 1.50 0.20 setosa

64 6.10 2.90 4.70 1.40 versicolor

Iris classification
• In the traditional case, data for statistical analysis comes frommeasures. Thesemea-
sures are organised as input vectors x ∈ Rd that are used as input to a predictive
model with some output y ∈ Rp. (d = 4, p = 3)

• For the iris, a classification model can be as simple as:

y = softmax(Wx+ b)

whereW is a matrix of parameters and b a bias vector
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Representing the world with vectors
Classification for text

• Consider the sentiment classification problem for text where y ∈ {pos, neg, other}.
Your input data x cannot be straightforwardly measured anymore :
– I dislike old cabin cruisers / negative
– Bertram has a deep V hull and runs easily through seas / positive
– I do not dislike cabin cruisers / positive

Representation function
When processing text, a key element of the modeling amounts to choose an
appropriate encoding of words (symbols) into vectors. Several solutions can be
considered:

• Dummy coding, one hot coding

• Word embeddings

• Neural language models

A Large Language Model is a (sophisticated) representation function mapping
sequences of symbols to vectors
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Vectors and vector space
• Vectors are arrays of (real) numbers. They are written as x and y.
• Vectors of the same size can be added together (x+ y): 2

−3
0.5

+

 1

3

−2.5

 =

 3

0

−2


• Vectors can be multiplied by a scalar a ∈ R :
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• We picture vectors sometimes as :
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Dot product
• The dot product of two vectorsw and x is defined as:

〈w, x〉 = w1x1 + . . .+ wnxn

The dot product and linear models

w =


a1
a2
a3
b

 x =
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1


Observe that: 〈w, x〉 = a1x1 + a2x2 + a3x3 + b1
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Matrices as linear maps
• Matrices are rectangular arrays of numbers, written asW,U,V.
• Matrices can be multiplied by vectors. A matrix W ∈ Rm×n multiplies a vector x of
size n and yields a vector of sizem. Example:

W =

 12 0.2
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〈w2, x〉
〈w3, x〉

 =
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−4
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
Linear maps: it is important to see that matrices transform their input vector of
some size n to an output vector of sizem by means of linear operations

• Matrices can also be multiplied together too
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Non linear vector transformations
Neural networks use non linear operators to transform vectors called activations. Here
are some classical ones:

• tanh : Rd 7→ [−1, 1]d. Each vector coordinate xi is mapped to a value in [−1, 1]

tanh(xi) =
exi − e−xi

exi + e−xi

• σ : Rd 7→ [0, 1]d. Each vector coordinate xi is mapped to a value in [0, 1]

σ(xi) =
1

1 + e−xi

• softmax : Rd 7→ [0, 1]d with the constraint that
∑

i xi = 1. That is softmax converts
a vector of real numbers into a vector of probabilities.

softmax(xi) =
exp(xi)∑
j exp(xj)
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Relation to biology

x1

x2

x3

yϕ(〈w, x〉)

The elementary neuronal model outputs the result of the dot

product of the input signals with the neuron parameters

transformed by an activation

Two versions of neural
networks
• Some neural networks are designed to

be convenient to use for mathemat-
ical and computational manipulation.
These are those most people use nowa-
days

• Some other neural networks are de-
signed to model more explicitly biologi-
cal networks, these are the spiking net-
works. In a spiking network a neuron
fires only when it reaches a threshold
(the potential)
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Some elementary neural network architectures

Linear regression

y = 〈w, x〉

Logistic regression

y = σ(〈w, x〉)

Softmax regression

y = softmax(Wx)

Feedforward
network

h = tanh(Wax)

y = Wbh

Multilayer softmax
regression

h = tanh(Wax)

y = softmax(Wbh)
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Training a neural network
Training a neural network amounts to estimate the value of its parameters w from a
data set.

• Training a neural network supposes a dataset of the form D = (yi, xi)
n
i=1

• Training a neural network supposes a loss function. A loss function compares the
value predicted by the model ŷi with the data value yi for each example of the data
set.

• Training a neural network aims tominimize the loss: at each time step, the param-
eters are updated in such a way that the loss decreases.

Example loss
Sum of squares is the loss for linear regression. It measures the distance between the
data points and the line:

ssq(D,w) =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − 〈w, xi〉)2
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The cross entropy loss
The most common loss used in NLP is the cross entropy loss.

• The cross entropy lossmeasures the distance between a one hot vector and network
probabilistic output

0 1 0 0 0 yi ∈ {0, 1}
ŷi ∈ [0, 1]

H(y, ŷ) = −
d∑

i=1

yi log ŷi

• The loss is essentially dependent of− log(ŷi) for the correct label:
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Non convexity of neural networks
• The theory of machine learning is built on the assumption that the loss is a (strictly)
convex function: the minimum of the function is unique. In other words there is
exactly one vectorw for which the loss is minimal.

