Calibration at Low Energy with DUNE prototypes

Emile LAVAUT 23/05/24

For Workshop June 2024

UNDERGROUND NEUIKINU EXPERIMENI

I. Physics context

- 1. Goals
- 2. Background

III. Results on ProtoDUNEs

1. PDHD **2. PDVD**

PII. SingleHit module

- 1. How to
- 2. Event summary
- 3. Cluster

Conclusion

Dive

Physics context

I. Physics context

- **Cosmics/radiologicals** (suppressed a lot in FD) lacksquarebut important for prototypes (PD) @CERN
- Intern radioactivity, in LAr mainly ³⁹Ar
 - FD : $\sim 10^7$ decays/s
 - PD : $\sim 10^5$ decays/s

2. True Background

- From detector components (cathode, photodetector ...) mainly ${}^{42}K$, ${}^{222}Rn$ chain and ^{238}U chain
- Radioactivity from the cavern rock (neutron...)

SingleHit Module

- Available in version **v09_90_01d00** of LArSoft
- Search for single isolated hits candidate for :
 - beta decay (Ar39, K40, radiological ...)
 - Solar ν 's ? SNB ?

se	r	۷	1	С	e	55
ph	у	s	i	С	s	1
{						
	а	n	а	1	y	Z
	{				1	
	-		а	n	а	1
			{			
			Ĩ		m	c
					ï	c
					-	
					s	r
					č	1
					Ť	
					ù	ŝ
					·	
					c	ŀ
					ĉ	ŀ
						1
					п	-
					Р	0
					2	e
					C	,
					P	ב י
					P	כ
					t	ê
	_		}			
	}					
	а	n	а	1	у	55
	e	n	d	_	р	ē
}						

Peaktime

- Available in version v09_90_01d00 of LArSoft
- Search for **single** isolated hits candidate for beta decay (Ar39, K40, radiologicals ...)
- Time coincidence (tt) tuned \rightarrow mean time for an electron to travel from induction 1 to collection

physics: analyzers: ana:

Peaktime

- Available in the last version of LArSoft
- Search for single isolated hits candidate for beta decay (Ar39, K40, radiological ...)
- Time coincidence (tt) tuned for PDVD \rightarrow mean time for an electron to travel from induction 1 to collection
- Spatial coincidence \rightarrow want a signal in the **3 views**
- SpacePoint is a **barycentre** of the intersection point (with ind. energy)

physics: analyzers: ana:

- Next step : clustering all these SpacePoints for calorimetry

2. Event summary

- Spatial resolution for PDVD/HD : $R_s \leq 1$ cm

3. Cluster

Cluster position is a barycentre of SpacePoint (with collection energy)

Results on ProtoDUNEs

• ~2500 e^- for a given energy E_{e^-} from 0.5 MeV to 10 MeV

efficiency =
$$\frac{\sum^{N_{event}} \min(1, N_{cluster})}{N_{event}}$$
$$N_{cluster} = \text{Number of clusters with (} d < 25 \text{ cm} \text{)}$$
$$d = \text{distance to True MC position [cm]}$$

- No hit reconstructed with $E_{e^-} \leq 750$ keV (gaushit)
- Reconstruct 99% of e^- if. 1.3 MeV $\leq E_{e^-} \leq 5$ MeV (SingleHit module)

In comparison

Calibration curve on simulation

• ~2500 e^- for a given energy E_{e^-} from 0.5 MeV to 10 MeV

- No hit reconstructed with $E_{e^-} \leq 600$ keV (gaushit)
- Reconstruct 99% of e^- if. 800 keV $\leq E_{e^-} \leq 5$ MeV (SingleHit module)

Calibration curve on simulation

Dive

• Energy Resolution \rightarrow preliminary

- On 22 events of 4ms : expected rate of Ar39 \rightarrow 8000 decays
- We have at the end **1200 decays**

Dive

• Run 5809

Dive

• Zoom in

DUNE

Conclusion

- Identification efficiency on PDVD/HD simulation : ~99% of e- in the 1-5 MeV region Capable of calibrating both detector at low energy
- Sharp treeshold (limited by HitFinder)
- Calibration constant are compatible within the statistical errors
- Understand PDHD data \rightarrow need **more statistics**
- Next :
 - Incorporation of SingleHit module in duneana/calib lacksquare
 - Apply the analysis on PDHD data in the coming months
 - Look at more realistic simulation with continuous spectrum (radiologicals + cosmics) and CALCI systems (PNS and laser data)
 - Simulation with different noise levels

