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Representing the world with vectors

Classification for botanists

Sepal.Length ~ Sepal.Width Petal.Length  Petal.Width Species

103 7.10 3.00 5.90 2.10 Vvirginica
43 4.40 3.20 1.30 0.20 setosa
7 5.90 3.20 4.80 1.80 versicolor
136 7.70 3.00 6.10 2.30 virginica
35 4.90 3.10 1.50 0.20 setosa
64 6.10 2.90 470 1.40  versicolor M Versicolor \ris Setosa Msww"

Iris classification

+ Inthe traditional case, data for statistical analysis comes from measures. These mea-
sures are organised as input vectors x € IR? that are used as input to a predictive
model with some outputy € RP. (d = 4,p = 3)

* For theiris, a classification model can be as simple as:
y = softmax(Wx + b)

where W is a matrix of parameters and b a bias vector
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Representing the world with vectors

Classification for text

+ Consider the sentiment classification problem for text where y € {pos, neg, other}.
Your input data x cannot be straightforwardly measured anymore :

- I dislike old cabin cruisers / negative
- Bertram has a deep V hull and runs easily through seas / positive
- | do not dislike cabin cruisers / positive

Representation function

When processing text, a key element of the modeling amounts to choose an
appropriate encoding of words (symbols) into vectors. Several solutions can be
considered:

+ Dummy coding, one hot coding
+ Word embeddings
* Neural language models

A Large Language Model is a (sophisticated) representation function mapping
sequences of symbols to vectors
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Vectors and vector space

* Vectors are arrays of (real) numbers. They are written as x and y.

+ Vectors of the same size can be added together (x + y):

2 1 3
3|+ 3 |=]o0
0.5 —2.5 -2

+ Vectors can be multiplied by a scalara € R :

12 36
3| -3 |=1] -9
0.5 1.5

+ We picture vectors sometimes as :
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Dot product
+ The dot product of two vectors w and x is defined as:

(W, x) = wixy + ...+ wyx,

The dot product and linear models

ay X1

az X2
W = X =

as X3

b 1

Observe that: (w,x) = a1x1 + aaxa + asxs + bl
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Matrices as linear maps

+ Matrices are rectangular arrays of numbers, written as W, U, V.

+ Matrices can be multiplied by vectors. A matrix W € R”*" multiplies a vector x of
size n and yields a vector of size m. Example:

12 0.2 1
W=]| -3 1 X = [ ]

—1
05 0
(w1,x) 11.8
Wx= | (wo,x) | =| —4
(w3, X) 0.5

Linear maps: it is important to see that matrices transform their input vector of
some size n to an output vector of size m by means of linear operations

+ Matrices can also be multiplied together too
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Non linear vector transformations

Neural networks use non linear operators to transform vectors called activations. Here
are some classical ones:

« tanh : RY — [—1, 1]9. Each vector coordinate x; is mapped to a value in [—1, 1]
e — e

tanh (X,') = m

+ 0 :RY [0, 1]9. Each vector coordinate x; is mapped to a value in [0, 1]

1

o) = T

+ softmax : RY — [0, 1]7 with the constraint that ), x; = 1. That is softmax converts
a vector of real numbers into a vector of probabilities.

exp(xi)

5 expl)

softmax(x;) =
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Relation to biology

Two versions of neural
networks

* Some neural networks are designed to
235 be convenient to use for mathemat-

Outputs ical and computational manipulation.
These are those most people use nowa-
days

Myelin sheath

Dendrite

Some other neural networks are de-
signed to model more explicitly biologi-
cal networks, these are the spiking net-
works. In a spiking network a neuron
fires only when it reaches a threshold
(the potential)

X3

X2

X1

The elementary neuronal model outputs the result of the dot
product of the input signals with the neuron parameters

transformed by an activation
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Some elementary neural network architectures

Linear regression Feedforward Multilayer softmax
% network regression
y= () [T T] [T T]
. ) y = Wsh y = softmax(W,h)
Logistic regression
y=o((w.x)
h = tanh(Wex) h = tanh(W,x)

Softmax regression

y = softmax(Wx)
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Training a neural network
Training a neural network amounts to estimate the value of its parameters w from a
data set.
« Training a neural network supposes a dataset of the form D = (y;, x,v),';1

+ Training a neural network supposes a loss function. A loss function compares the
value predicted by the model y; with the data value y; for each example of the data
set.