• In deep learning this is not true anymore. There may be several local minima. Most
neural networks are deep and use several layers with non linear activations. As a
result losses are generally non convex

x

f(x)

f(x)

x

f(x)

f(x)

• As a result, the parameters may change from one fit to another due to random-
ness. This is generally nonsense to interpret the coefficients of the model.
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One hot vectors and the distributional hypothesis
• One hot vector encoding is a classical method for encoding a set C of categorical
values.
Example:

setosa 100

virginica 010

versicolor 001

Distributional hypothesis
One hot vectors are sometimes fine, but for natural language it turns out that words
appearing in the same textual context tend to have the same meaning.
– For instance thewords ”apple” or ”pear” aremore likely to be surrounded bywords like ”sweet”,

”green”, ”tasty”, ”sour” rather than by ”cruel”, ”arrogant” or ”angry” (context of ”monster” or
”villain”)

– Word embeddings are vectors encoding words such that words occuring in the same textual
contexts have similar representation vectors. Methods for computing word embeddings gen-
erate a static dictionary mapping strings to vectors
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Word embeddings: an example
Word2vec (Mikolov 2013)

• There is a whole family of word embedding methods, here is one called Word2Vec
(CBOW)

• The model is trained by minimizing the cross entropy of a dataset made of contexts
with a missing central word.

e(wi−2) e(wi−1) e(wi+1) e(wi+2)

← one hot encoding

← output probabilities

← context embedding

h = 1
|C|

∑
w∈C Wine(w)

y = softmax(Wouth)

• Once trained, the model matrixWin is used as a dictionary to look up for word rep-
resentations r(w):

r(w) = Wine(w)
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Word embeddings and bag of words
• Word embeddings generated by word2vec are used to map word strings to word
vectors by dictionary lookup.

• Word embeddings can be used to map sequence of words (sentences, paragraphs,
texts) assuming that:
– Word sense as given by the vector representation is independent of the context
– word order is irrelevant for the problem at stake (bag of words assumption)
Averaging is the most common method for a text T = w1 . . .wn:

r(T) =
1

n

n∑
i=1

r(wi)

Limits of the bag of words assumption
• The bag of word and context independence assumptions are sometimes too strong

– They always wanted to become Hollywood stars
– The Milky Way contains between 200 and 400 billion stars

• These problems are tackled by language models
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Language models
• The probability of a sequence of symbols x = x1 . . . xn is given by the chain rule of
probability:

P(x) = P(x1, . . . xn) =
n∏

i=1

P(xi|x1 . . . xi−1)

The conditional P(xi|x1 . . . xi−1) reads as ”the probability of generating xi given that
we know x1 . . . xi−1”. The longer the context the easier it is to guess xi, example:
– the …
– the cat …
– the cat chases the …

• A language model is a distribution of probability over a set L of variable length
sequences, a formal language, such that:

0 ≤ P(x) ≤ 1∑
x∈L

P(x) = 1
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Markovian neural language model
• Amarkov assumption is a classical assumption that sets the boundary of the con-
text and simplifies the chain rule:

P(x) ≈
n∏

i=1

P(xi|xi−k . . . xi−1)

The conditionals now have a limited context of order k.

• Amarkovian neural languagemodel (Bengio et al. 2003) uses a window of kwords
to predict the next word. Example for k = 3

cat chases the

h = tanh(W−3x−3||W−2x−2||W−1x−1)

y = softmax(Wouth)
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Recurrent neural network Language models
(Elman 91, Hochreiter, Schmidhuber 1997, Mikolov 2010)

• The recurrent language model uses a recurrent neural network to compute transi-
tion probabilities without markov assumptions: P(x) =

∏n
i=1 P(xi|x1 . . . xi−1)

• A recurrent neural network (Rnn/Lstm) is a time dependant model used to compute
incrementally contextualized word embeddings ht:

the cat chases the

ht = tanh(Wht−1 + Uxt)

yt = softmax(Woutht)

these contextualized word embeddings (in blue) are used to predict probabilities of
the following word (yt, in green) with an output softmax over the vocabulary.
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Attention! recurrent networks forget the past!
• As observed in machine translation (Bahdanau 2014), RNNs (and LSTM) forget the
distant past.

• Attention models are time independant, or parallel, models that allow to contextu-
alize bag of words embeddings. Example of a self attentionmodel:

the cat chases the mouse

hi =
∑n

j=1 αjxj

yi = softmax(Wouthi)

• The attention weights (αj) are probabilities indicating how similar are the word em-
beddings in the sentence with the target word:

αj =
exp(aj)∑
k exp(ak)

aj ∝ 〈xi, xj〉 (1 ≤ j ≤ n)
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There is more than one way to pay attention to your
neighborhood!

• Self attention says how we update the embedding of a word given its important
context. Consider the αj distribution for word it in the example:

The animal didn’t cross the street because it was too tired

αThe

αstreet

αanimal

Then self-attention updates the embedding of it to be the weighted sum of its po-
tential antecedents.

• But there are other ways to pay attention to the context:
– (SV-agreement) The keys to the cabinet are on the table.
– (anaphora) The animal didn’t cross the street because it was too tired
– (lex-semantics) I walked along the pond, and noticed that one of the trees along the bank

had fallen into the water after the storm.
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Multi-head attention
• Instead of using a single attention, a transformer uses h heads of self attention

• Computes updated embeddings for each head and remerges back the results by
pooling. Example for two heads:

the cat chases the mouse

vi,1 = W(v)
1 xi vi,2 = W(v)

2 xi

hi,1 =
∑n

j=1 αj,1vj,1 hi,2 =
∑n

j=1 αj,2vj,2

hi = W(hi,1||hi,2)

• αj,h =
exp(aj,h)∑
k exp(ak,h)

aj,h ∝ 〈qi,h, kj,h〉

• qi,h = W(q)
h xi ki,h = W(k)

h xi
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Transformer layer
• The transformer layer is the basic unit of transformation. It is made of:
– A multihead attention component that ”mixes” embeddings
– A feedforward component that ”refines” embeddings

and a formal apparatus to normalize and prevent drifting (hidden here).

