

Signal formation in Vertical Drift

DUNE – France Analysis workshop

Supervisors :

J. COLLOT – LPSC Grenoble

L. ZAMBELLI – LAPP Annecy

D. DUCHESNEAU – LAPP Annecy

DUNE France – Analysis Workshop

Vertical drift design

Diagram by L. Zambelli

- \geq 2 volumes split by a cathode
	- Electric drift field: $|\vec{E}| = 0.5 \frac{kV}{cm}$
- \triangleright X-ARAPUCA* for light detection on the cathode
- The new perforated anode technology
	- Stack of 2 perforated Printed Circuit Boards (PCB)
	- Etched copper electrode strips on each PCB face
	- A sub-centimeter spatial resolution
	- Module called Charge-Readout Planes (CRP) ~ 3x3 m
- Ø DUNE Far detector at SURF:
	- 80 module CRPs for each top and bottom TPC
	- Half will be produced at Grenoble

** Light detector device*

The perforated anode technology

- \triangleright Shield + 3 different charge readout layers:
	- **Induction 1 (view 0)** strip orientation -30° wrt beam axis
	- **Induction 2 (view 1)** strip orientation +30° wrt beam axis
	- **Collection (view 2)** strip orientation 90° wrt beam axis

Signal formation study on anodes

• **Problematic:**

- \triangleright Use of new anode technology
- Important to know the deposited energy in the detector to measure the neutrino oscillation parameters
- \triangleright Important to reconstruct the particle tracks from collected charge
- **My work:**
	- \triangleright Understanding the waveforms based on energy, track angle and position
	- \triangleright Understanding the charge lost in the anodes
	- \triangleright Estimate the different systematics
	- Ø **Study of induced signal formation on the anode**

CRP assembly at **CERN**

Modeling signal formation

Ø**Shockley-Ramo theorem:**

$$
\overline{i(t)} = q \overrightarrow{E}_W \cdot \overrightarrow{v}_D
$$

 \triangleright Weighting Field $\overrightarrow{E_w}$ is virtual field defined when the **reading strip equal 1 V** and **all others fixed to 0 V**

Weighting Potential

Ø **Drift velocity:**

$$
\overrightarrow{v_D} \equiv \overrightarrow{v_D} \, (\overrightarrow{E_D}, T)
$$

Ø **The instantaneous current is induced by charge motion only**

Ø **Need simulation for complex geometry**

https://lar.bnl.gov/properties/trans.html

DUNE

 \triangleright Design of a simulation on Python

-
- ▶ Numerical simulation on Python > > Implement CRP geometry hexagonal pattern, width strips, 2 Printed Circuit Boards, 4 equipotential planes

8

Field results

Ø **Weighting Potential**

 \triangleright Design of a simulation on Python

 $\left| \overrightarrow{E_D} \right| \in [0.5; 4]$ kV/cm

 \triangleright Electron trajectories passing through a

Ionization electron generation

- \triangleright Thermal electron
	- Trajectory follow drift field lines
- \triangleright The electron trajectory is perfectly defined
- \triangleright Runge Kunta like simulation $| \cdot |_{(x_{i+1}, y_{i+1})}$

 \triangleright E^{interp} : 3D linear interp

 \triangleright Drift simulation 5 mm

 $step = 50 \ \mu m$

Electron cloud simulation

Electron cloud simulation

Data extraction

Ø **Event Display**

• An example of cosmic ray track from the Coldbox

- Bipolar signals induction view
- **Muon events**

Ø **Coldbox's data cuts**

- Tracks with reconstructed angle $\theta > 60^{\circ}$
- φ in the cone with 45 \degree from the strip readout
- Track lengths > 20 cm

- Data reconstruction with LARDON (software developed by L. Zambelli)
- Ø **Select horizontal track to compare with simulation**

Comparison data VS simulation

- Ø **Mean waveform**
	- Signals summation on each readout channel \rightarrow To reduce the incoherent noice
	- Mean signal calculation for each track

