

Towards an independent measurement of Dark Energy's equation of state from a novel set of SNeIa <u>Cosmological inference in Lemaitre</u>

Dylan Kuhn, October 29th 2024 on behalf of the Lemaitre collaboration

The blinded Lemaitre (Hubble) diagram

- Independent analysis
- 12 photometric bands
- <u>Goal</u>: independent assessment of the w0wa tension, simplify inference process, enhance reproducibility of the results

The Lemaitre analysis pipeline

Instrumental selection bias: the "Malmquist bias"

Instrumental selection bias: the "Malmquist bias"

Instrumental selection bias: the "Malmquist bias"

In practice, only the *intrinsically brightest supernovae* are detected:

- <u>truncation of data</u> by m_{lim}
- <u>biased</u> estimation of β , σ_{int} , $\Delta\mu$

Not well defined problem and cosmology is biased by truncation

How to tackle this issue

Account for the selection effects in the statistical model

Our approach: NaCl + EDRIS

EDRIS:

- cosmology from NaCl [x₀, x₁, c]
- includes selection in statistical model

$$\begin{split} & m_{obs,i} = m_{obs,i}^{*} + \eta_{i} \text{ if } m_{obs,i}^{*} \leq m_{lim} + \kappa_{i} \\ & \text{with } \eta_{i} \sim \mathcal{N}(0, C_{i}) \text{ and } \kappa_{i} \sim \mathcal{N}(0, \sigma_{m_{lim}}^{2}) \\ & m_{obs,i} \text{ is unobserved otherwise} \end{split}$$

Two-step estimator:

- estimation of the selection functions $[m_{lim}, \sigma_{mlim}]$ from m_{obs} histograms

- standardization & estimation of distances

Estimation of the selection function

Estimation of $[m_{lim}, \sigma_{mlim}]$ for each survey from observed magnitudes histogram

Estimation of the selection function

Standardization & estimation of distances

Bias on distances and cosmological parameters

13

End-to-end validation on simulations: data challenges

- 5 data challenges towards data unblinding
- Increasing complexity and realism
- Pipeline extensively tested through continuous integration
- After pipeline validation, no need for simulations anymore

Goals achieved by data challenges

- Ensuring that the inference pipeline can reconstruct unbiased cosmology taking into account several effects:
 - correlated uncertainties
 - realistic selection functions
 - foregrounds (dust, lensing, etc)
 - increasingly complex evolution effects
- Ensuring that the error on cosmological parameters incorporates all sources of uncertainties: calibration, measurement, model, color scatter, etc

Take-home message

- Lemaitre: new independent measurement of w, fσ8, H₀
- new inference chain (simulation-free)
- both NaCl and EDRIS show promising results on consistency checks
- 5 Data Challenges towards data unblinding (mid-2025)

Back-up slides

Data challenge 1: ideal simulations

- Goal: consistency test of the chain
- Lemaitre sampling (real observation logs)
- Realistic measurement errors for light-curves and spectra
- 100 noise realizations

DC1 sample: size=4810

Example of simulated SNela

Binned hubble diagram and $\Omega_{_m}\text{-}w$ contours

Novelties in next data challenges

source: Vincenzi et al., 2021

- Data challenge 2:

Adding selection effects to all samples

- Data challenge 3:

Adding calibration uncertainties + modeling of contamination

Novelties in next data challenges

- Data challenge 4:

Adding astrophysical effects (cf. Madeleine's talk)

- Data challenge 5:

Blinded simulations

<u>Final goal:</u> Lemaitre **unblinding** on real data between **March-May 2025**

source: Ginolin et al., 2024a