MultiHead Attention

h = relu(Wix) h = relu(Wix) h = relu(Wix) h = relu(Wix) h = relu(Wix)

y = Woh y = Woh y = Woh y = Woh y = Woh
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The full transformer
• Given a bag of word embeddings, a transformer transforms (!) them successively
by applying N distinct layers.

• The more layers, the more the output embeddings are good at predicting discourse
level properties. The embeddings of the first layers are good at predicting lexical
properties

Transformer Layer 1

· · ·

Transformer Layer N

the cat chases the mouse

Detailed architecture
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Relation with Graph Neural Networks
• Graph Neural Networks are networks with graph structure whose nodes are en-
coded by embeddings

• They are used to model large networks such as social networks, citations networks
and networks in biology, physics etc.

• Graph Neural Networks are updated with an iterative message passingmethod usu-
ally decomposed in two steps:
– Aggregate: gathers and aggregate the embeddings of the nodes neighborhood
– Update: Update the node embedding for the next time step

• A transformer can be viewed as a complete graph equipped with aggregate (atten-
tion) and update steps (feed forward) that are repeated iteratively (layer iteration)

• The relation with Graph Neural Networks leads to theoretical analysis of the dynam-
ics of transformers.
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Training a transformer
• Transformers are trained using a cloze task scenario.

• Masked language models are transformers trained to predict a word randomly
masked in the text. The prediction is compared to the ground truth and parame-
ters are updated accordingly.

• BERT is the most cited representative of this family

• Example: the cat the mouse

y = softmax(Wouthi)

Transformer Layer 1

· · ·

Transformer Layer N

the cat [MASK] the mouse



29/61

Training a generative transformer
• Transformers are trained using a cloze task scenario.

• Generative language models are trained to predict the next word given a prefix
P(xi|x1 . . . xi−1). The prediction is compared to the ground truth and parameters
are updated accordingly.

• Example: the cat chases the

y = softmax(Wouthi)

Transformer Layer 1

· · ·

Transformer Layer N

the cat chases the
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Word tokenization

Statement of the problem
• Perhaps surprisingly, word tokenization is an old and non trivial problem in natural
language processing.

• Since transformers take as input word embeddings, the vocabulary should be a finite
set

• In current architectures, the storage of large embedding matrices is responsible for
larger memory consumption. Reasonably small vocabularies are preferred

• It is virtually impossible to enumerate the vocabulary of a natural language. There
are permanently new words, spelling errors…

The subword solution
Rather than relying naively on whitespace separated word vocabularies inferred from
corpora that can be huge and for which it is impossible to guarantee completeness,
language models split words into a finite set of subwords that can be kept relatively
small.
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Byte Pair Encoding
An example

function BytePairEncoding(text,size)
V← set of bytes found in text
while |V| < size do

bp← find most frequent char pair in text
if frequency(bp) = 1 then

return V, T
end if
s← fresh character not in V
V← V ∪ {s}
T← T ∪ {s→ bp}
text← replace greedily all bp with s in text

end while
return V, T

end function

Example
1. Text: aaabdaaabac, b = aa, s = Z

2. Text: ZabdZabac, b = ab, s = Y

3. Text: ZYdZYac, b = ZY, s = X

4. Text: XdXac, done
and T = {aa→ Z, ab→ Y, ZY→ X}

• GPT-4 has a V of size≈ 100000

• once the BPE is trained, T is used to compress words
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Large Language models
• Language models are auto-supervised. It entails that there is no need for data an-
notation to train them.

• There is a strong interest in training models on extra large data sets because natural
language is pretty hard to sample. Vocabulary representation is highly biased by
the topics of small sized corpora

• Transformers and in particular generative transformers are designed to compute
efficiently at scale on Graphical Processor Units (GPU)

Example: GPT-3
Generative Pretrained Transformer
v.3 (OpenAI) is trained over 45 TB of
textual data crawled and cleaned from
the internet and contains about 175
Billions parameters.
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Mathematical representation of text
• Mapping strings (words, tokens) to numerical representations is an old problem for
machine learning/applied statistics for natural language (experimentalists also use
dummy coding/constract coding…)

• Word Embeddings (LSA, Word2vec) provide methods for mapping the vocabulary to
vectors/representations

• Language models provide in context representations for tokens where one may ex-
pect to have disambiguated vectors, that anaphora is partly taken into account etc.

• Representation In sum a neural language model can be viewed as a function from
Strings to Vectors that can be used as input for further statistical modeling.

Transformer

the cat chases the mouse
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Qualitative evolution of representation methods
A summary

Name Improvement

One hot coding baseline

Word embeddings Distributional hypothesis

Neural Language models Contextualized embeddings

Large Language models Scale up (parallelism with GPU)

• One hot encoding and word embedding are essentially used for providing word rep-
resentations, they can be used to provide basic text representations by assuming
bag of words

• Neural Language models (markovian) are generally reasonable predictors with lim-
ited context and remain relatively approximate

• Neural Language models (RNN/LSTM) are better predictors because of larger con-
text. But in practice they then to have limited memory and cannot be easily scaled
up since their architecture is temporal rather than parallel
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Training at scale
• Training up to a GPT-2 size language model can be achieved today on a single com-
pute node with 8 A-100 GPU in about 4 days (excluding parameter search)

• Scaling up to the full LLM size is somewhat more involved. For instance LLama2-
70B used 6000 GPU for 12 days for training from a chunk of 10TB from internet and
generates a 140GB file of parameters.
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Fine Tuning
• Large Language models can be refined or fine-tuned

• The assumption is that the large languagemodel captures the general knowledge of
language because it is trained on a very large corpus.