+ Training a neural network aims to minimize the loss: at each time step, the param-
eters are updated in such a way that the loss decreases.

Example loss

Sum of squares is the loss for linear regression. It measures the distance between the
data points and the line:

n

ssq(D,w) = Z Z(y (w,x;))?

i=1
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The cross entropy loss

The most common loss used in NLP is the cross entropy loss.

+ The cross entropy loss measures the distance between a one hot vector and network
probabilistic output

[0[1]o[oo] i €40,1}
[TTTT] yi€[0,1]

d
Hly,§) = — > yilogy,
i=1

* The loss is essentially dependent of — log(y;) for the correct label:
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Non convexity of neural networks

+ The theory of machine learning is built on the assumption that the loss is a (strictly)
convex function: the minimum of the function is unique. In other words there is
exactly one vector w for which the loss is minimal.

* In deep learning this is not true anymore. There may be several local minima. Most
neural networks are deep and use several layers with non linear activations. As a
result losses are generally non convex

f) fl)
)

X X

+ As a result, the parameters may change from one fit to another due to random-
ness. This is generally nonsense to interpret the coefficients of the model.
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One hot vectors and the distributional hypothesis

+ One hot vector encoding is a classical method for encoding a set C of categorical
values.
Example:

setosa 100
virginica 010
versicolor 001

Distributional hypothesis

One hot vectors are sometimes fine, but for natural language it turns out that words

appearing in the same textual context tend to have the same meaning.

- Forinstance thewords "apple” or “pear” are more likely to be surrounded by words like "sweet”,
"green”, "tasty”, "sour” rather than by “cruel”, "arrogant” or "angry” (context of "monster” or
"villain™)

- Word embeddings are vectors encoding words such that words occuring in the same textual
contexts have similar representation vectors. Methods for computing word embeddings gen-
erate a static dictionary mapping strings to vectors
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Word embeddings: an example
Word2vec (Mikolov 2013)

+ There is a whole family of word embedding methods, here is one called Word2Vec
(CBOW)

+ The model is trained by minimizing the cross entropy of a dataset made of contexts

with a missing central word.
I:D%l:lj < output probabilities
y = softmax(Woyh)

< context embedding

h= 4 3, cc Wie(w)
Dﬁ ﬁ:\:\:‘ <« one hot encoding

e(w—2) e(w—1) e(Wit1) e(Wia)

+ Once trained, the model matrix W;, is used as a dictionary to look up for word rep-
resentations r(w):
r(w) = Wie(w)
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Word embeddings and bag of words

+ Word embeddings generated by word2vec are used to map word strings to word
vectors by dictionary lookup.

+ Word embeddings can be used to map sequence of words (sentences, paragraphs,
texts) assuming that:
- Word sense as given by the vector representation is independent of the context
- word order is irrelevant for the problem at stake (bag of words assumption)
Averaging is the most common method foratext T = wy ... w,:

n

1
() = - Zr(wf)
n i=1
Limits of the bag of words assumption
+ The bag of word and context independence assumptions are sometimes too strong

- They always wanted to become Hollywood stars
- The Milky Way contains between 200 and 400 billion stars

+ These problems are tackled by language models
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Language models

+ The probability of a sequence of symbols x = x; ... x, is given by the chain rule of
probability:

P(x) = P(x1,...X, HPX,|X1 CXio1)

The conditional P(x; ..X,—1) reads as "the probability of generating x; given that
we know x7 ... X;—1". The longer the context the easier it is to guess x;, example:

- the...

- thecat...

- the cat chases the ...