 $→$ **Simulated waveforms in agreement with data**

CRP 6 data explanation

Problem: no charge lost in the simulation and no "charging-up" effect

-2.5 50 -2.4 Ω -2.3 -50 $\begin{bmatrix} 2.2 \\ -2.2 \end{bmatrix}$ $\begin{array}{c} 1 & -100 \\ 2 & -150 \end{array}$ $-2.0\frac{C}{4}$ -200 -1.9 -250 $\mathsf{L}1.8$ $L_{1.7}$ -300 -200 -250 -150 -100 -50 50 $\mathbf 0$ $x \, \text{[mm]}$

Luis' work*

- Ø Effective hole diameter modified
	- **PCB** shifted between shielding and view 0
- \triangleright Probably glue inside the holes

Laura's work**

- Consequences: charge lost
- \triangleright Draw a pattern along the induction strips
- \triangleright An effect that would seem to be a "charging-up"

** Photo analysis for QA/QC of CRP anodes – Luis Manzanillas*

*** https://indico.fnal.gov/event/64225/contributions/288494/attachments/176651/240155/cb_crp6_iii_first_look.pdf*

DUNE France – Analysis Workshop 18

Holes covering and loss charge

 \triangleright Focalization of drift field lines in the CRP hole

 \triangleright Field line too focused to explain the loss of charge \rightarrow Electron diffusion

Electron diffusion

Ø **Transverse electron diffusion could cause a loss of charge in the CRP**

$$
\frac{\partial n}{\partial t} = D_L \frac{\partial^2 n}{\partial z^2} + D_T \left(\frac{\partial^2 n}{\partial x^2} + \frac{\partial^2 n}{\partial y^2} \right)
$$
 Fick's equation

- \triangleright Gaussian spatial distribution of the electrons over time
- \triangleright Average diffusion length given by:

$$
\sigma_{L,T} = \sqrt{2 D_{L,T} t}
$$

 \triangleright Longitudinal and transverse diffusion coefficient:

 $D_L =$ $\epsilon_L \mu$ \boldsymbol{e} D_L D_T $= 1 +$ \overline{E} μ *(Einstein's relation)*

 ϵ_L : longitudinal effective electron energy μ : electron mobility

$$
\frac{D_L}{D_T}=1+\frac{E}{\mu}\frac{\partial \mu}{\partial E}
$$

 \triangleright For next: only transverse diffusion is used (work in progress)

Electron loss on view 0 due to the diffusion

Transverse electron diffusion only

Electron cloud evolution no diffusion Electron cloud evolution with transverse diffusion

Signal on all views Time: $0.10 \mu s$

** https://lar.bnl.gov/properties/trans.html*

Time: 0.10 µs

Field with hole shifted

• Covering exact area given by: $\mathcal{A}_{analytic} = 2R^2 \left[\arccos x + 2x\sqrt{1-x^2} \right]$

CRP6 transparency (simulation)

- Increased charge loss
- Charging-up effect can be explain that if the electrons are captured by the FR4.
- i.e. **shifting > 0.5 mm**
- But Luis has **measured a shifting max ~ 0.35 mm**

- \triangleright Even with diffusion: electron dispersion through a hole is insufficient
- \triangleright too focused to explain charging-up
	- à **Electron diffusion**

 $→$ **Have to implement the dielectric constant for the FR4**

Summary

Ø **Work done:**

- Numerical simulation conception to understand the formation of induction signals of all views
- Coldbox's data extraction \rightarrow simulation is good agreement with this

Ø **What's next ?**

- Keep working on the electron diffusion and the impact on the loss charge
	- o Same study with longitudinal diffusion
	- o Implement the drift field dependance $\Rightarrow D_L(\overrightarrow{E_n},T)$, $D_T(\overrightarrow{E_n},T)$
- Implement the dielectric matrix to discriminate the change of medium (FR4 into Ar and vice versa)
	- o Solving Generalized Poisson's equation in 3D:

$$
\vec{\nabla} \cdot (\varepsilon_r \left(\vec{\nabla} \phi(x, y, z) \right) = 0 \text{ (no source)}
$$

Extend the simulation in a bigger volume \rightarrow track angle studies and position in the TPC (boundary conditions)