• Fine tuning is a specialization of the language model for a specific task where we
only have a small corpus of (domain specific) annotated data.

• Example, part of speech tagging:

y = softmax(Wtaghi)

Transformer

the cat chases the mouse

• Fine tuning implies training the model by updating all the parameters, including
those of the transformer.
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ChatGPT
• Given a prefix or a prompt one can generate text with a generative language model.
For a zero prefix:

x1 ← [START]
while True do :

xt+1 ∼ PW(x|x1 . . . xt)
end while

• For question answering or dialogue, one can give a natural language question as
prompt and asks chat GPT to continue the text.
How do you do ? I’m doing well, thank you! How can I assist you today ? ©

• Since there are few dialogues in the internet corpus. The language model (GPT 3.5)
is refined using Reinforcement Learning with Human Feedback (RLHF). The lan-
guage model is refined by asking humans to annotate whether the interaction is
considered as positive or negative (u D)
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Zero and Few shot prompting
Binz and Schulz 2023

• Few shot or zero shot prompting aims to have a language model perform a task by
prompting zero or a few examples. Assume the prompt:
This is awesome! // Positive
This is bad! // Negative
Wow that movie was bad! // Negative
What a horrible show! //

and you expect the model to output Negative
• When the task is too complex this does not work anymore. Consider the prompt:

The odd numbers in this group add up to an even number: 4, 8, 9, 15, 12, 2, 1.
A: The answer is False.
The odd numbers in this group add up to an even number: 17, 10, 19, 4, 8, 12, 24.
A: The answer is True.
The odd numbers in this group add up to an even number: 16, 11, 14, 4, 8, 13, 24.
A: The answer is True.
The odd numbers in this group add up to an even number: 17, 9, 10, 12, 13, 4, 2.
A: The answer is False.
The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1.
A:

and you expect the model to output The answer is False
(odd sum = 41) while GPT tends to fail here
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Emergent abilities
• An ability is emergent if not detectable with standard or small sized models but be-
come apparent with large models

• Example or arithmetic
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Memory, hallucinations, generalization
• A generative LLM can be seen as a database compressing lossily terabytes of data.

• Memory is not guaranteed to be consistent. Famous example (fixed since then):
– H: Who's Tom Cruise mother ?
– M: Mary Lee Pfeiffer
– H: Who's the son of Mary Lee Pfeiffer ?
– M: dunno.

• The capacity ofmodels to generalize beyond rotememorization is badly understood.

Hallucinations
• Hallucinations are cases of text generated by
LLM that are well formed but either factually
incorrect, nonsensical, crafted out of the blue.

• Hallucinations have several origins: underfitting,
overfitting, general data biases…

• As a result, the output of an LLM is not
thrustable and it motivates explainable AI
research.
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Retrieval augmented Generation (RAG)
• Retrieval augmented Generation is an example of method that aims to correct for
hallucinations.

• It is used in the context where the LLM is queried for confidential, very technical or
specific information

• The idea is to send the query to a search engine, retrieve the result and query the
LLMs both with the query and the retrieved results
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Prediction for language models
Generative prediction

Example
• Prompt: The island of Porquerolles is

• Model prediction: The island of Porquerolles is a captivating island nestled in the
Îles d’Hyères, located off the coast of Hyères on the French Riviera.

• Evaluation: similarity between the ground truth and the generated text (BLEU,
ROUGE, accurracy)
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Predicting annotations
Annotation models

Example
• Input: The island of Porquerolles is located on the French Riviera

• Model Prediction: D N P PN V VPP P D A NP

• Evaluation: Comparison betweenmodel predictions and human annotations. Accu-
racy, F-score…This scenario requires to fine tune the language model on annotated
data
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Prediction and evaluation

The Glue Benchmark (link)
9 datasets to test language models on a variety of prediction tasks. NLP oriented and
initially for BERT. Here are some examples:

Grammaticality (Cola) This building is than that one.

agrammatical

Sentiment analysis The movie is funny, smart, visually inventive, and most of all, alive

pos,neg,neutral 0.93 (pos)

Paraphrase Yesterday, Taiwan reported 35 new infections, bringing the total number of cases to 418.

The island reported another 35 probable cases yesterday, taking its total to 418.

yes

Reference (WNLI) Lily spoke to Donna, breaking her concentration.

Lily spoke to Donna, breaking Lily’s concentration.

yes

https://gluebenchmark.com
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Prediction and evaluation

The BLiMP Benchmark (link)
67 datasets ofminimal pairs on a variety of linguistic properties (English). This is
artificially generated data testing a wide range of properties in morphology, syntax
and semantics. Here are some examples:

Anaphora Many girls insulted themselves

* Many girls insulted herself

Arg Structure Rose wasn’t disturbing Mark

* Rose wasn’t boasting Mark

S/V Agreement These casseroles disgust Kayla

*These casseroles disgusts Kayla

Binding Carlos said that Lori helped him

*Carlos said that Lori helped himself

The test amounts to compare the probability given to each element of the pair.
Success if the probability is higher for the grammatical element

https://github.com/alexwarstadt/blimp
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Prediction and evaluation

Code generation
• This time the prediction is structured: predict the code given the intent.