* A language model is a distribution of probability over a set £ of variable length
sequences, a formal language, such that:

0<P(x)<

xeL
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Markovian neural language model

+ A markov assumption is a classical assumption that sets the boundary of the con-
text and simplifies the chain rule:

n
P(x) ~ H P(xilXi—k - - Xi—1)
i=1

The conditionals now have a limited context of order k.

+ Amarkovian neural language model (Bengio et al. 2003) uses a window of k words
to predict the next word. Example for k = 3

y= Soﬂmgx(wauth)

%jj

h = tanh(W_3x_3[|[W_ox_»|[W_1x_1)

cat chases the
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Recurrent neural network Language models
(Elman 91, Hochreiter, Schmidhuber 1997, Mikolov 2010)

+ The recurrent language model uses a recurrent neural network to compute transi-
tion probabilities without markov assumptions: P(x) = []'_, P(xi|x1 . .. xi—1)

+ Arecurrent neural network (Rnn/Lstm) is a time dependant model used to compute
incrementally contextualized word embeddings hy:

EENEN
1

ye = softmax(Woyuchy)

0 Y O 0 B O I

h, = tanh(Wh,_; + Ux,)

the cat chases the

these contextualized word embeddings (in blue) are used to predict probabilities of
the following word (y;, in green) with an output softmax over the vocabulary.
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Attention! recurrent networks forget the past!

+ As observed in machine translation (Bahdanau 2014), RNNs (and LSTM) forget the
distant past.

+ Attention models are time independant, or parallel, models that allow to contextu-
alize bag of words embeddings. Example of a self attention model:

e

Yi= SOﬁmGX(WDU,h,)

n
h; = Z/:1 QGX;

the cat chases the mouse

* The attention weights («;) are probabilities indicating how similar are the word em-
beddings in the sentence with the target word:

exp(a;)

YT en(a)

Cl/'O(<X,',Xj> (1 S]Sn
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There is more than one way to pay attention to your
neighborhood!

+ Self attention says how we update the embedding of a word given its important
context. Consider the ¢; distribution for word it in the example:

QThe
[
animal
[ —

The animal didn't cross the street because it was too tired

Then self-attention updates the embedding of it to be the weighted sum of its po-
tential antecedents.
+ But there are other ways to pay attention to the context:
- (SV-agreement) The keys to the cabinet are on the table.
- (anaphora) The Mdn’t cross the street because it was too tired
- (lex-semantics) | walked along the pond, and noticed that one of the trees along the bank
had fallen into the water after the storm.
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Multi-head attention

* Instead of using a single attention, a transformer uses h heads of self attention

+ Computes updated embeddings for each head and remerges back the results by
pooling. Example for two heads:

/ by =5 0pavi \ / hip =3 ajavi2 \
/ \ N / \ N

e

the cat chases the mouse

. _ _exp(a.n) _
aj:h - Zk exp(ak,h) aj7h X <q’7h7kj7h>

K
©Qip= W/Sq)Xi Kipn = ng )Xi
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Transformer layer

+ The transformer layer is the basic unit of transformation. It is made of:

- A multihead attention component that “mixes” embeddings
- Afeedforward component that "refines” embeddings

and a formal apparatus to normalize and prevent drifting (hidden here).

[

:Wh :Wh :W,,h
[T HIHHHHH
eu(Wix)  h = relu(Wix) h—re/u(Wx) h=r
[] [ ] [

MultiHead Attention
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The full transformer

+ Given a bag of word embeddings, a transformer transforms (!) them successively
by applying N distinct layers.

+ The more layers, the more the output embeddings are good at predicting discourse
level properties. The embeddings of the first layers are good at predicting lexical
properties

Detailed architecture

Transformer Layer N

(]

il
H

Transformer Layer 1

the cat chases the mouse
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Relation with Graph Neural Networks

+ Graph Neural Networks are networks with graph structure whose nodes are en-

coded by embeddings
a

+ They are used to model large networks such as social networks, citations networks
and networks in biology, physics etc.