• Split a string in chunks and keep the separators

import re

def split_and_keep_separators(s, separators):
pattern = f"({'|'.join(map(re.escape, separators))})"
chunks = re.split(pattern, s)
return [chunk for chunk in chunks if chunk]

text = "Split a string; in chunks! and keep, the separators."
separators = [' ', ';', '!', ',', '.']
result = split_and_keep_separators(text, separators)
print(result)
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Predicting behavior or physiology

Example
• Input: By July 1915 all seventeen of the German Imperial Navy…

• Model Prediction: -1.684012 -1.203219 -2.527704 -0.137419 …

• Evaluation: Comparison between model predictions and human measures (Eye
Reading, physiological). correlation, R2, likelihood function…
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Example (Schrimpf et al. 2021)

representations at the first and output layers (Fig. 2C and SI
Appendix, Fig. S10).
Model scores are consistent across experiments/datasets. To test
the generality of the model representations, we examined the
consistency of model brain scores across datasets. Indeed, if a
model achieves a high brain score on one dataset it tends to
also do well on other datasets (Fig. 2D), ruling out the possibil-
ity that we are picking up on spurious, dataset-idiosyncratic
predictivity and suggesting that the models’ internal representa-
tions are general enough to capture brain responses to diverse
linguistic materials presented visually or auditorily, and across
three independent sets of participants. Specifically, model brain
scores across the two experiments in Pereira2018 (overlapping
sets of participants) correlate at r = 0.94 (Pearson here and
elsewhere, P << 0.00001), scores from Pereira2018 and Fedor-
enko2016 correlate at r = 0.50 (P < 0.001), and from Per-
eira2018 and Blank2014 at r = 0.63 (P < 0.0001).

Next-Word-Prediction Task Performance Selectively Predicts Brain
Scores. In the critical test of which computations might underlie
human language understanding, we examined the relationship
between the models’ ability to predict an upcoming word and
their brain scores. Words from the WikiText-2 dataset (72)
were sequentially fed into the candidate models. We then fit a
linear classifier (over words in the vocabulary; n = 50,000) from
the last layer’s feature representation (frozen, i.e., no fine-tun-
ing) on the training set to predict the next word and evaluated
performance on the held-out test set (Methods, section 8).
Indeed, next-word-prediction task performance robustly pre-
dicts brain scores (Fig. 3A; r = 0.44, P < 0.01, averaged across
datasets). The best language model, GPT2-xl, also achieves the
highest brain score (see previous section). This relationship
holds for model variants within each model class—embedding
models, recurrent networks, and transformers—ruling out the
possibility that this correlation is due to between-class differ-
ences in next-word-prediction performance.

To test whether next-word prediction is special in this
respect, we asked whether model performance on any language
task correlates with brain scores. As with next-word prediction,
we kept the model weights fixed and only trained a linear

readout. We found that performance on tasks from the General
Language Understanding Evaluation (GLUE) benchmark col-
lection (73–80)—including grammaticality judgments, sentence
similarity judgments, and entailment—does not predict brain
scores (Fig. 3 B and C). The difference in the strength of corre-
lation between brain scores and the next-word-prediction task
performance vs. the GLUE tasks performance is highly reliable
(P << 0.00001, t test over 1,000 bootstraps of scores and corre-
sponding correlations; Methods, section 9). This result suggests
that optimizing for predictive representations may be a critical
shared objective of biological and artificial neural networks for
language, and perhaps more generally (81, 82)

Brain Scores and Next-Word-Prediction Task Performance Correlate
with Behavioral Scores. Beyond internal neural representations,
we tested the models’ ability to predict external behavioral out-
puts because, ultimately, in integrative benchmarking we strive
for a computationally precise account of language processing
that can explain both neural response patterns and observable
linguistic behaviors. We chose a large corpus (n = 180 partici-
pants) of self-paced reading times for naturalistic story materi-
als [Futrell2018 dataset (83)]. Per-word reading times provide a
theory-neutral measure of incremental comprehension diffi-
culty, which has long been a cornerstone of psycholinguistic
research in testing theories of sentence comprehension (28, 33,
83–87) and which were recently shown to robustly predict neu-
ral activity in the language network (88).
Specific models accurately predict reading times. We regressed
each model’s last layer’s feature representation (i.e., closest to
the output) against reading times and evaluated predictivity on
held-out words. As with the neural datasets, we observed a
spread of model ability to capture human behavioral data, with
models such as GPT2-xl and AlBERT-xxlarge predicting these
data close to the noise ceiling (Fig. 4A and refs. 89 and 90).
Brain scores correlate with behavioral scores. To test whether
models with the highest brain scores also predict reading times
best, we compared models’ neural predictivity (across datasets)
with those same models’ behavioral predictivity. Indeed, we
observed a strong correlation (Fig. 4B; r = 0.65, P << 0.0001),
which also holds for the individual neural datasets (Fig. 4B,
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Fig. 2. Specific models accurately predict neural responses consistently across datasets. (A) We compared 43 computational models of language process-
ing (ranging from embedding to recurrent and bi- and unidirectional transformer models) in their ability to predict human brain data. The neural data-
sets include fMRI voxel responses to visually presented (sentence-by-sentence) passages (Pereira2018), ECoG electrode responses to visually presented
(word-by-word) sentences (Fedorenko2016), and fMRI ROI responses to auditorily presented ∼5-min-long stories (Blank2014). For each model, we plot the
normalized predictivity (“brain score”), i.e., the fraction of ceiling (gray line; Methods, section 7 and SI Appendix, Fig. S1) that the model can predict. Ceil-
ing levels are 0.32 (Pereira2018), 0.17 (Fedorenko2016), and 0.20 (Blank2014). Model classes are grouped by color (Methods, section 5 and SI Appendix,
Table S1). Error bars (here and elsewhere) represent median absolute deviation over subject scores. (B) Normalized predictivity of GloVe (a low-
performing embedding model) and GPT2-xl (a high-performing transformer model) in the language-responsive voxels in the left hemisphere of a repre-
sentative participant from Pereira2018 (also SI Appendix, Fig. S3). (C) Brain score per layer in GPT2-xl. Middle-to-late layers generally yield the highest
scores for Pereira2018 and Blank2014 whereas earlier layers better predict Fedorenko2016. This difference might be due to predicting individual word
representations (within a sentence) in Fedorenko2016, as opposed to whole-sentence representations in Pereira2018. (D) To test how well model brain
scores generalize across datasets, we correlated 1) two experiments with different stimuli (and some participant overlap) in Pereira2018 (obtaining a very
strong correlation) and 2) Pereira2018 brain scores with the scores for each of Fedorenko2016 and Blank2014 (obtaining lower but still highly significant
correlations). Brain scores thus tend to generalize across datasets, although differences between datasets exist which warrant the full suite of datasets.
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Datasets
(Pereira 2018) fMRI, unconnected short passages (reading)

(Fedorenko 2016) ElectroCorticoGraphy, unconnected sentences
(reading)

(Blank 2014) fMRI, Natural Stories (listening)

human neural datasets. The models spanned all major classes
of existing language models (Methods, section 5 and SI
Appendix, Table S1). The neural datasets consisted of 1) fMRI
activations while participants read short passages, presented
one sentence at a time (across two experiments) that spanned
diverse topics [Pereira2018 dataset (45)]; 2) ECoG recordings
while participants read semantically and syntactically diverse
sentences, presented one word at a time [Fedorenko2016 data-
set (69)]; and 3) fMRI blood oxygen level–dependent (BOLD)
signal time series elicited while participants listened to ∼5-min-
long naturalistic stories [Blank2014 dataset (70)] (Methods, sec-
tions 1 through 3). Thus, the datasets varied in the imaging
modality (fMRI/ECoG), the nature of the materials (uncon-
nected sentences/passages/stories), the grain of linguistic units
to which responses were recorded (sentences/words/2-s-long
story fragments), and presentation modality (reading/listening).
In most analyses, we consider the overall results across the
three neural datasets; when considering the results for the indi-
vidual neural datasets, we give the most weight to Pereira2018
because it includes multiple repetitions per stimulus (sentence)
within each participant and quantitatively exhibits the highest
internal reliability (SI Appendix, Fig. S1). Because our research
questions concern language processing, we extracted neural
responses from language-selective voxels or electrodes that
were functionally identified by an extensively validated indepen-
dent “localizer” task that contrasts reading sentences versus
nonword sequences (69). This localizer robustly identifies the
frontotemporal language-selective network (Methods, sections 1
through 3).

To compare a given model to a given dataset, we presented
the same stimuli to the model that were presented to humans
in neural recording experiments and “recorded” the model’s
internal activations (Methods, sections 5 and 6 and Fig. 1). We
then tested how well the model recordings could predict the
neural recordings for the same stimuli, using a method origi-
nally developed for studying visual object recognition (1, 2).
Specifically, using a subset of the stimuli, we fit a linear regres-
sion from the model activations to the corresponding human
measurements, modeling the response of each voxel (Per-
eira2018)/electrode (Fedorenko2016)/brain region (Blank2014)

as a linear weighted sum of responses of different units from
the model. We then computed model predictions by applying
the learned regression weights to model activations for the
held-out stimuli and evaluated how well those predictions
matched the corresponding held-out human measurements by
computing Pearson’s correlation coefficient. We further nor-
malized these correlations by the extrapolated reliability of the
particular dataset, which places an upper bound (“ceiling”) on
the correlation between the neural measurements and any
external predictor (Methods, section 7 and SI Appendix, Fig.
S1). The final measure of a model’s performance (“score”) on
a dataset is thus Pearson’s correlation between model predic-
tions and neural recordings divided by the estimated ceiling
and averaged across voxels/electrodes/regions and participants.
We report the score for the best-performing layer of each
model (Methods, section 6 and SI Appendix, Fig. S10) but con-
trol for the generality of the layer choice in a train/test split (SI
Appendix, Fig. S2 B and C).

Specific Models Accurately Predict Human Brain Activity. We found
(Fig. 2 A and B) that specific models predict Pereira2018 and
Fedorenko2016 datasets with up to 100% predictivity relative to
the noise ceiling (Methods, section 7 and SI Appendix, Fig. S1).
These scores generalize to another metric, based on representa-
tional dissimilarity matrices (RDM), without any fitting (SI
Appendix, Fig. S2A). The Blank2014 dataset is also reliably pre-
dicted, but with lower predictivity. Models vary substantially in
their ability to predict neural data. Generally, embedding mod-
els such as GloVe do not perform well on any dataset. In
contrast, recurrent networks such as skip-thoughts, as well as
transformers such as BERT, predict large portions of the data.
The model that predicts the human data best across datasets is
GPT2-xl, a unidirectional-attention transformer model, which
predicts Pereira2018 and Fedorenko2016 at close to 100% of the
noise ceiling and is among the highest-performing models on
Blank2014 with 32% normalized predictivity. These scores are
higher in the language network than other parts of the brain
(SI Appendix, section SI-1). Intermediate layer representations
in the models are most predictive, significantly outperforming

"Beekeeping encourages the conservation of local 
habitats. It is in every beekeeper's interest..."