+ Graph Neural Networks are updated with an iterative message passing method usu-
ally decomposed in two steps:
- Aggregate: gathers and aggregate the embeddings of the nodes neighborhood
- Update: Update the node embedding for the next time step

+ Atransformer can be viewed as a complete graph equipped with aggregate (atten-
tion) and update steps (feed forward) that are repeated iteratively (layer iteration)

+ The relation with Graph Neural Networks leads to theoretical analysis of the dynam-
ics of transformers.
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Training a transformer

+ Transformers are trained using a cloze task scenario.

+ Masked language models are transformers trained to predict a word randomly
masked in the text. The prediction is compared to the ground truth and parame-
ters are updated accordingly.

+ BERT is the most cited representative of this family

+ Example: thecat______ the mouse

y = softmax(Wouch,)

o O4d oo OO
R R I
L]

oo Omo Oo4m@b O4o Oo4d

Transformer Layer 1

oMM OO OO Oo4&b O™

the cat [MASK] the mouse
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Training a generative transformer

+ Transformers are trained using a cloze task scenario.

* Generative language models are trained to predict the next word given a prefix
P(xi|x1 ... xi—1). The prediction is compared to the ground truth and parameters
are updated accordingly.

+ Example: the cat chases the

¥ = softmax(Wouh;)
o O O™
oo O O OO

o Om O OO

Transformer Layer 1

oo Om O OO

the cat chases the
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Word tokenization

Statement of the problem
+ Perhaps surprisingly, word tokenization is an old and non trivial problem in natural
language processing.

+ Since transformers take as input word embeddings, the vocabulary should be a finite
set

 In current architectures, the storage of large embedding matrices is responsible for
larger memory consumption. Reasonably small vocabularies are preferred

It is virtually impossible to enumerate the vocabulary of a natural language. There
are permanently new words, spelling errors...

The subword solution

Rather than relying naively on whitespace separated word vocabularies inferred from
corpora that can be huge and for which it is impossible to guarantee completeness,
language models split words into a finite set of subwords that can be kept relatively
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Byte Pair Encoding

An example

function BytePairEncoding(text,size)
V <— set of bytes found in text Example
while |V| < size do
bp < find most frequent char pair in text
if frequency(bp) = 1 then 2. Text: ZabdZabac, b = ab,s =Y

returnV, T

end if 3. Text: ZYdZYac, b = 2ZV,s = X
s < fresh character notin V 4. Text: XdXac, done
V< vu{s}
T4+ TU{s — bp} and 7= {aa — Z,ab — Y, ZY — X}
text <— replace greedily all bp with s in text

end while

returnV, T

end function

1. Text: aaabdaaabac, b =aa,s =27

+ GPT-4 has a V of size =~ 100000

+ once the BPE is trained, T is used to compress words
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Large Language models

+ Language models are auto-supervised. It entails that there is no need for data an-

notation to train them.

* Thereis a strong interest in training models on extra large data sets because natural
language is pretty hard to sample. Vocabulary representation is highly biased by

the topics of small sized corpora

+ Transformers and in particular generative transformers are designed to compute
efficiently at scale on Graphical Processor Units (GPU)

Example: GPT-3

Generative Pretrained Transformer
v.3 (OpenAl) is trained over 45 TB of
textual data crawled and cleaned from
the internet and contains about 175
Billions parameters.

1750+ o
1500+
8
£ 1250+
ig
B
5
§ & 000~
9 E
BE 750
S5 I
-
e 500~ =
5
z BLOOM
250 e Lz

- ies o
o @e— 6" B ©wn |

T v T 9 T v
2018 2019 2020 2021 2022 2023 2024
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Mathematical representation of text

Mapping strings (words, tokens) to numerical representations is an old problem for
machine learning/applied statistics for natural language (experimentalists also use
dummy coding/constract coding...)

Word Embeddings (LSA, Word2vec) provide methods for mapping the vocabulary to
vectors/representations

Language models provide in context representations for tokens where one may ex-
pect to have disambiguated vectors, that anaphora is partly taken into account etc.

Representation In sum a neural language model can be viewed as a function from
Strings to Vectors that can be used as input for further statistical modeling.

Transformer

the cat chases the mouse
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Qualitative evolution of representation methods

A summary

Name Improvement
One hot coding baseline
Word embeddings Distributional hypothesis

Neural Language models  Contextualized embeddings
Large Language models  Scale up (parallelism with GPU)

+ One hot encoding and word embedding are essentially used for providing word rep-
resentations, they can be used to provide basic text representations by assuming
bag of words

+ Neural Language models (markovian) are generally reasonable predictors with lim-
ited context and remain relatively approximate

+ Neural Language models (RNN/LSTM) are better predictors because of larger con-
text. But in practice they then to have limited memory and cannot be easily scaled
up since their architecture is temporal rather than parallel
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Training at scale

+ Training up to a GPT-2 size language model can be achieved today on a single com-
pute node with 8 A-100 GPU in about 4 days (excluding parameter search)

+ Scaling up to the full LLM size is somewhat more involved. For instance LLama2-
70B used 6000 GPU for 12 days for training from a chunk of 10TB from internet and
generates a 140GB file of parameters.
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Fine Tuning

+ Large Language models can be refined or fine-tuned

+ The assumption is that the large language model captures the general knowledge of
language because it is trained on a very large corpus.

+ Fine tuning is a specialization of the language model for a specific task where we
only have a small corpus of (domain specific) annotated data.

e

y = softmax(Wgh;)

+ Example, part of speech tagging:

Transformer

the cat chases the mouse

+ Fine tuning implies training the model by updating all the parameters, including
those of the transformer.
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ChatGPT

+ Given a prefix or a prompt one can generate text with a generative language model.
For a zero prefix:
X1 < [START]
while True do :
Xer1 ~ Py(x|x1 ... %)
end while

+ For question answering or dialogue, one can give a natural language question as
prompt and asks chat GPT to continue the text.

How do you do ? I'm doing well, thank you! How can | assist you today ? @

+ Since there are few dialogues in the internet corpus. The language model (GPT 3.5)
is refined using Reinforcement Learning with Human Feedback (RLHF). The lan-
guage model is refined by asking humans to annotate whether the interaction is
considered as positive or negative (éﬁﬂ z)
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Zero and Few shot prompting
Binz and Schulz 2023

+ Few shot or zero shot prompting aims to have a language model perform a task by
prompting zero or a few examples. Assume the prompt:

This is awesome! // Positive

This is bad! // Negative

Wow that movie was bad! // Negative
What a horrible show! //

and you expect the model to output Negative

+ When the task is too complex this does not work anymore. Consider the prompt:

The odd numbers in this group add up to an even number: 4, 8, 9, 15, 12, 2, 1.

A: The answer is False.

The odd numbers in this group add up to an even number: 17, 10, 19, 4, 8, 12, 24.
A: The answer is True.

The odd numbers in this group add up to an even number: 16, 11, 14, 4, 8, 13, 24.
A: The answer is True.

The odd numbers in this group add up to an even number: 17, 9, 10, 12, 13, 4, 2.
A: The answer is False.

The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1.
A:

and you expect the model to output The answer is False
(odd sum = 41) while GPT tends to fail here

40/61 Laboratoire de linguistique formelle




Emergent abilities

+ An ability is emergent if not detectable with standard or small sized models but be-
come apparent with large models

+ Example or arithmetic
Arithmetic (few-shot)

100
—e— Two Digit Addition

—e— Two Digit Subtraction
—e— Three Digit Addition
—e— Three Digit Subtraction
—e— Four Digit Addition
—e— Four Digit Subtraction
—e— Five Digit Addition
Five Digit Subtraction
+— Two Digit Multiplication
Single Digit Three Ops

Accuracy
3

N
o

20

0.1B 0.4B 08B 1.3B 26B 6.7B  13B 175B
Parameters in LM (Billions)
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Memory, hallucinations, generalization

+ Agenerative LLM can be seen as a database compressing lossily terabytes of data.
+ Memory is not guaranteed to be consistent. Famous example (fixed since then):

- H: Who's Tom Cruise mother ?