“If you were to journey to the North of England, you 
would come to a valley that is surrounded by moors 
as high as mountains. It is in this valley where you…”

“Alex was tired so he took a nap.”
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Fig. 1. Comparing ANN models of language processing to human language processing. We tested how well different models predict measurements of
human neural activity (fMRI and ECoG) and behavior (reading times) during language comprehension. The candidate models ranged from simple embed-
ding models to more complex recurrent and transformer networks. Stimuli ranged from sentences to passages to stories and were 1) fed into the models
and 2) presented to human participants (visually or auditorily). Models’ internal representations were evaluated on three major dimensions: their ability
to predict human neural representations (brain score, extracted from within the frontotemporal language network [e.g., Fedorenko et al. (71)]; the net-
work topography is schematically illustrated in red on the template brain above); their ability to predict human behavior in the form of reading times
(behavioral score); and their ability to perform computational tasks such as next-word prediction (computational task score). Consistent relationships
between these measures across many different models reveal insights beyond what a single model can tell us.
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1. Train linear regression

2. Test on held-out datafMRI activity

Language stimuli

Language model

Human

Pereira2018 "Beekeeping encourages the conservation
of local habitats. It is in every beekeeper's ..."

"If you were to journey to the North of England,
you would come to a valley that ..."Blank2014

Wehbe2014 "Harry had never believed he would meet a
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Figure 1: Instruction-tuning aligns LLM representations to human brain activity. (A) Method
of brain alignment: We measure brain alignment as the similarity of an LLM’s internal represen-
tations to human brain activity, using a linear predictivity metric implemented in Brain-Score. We
evaluate the brain alignment of 25 vanilla and instruction-tuned LLMs with sizes between 80M
and 33B parameters. We use 3 neural datasets of humans reading naturalistic stories and sentences:
PEREIRA2018, BLANK2014, and WEHBE2014. (B) Instruction-tuning improves average brain
alignment by 6.2% on average. We compute each LLM’s average brain alignment using the mean
of its brain alignment on the 3 neural datasets. Then, we compare the brain alignment of each
instruction-tuned LLM against its vanilla counterpart. Each point above the identity line represents an
instruction-tuned LLM that has greater brain alignment than its vanilla counterpart. Error bars (here
and elsewhere) represent median absolute deviation over human participants. (C) Instruction-tuning
generally improves brain alignment on all three neural datasets. (D) We instruction-tune LLaMA-7B
using the Alpaca dataset. We also train an ablation model with the same process and training data as
the default instruction-tuning, but remove the instruction portion from each training sample. This
experiment demonstrates that improvements in brain alignment from instruction-tuning are due to
both (1) training data (present in both models) and (2) the process of training LLMs to understand
and follow instructions (present only in original model).

2 Background & Related Work

Effect of Instruction-tuning on LLMs Instruction-tuning is an effective method to enhance the
capabilities and controllability of LLMs. It entails additional training of LLMs using pairs of human
instructions and desired model outputs. Zhang et al. (2023) categorized the benefits of instruction-
tuning into three key aspects: (1) it helps bridge the disparity between the pretraining objective
of LLMs on next-word prediction, and the goal of accurately following human instructions, (2)
it provides a means for achieving more control and predictability over the behavior of the model
compared to standard LLMs, allowing researchers to make them more similar to humans in both
capability and output similarity (Chia et al., 2023; Dasgupta et al., 2022; Safdari et al., 2023), and (3)
it often costs only a small fraction of compute relative to pretraining, enabling LLMs to swiftly adapt
to specific domains (Chung et al., 2022). We contribute to this research area from a neuroscience
perspective, by studying whether instruction-tuning makes LLMs more aligned to the human language
system in terms of brain and behavioral alignment.

3

Brain score
Schrimpf et al. (2021) use a Brain Score

metric. They train a model that predicts

the signal given the language model

representations and compute the pearson

correlation with the signal. The brain

score is a normalization of the correlation

score with a noise ceiling.

Many other papers are out, e.g. (Caucheteux and King 2022). Methods and metrics vary from paper to paper

and comparisons are difficult (Karamolegkou et al. 2023).
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Some datasets

Natural stories (SPR)
id form RT_mean RT_std sent_id

1 If 369.011905 160.579935 1
2 you 368.183908 168.027166 1
3 were 344.318182 224.916666 1
4 to 354.639535 310.065644 1
5 journey 349.674157 198.212855 1
6 to 376.370787 334.078937 1
7 the 327.310345 181.580869 1
8 North 365.494382 336.905271 1
9 of 344.931034 207.073001 1
10 England, 400.269663 295.972080 1
11 you 372.590909 212.704838 1
12 would 350.379310 159.260737 1
13 come 319.080460 117.275983 1
14 to 355.931034 318.756297 1
15 a 343.858824 213.122095 1
16 valley 330.732558 180.977699 1

Common datasets
Dataset Method Authors

Harry Potter fMRI Wehbe 2014

Harry Potter MEG Wehbe 2014

Pereira Dataset fMRI Pereira 2018

Natural Stories SPR Futrell et al. 2017

Natural Stories Audio fMRI Zhang et al 2020

Natural stories is a self paced reading corpus made

of 10 stories of about 1000 words each. The stories

are read by 181 mechanical Turks (most

participants read 5 stories). The original corpus was

transformed to increase the amount of syntactically

complex constructions.
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Explanation: the black box problem
• The question. Models do predictions. The question is to find out what component(s)
of the model is(are) responsible for the prediction: feature significance, feature im-
portance, rules used, sequence of inferences…

• Black box problem Deep learning models cannot be analyzed variable wise. They
are not immediately transparent as the physical model because it manipulates mil-
lions or billions of interdependent parameters

• Explainable AI (XAI) There are however methods developed in Artificial Intelligence
for explaining and interpreting models.