- M: Mary Lee Pfeiffer

- H: Who's the son of Mary Lee Pfeiffer 7
- M: dunno.

+ The capacity of models to generalize beyond rote memorization is badly understood.

Hallucinations
+ Hallucinations are cases of text generated by -
LLM that are well formed but either factually Lawyer Used ChatGPT In Court
. . —And Cited Fake Cases. A Judge
incorrect, nonsensical, crafted out of the blue. Is Considering Sanctions
MMMMMMM - -

+ Hallucinations have several origins: underfitting,
overfitting, general data biases...

+ As a result, the output of an LLM is not
thrustable and it motivates explainable Al
research.
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Retrieval augmented Generation (RAG)

+ Retrieval augmented Generation is an example of method that aims to correct for
hallucinations.

+ Itis used in the context where the LLM is queried for confidential, very technical or
specific information

+ The idea is to send the query to a search engine, retrieve the result and query the
LLMs both with the query and the retrieved results

6;?‘(} Ask @ Question + E‘ @ Generate @

SMART RETRIEVER LLMas Explicit source-

generator informed answer
Relevant
Lnok-uwl [ documents

specific knowledge base

Question
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Prediction for language models

Generative prediction

Theory Model Improvement

generative
predictions

Comparison

Example

* Prompt: The island of Porquerolles is

+ Model prediction: The island of Porquerolles is a captivating island nestled in the
fles d'Hyéres, located off the coast of Hyéres on the French Riviera.

+ Evaluation: similarity between the ground truth and the generated text (BLEU,
ROUGE, accurracy)
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Predicting annotations

Annotation models

Theory

Computational model

Model
Amoion
predictions

Example

+ Input: The island of Porquerolles is located on the French Riviera
* Model Prediction: DN P PNV VPP P D ANP
+ Evaluation: Comparison between model predictions and human annotations. Accu-

racy, F-score...This scenario requires to fine tune the language model on annotated
data
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Prediction and evaluation

The Glue Benchmark (link)

9 datasets to test language models on a variety of prediction tasks. NLP oriented and
initially for BERT. Here are some examples:

Grammaticality (Cola)  This building is than that one.
agrammatical

Sentiment analysis The movie is funny, smart, visually inventive, and most of all, alive
pos,neg,neutral 0.93 (pos)
Paraphrase Yesterday, Taiwan reported 35 new infections, bringing the total number of cases to 418.

The island reported another 35 probable cases yesterday, taking its total to 418.
yes
Reference (WNLI) Lily spoke to Donna, breaking her concentration.
Lily spoke to Donna, breaking Lily’s concentration.
yes
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Prediction and evaluation

The BLiMP Benchmark (link)

67 datasets of minimal pairs on a variety of linguistic properties (English). This is
artificially generated data testing a wide range of properties in morphology, syntax
and semantics. Here are some examples:

Anaphora Many girls insulted themselves
* Many girls insulted herself
Arg Structure Rose wasn't disturbing Mark
* Rose wasn't boasting Mark
S/V Agreement These casseroles disgust Kayla
*These casseroles disgusts Kayla
Binding Carlos said that Lori helped him
*Carlos said that Lori helped himself

The test amounts to compare the probability given to each element of the pair.
Success if the probability is higher for the grammatical element
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https://github.com/alexwarstadt/blimp

Prediction and evaluation

Code generation

* This time the prediction is structured: predict the code given the intent.
« Split a string in chunks and keep the separators
import re

def split_and_keep_separators(s, separators):
pattern = £"({'|"'.join(map(re.escape, separators))})"
chunks = re.split(pattern, s)
return [chunk for chunk in chunks if chunk]

text = "Split a string; in chunks! and keep, the separators."
separators = [' ', ';', "!', 0, ]

result = split_and_keep_separators(text, separators)
print(result)

Laboratoire de linguistique formelle



Predicting behavior or physiology

Theory

Model

behavior
predictions

Computational model

Comparison

Measured

Human Subject human
behavior

Example

* Input: By July 1915 all seventeen of the German Imperial Navy...
* Model Prediction: -1.684012 -1.203219 -2.527704 -0.137419 ...

+ Evaluation: Comparison between model predictions and human measures (Eye

Reading, physiological). correlation, R?, likelihood function...
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Example (Schrimpf et al. 2021)
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Schrimpf et al. (2021) use a Brain Score
metric. They train a model that predicts
Datasets the signal given the language model
(Pereira 2018) fMRI, unconnected short passages (reading) representations and compute the pearson
(Fedorenko 2016) ElectroCorticoGraphy, unconnected sentences correlation with the signal. The brain
(reading)

score is a normalization of the correlation
(Blank 2014) fMRI, Natural Stories (listening)
score with a noise ceiling.
Many other papers are out, e.g. (Caucheteux and King 2022). Methods and metrics vary from paper to paper

and comparisons are difficult (Karamolegkou et al. 2023).
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Some datasets

Natural stories (SPR)

51/61

id form RT_mean RT_std sent_id
1 If 369.011905 160.579935 1
2 you 368.183908 168.027166 1
3  were 344.318182 224.916666 1
4 to 354.639535 310.065644 1
5 journey 349.674157 198.212855 1
6 to 376.370787 334.078937 1
7  the 327.310345 181.580869 1
8  North 365.494382 336.905271 1
9 of 344.931034 207.073001 1
10 England, 400.269663 295.972080 1
11 you 372.590909 212.704838 1
12 would 350.379310 159.260737 1
13 come 319.080460 117.275983 1
14 to 355.931034 318.756297 1
15 a 343.858824 213.122095 1
16 valley 330.732558 180.977699 1

Common datasets

Dataset Method  Authors

Harry Potter fMRI Wehbe 2014
Harry Potter MEG Wehbe 2014
Pereira Dataset fMRI Pereira 2018

Natural Stories SPR
Natural Stories Audio  fMRI

Futrell et al. 2017
Zhang et al 2020

Natural stories is a self paced reading corpus made
of 10 stories of about 1000 words each. The stories
are read by 181 mechanical Turks (most

participants read 5 stories). The original corpus was
transformed to increase the amount of syntactically

complex constructions.
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Explanation: the black box problem

+ The question. Models do predictions. The question is to find out what component(s)
of the model is(are) responsible for the prediction: feature significance, feature im-
portance, rules used, sequence of inferences...

+ Black box problem Deep learning models cannot be analyzed variable wise. They
are not immediately transparent as the physical model because it manipulates mil-
lions or billions of interdependent parameters

+ Explainable Al (XAl) There are however methods developed in Artificial Intelligence
for explaining and interpreting models.

Deep learning is not an exception

This is not a property specific to deep CAUTION

learning. Large multivariate statistical
models or large symbolic rule systems are WHEN
already hard to interpret unless properly WET
controlled.

b SLIPPERY
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Explanation: the black box problem

+ The question. Models do predictions. The question is to find out what component(s)
of the model is(are) responsible for the prediction: feature significance, feature im-
portance, rules used, sequence of inferences...

+ Black box problem Deep learning models cannot be analyzed variable wise. They
are not immediately transparent as the physical model because it manipulates mil-
lions or billions of interdependent parameters

+ Explainable Al (XAl) There are however methods developed in Artificial Intelligence
for explaining and interpreting models.