Deep learning is not an exception
This is not a property specific to deep
learning. Large multivariate statistical
models or large symbolic rule systems are
already hard to interpret unless properly
controlled.
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Explanation: transparent models
Ideal situation (circular orbits)

α θ0 t

2 0 0

2 0 1

2 0 2

2 0 3

{
xt = r cos(αt+ θ0)

yt = r sin(αt+ θ0)

Equation vs NN
• With the equation we predict the position of
the satellite with 4 parameters: the radius r
of the orbit, the angular speed of the satellite
α, the time t and the initial angle θ0.

• With a generative neural network, we would
take successive snapshots of the orbit, and
build a model with thousands of parameters
predicting which image follows the current
generated images.
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Explanation: transparent models
Close to ideal situation (applied statistics methods for language)

• Regression with a limited number of boolean predictors Example: prediction of
adjective noun in French (postverbal complements, dative shift…boolean word or-
der) given few non correlated binary predictors:
– x1 = {A longer than noun, otherwise}, x2 = {Noun is color , otherwise}…
– y = {A before noun, otherwise}

P(Y = 1|θ, x) = σ(θ1x1 + . . .+ θnxn + θb)

For language models
• Sometimes we do not have access to the parameters

• Interpreting the parameters is meaningless
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Explanation : model comparison (ablation)
• Comparison of two nestedmodels, a full modelMF and an ablatedmodelMA is com-
mon in applied statistics. It is supported by a log-likelihood ratio test. We have that:

log LF(x, θ) ≥ log LA(x, θ′)
2 [log LF(x, θ)− log LA(x, θ′)] ≈ χ2

2 log LF(x, θ)
LA(x, θ′)

≈ χ2

yielding the so called log likelihood ratio test.

Supposes a reasonably small model
• This test can be used for simple regression models to test whether some group of
predictors are improving the fit

• On the other hand, model comparison cannot be performed easily with Large Lan-
guage Models, training time is prohibitive
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Explanation for black box models: probing
• Probing is a post-hoc method, applied on an already trained model.

• It allows to observe the model representations

• It consists in training a probe on the model representations. The probe will predict
some interpretable property.

Example: how does a transformer encode subject verb agreement ?

No doubt the cats that Tow saw are cute

← P(Yi = plural|x)

Transformer

probei = σ(wouthi)

Rationale: if the number information is encoded in the embeddings we can learn a
classifier to predict the number.
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Explanation : counterfactual method

What if scenarios
The counterfactual method aims to identify causal relations in what if scenarios: what
happens to the model prediction if one changes/removes a factual information ?

• Example (past participle agreement in French in object relative):
how does a Language model predicts agreement ?

Les mouettes que Pierre a vu | vues
The seagulls that Peter has seen

×
• Post-hocmethod: prevent the transformer to attend at quewhen predicting the past
participle

• Applies to a full dataset of controlled examples

• Note that sometimes it is better to modify the model rather than the data. For in-
stance removing a word in a sentence is likely to create agrammaticality. Instead
removing attention when predicting is thought to be better.
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Local Interpretable Model-Agnostic Explanations
LIME (Ribeiro et al. 2016)

Approximate a single decision by a linear model
The LIME method aims to explain a local prediction by sampling around D similar
examples. It compares the prediction of the model with those of an interpretable
linear model trained on D
Les mouettes que Pierre a vu | vues×
The seagulls that Peter has seen

1 1 0 1 1

Les mouettes que Pierre a vu | vues×
The seagulls that Peter has seen

1 0 1 1 1

Les mouettes que Pierre a vu | vues×
The seagulls that Peter has seen

1 1 1 0 1



Outline
1. Neural language models

1.1 Elementary networks
1.2 Language models
1.3 Transformer Language

models
1.4 The vocabulary problem
1.5 Pretrained language

models
2. Use cases

2.1 Prediction
2.2 Explanation

3. Conclusion



61/61

The landscape of neural language models
• Neural language models are self supervised and GPU friendly: they can be trained
at unprecedented scale.

• The training set is somewhat ”natural”, at least sampled with some opportunism
from the web with unknown biases.

• Large Language models have surprisingly good predictive properties for a wide
range of tasks including predicting behavioral and neural signal.

• Explanation is a research topic in itself:
– Annotations and annotated data sets may be used for providing explanations
– The size of the training set and the time to train a model makes model comparison hard

at LLM scale. Model comparison remains possible in laboratories (although expensive) at
GPT scale.

• Evaluation: theNatural Languageprocessing community has set up evaluationbench-
marks (e.g. Glue and SuperGlue) that allow to evaluate and compare languagemod-
els by probing on standarddownstreamtasks: question answering, sentiment anal-
ysis, paraphrase detection, textual entailment, acceptability judgments…
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