Deep learning is not an exception

CAUTION

b SLIPPERY

WHEN
WET
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Explanation: transparent models

Ideal situation (circular orbits)

xe = rcos(at+6p)
i = rsin(at+0y)
Equation vs NN

* With the equation we predict the position of
the satellite with 4 parameters: the radius r
of the orbit, the angular speed of the satellite
«, the time t and the initial angle 6.

a fp t + With a generative neural network, we would
2 0 O take successive snapshots of the orbit, and
2 0 1 build a model with thousands of parameters
2 0 2 predicting which image follows the current
2 0 3 generated images.
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Explanation: transparent models
Close to ideal situation (applied statistics methods for language)

+ Regression with a limited number of boolean predictors Example: prediction of
adjective noun in French (postverbal complements, dative shift...boolean word or-
der) given few non correlated binary predictors:

- x1 ={Alonger than noun, otherwise}, x2 = {Noun is color, otherwise}...

- y ={Abefore noun, otherwise}
P(Y=1]|0,x) = c(01x1 + ...+ O.x, + Op)

For language models
+ Sometimes we do not have access to the parameters

* Interpreting the parameters is meaningless
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Explanation : model comparison (ablation)

+ Comparison of two nested models, a full model Mg and an ablated model M, is com-
mon in applied statistics. It is supported by a log-likelihood ratio test. We have that:

log Le(x, 0) > log La(x,0")
2 [log Lr(x,0) —log La(x,0")] = x>
LF(X, 9) 2

2log ————% ~
B0y X

yielding the so called log likelihood ratio test.

Supposes a reasonably small model

+ This test can be used for simple regression models to test whether some group of
predictors are improving the fit

+ On the other hand, model comparison cannot be performed easily with Large Lan-
guage Models, training time is prohibitive

Laboratoire de linguistique formelle



Explanation for black box models: probing

+ Probing is a post-hoc method, applied on an already trained model.
+ It allows to observe the model representations

+ It consists in training a probe on the model representations. The probe will predict
some interpretable property.

Example: how does a transformer encode subject verb agreement ?

? <« P(Y; = plural|x)

probe; = o(Wouch;)

Transformer

No doubt the cats that Tow saw are cute

Rationale: if the number information is encoded in the embeddings we can learn a
classifier to predict the number.
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Explanation : counterfactual method

What if scenarios
The counterfactual method aims to identify causal relations in what if scenarios: what
happens to the model prediction if one changes/removes a factual information ?

Example (past participle agreement in French in object relative):
how does a Language model predicts agreement ?

Les mouettes ()(e Pierre a vu|vues

The seagulls that Peter has seen

+ Post-hoc method: prevent the transformer to attend at que when predicting the past
participle

* Applies to a full dataset of controlled examples

+ Note that sometimes it is better to modify the model rather than the data. For in-
stance removing a word in a sentence is likely to create agrammaticality. Instead
removing attention when predicting is thought to be better.
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Local Interpretable Model-Agnostic Explanations

LIME (Ribeiro et al. 2016)

Approximate a single decision by a linear model

The LIME method aims to explain a local prediction by sampling around D similar
examples. It compares the prediction of the model with those of an interpretable
linear model trained on D

Les mouettes ()(e

The  seagulls that

o) O] [

Les moDéftes que

The  seagulls  that

) [} [

Les mouettes que

The seagulls that

Pierre a wvu|vues

Peter  has  seen

Pierre a vu|vues
Peter  has  seen

PxGe a wulvues
Peter has seen
[o]
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The landscape of neural language models

* Neural language models are self supervised and GPU friendly: they can be trained
at unprecedented scale.

+ The training set is somewhat "natural”, at least sampled with some opportunism
from the web with unknown biases.

+ Large Language models have surprisingly good predictive properties for a wide
range of tasks including predicting behavioral and neural signal.

+ Explanation is a research topic in itself:

- Annotations and annotated data sets may be used for providing explanations

- The size of the training set and the time to train a model makes model comparison hard
at LLM scale. Model comparison remains possible in laboratories (although expensive) at
GPT scale.

+ Evaluation: the Natural Language processing community has set up evaluation bench-
marks (e.g. Glue and SuperGlue) that allow to evaluate and compare language mod-
els by probing on standard downstream tasks: question answering, sentiment anal-
ysis, paraphrase detection, textual entailment, acceptability judgments...
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