

ZTF-COSMO DR2: Exploring SNIa properties in the vicinity of underdense environments.

Marie Aubert – PostDoc @ LPCA

Aubert et al 2024 ; <u>Arxiv:2406.11680</u>

Marie Aubert @ Action Dark Energy - 30/10/2024

The Large Scale Structure of the Universe

 \rightarrow Intricate network of matter shaped by gravity

• Matter is structured at large scale (LSS) :

Voids : Under-dense environment of LSS \rightarrow Large **extended** objects

Less matter than average of all LSS combined

©SDSS Collaboration | Blanton 2005

Introductory remarks

SNe la properties assumed to be independent of Large Scale Structure.

Wide field survey (e.g ZTF now, LSST in the future) \rightarrow large statistics allowing us to test this hypothesis.

Work presented today is a first exploratory study of the interplay between low density environments in the LSS and the ZTF-DR2 SNe Ia

The ZTF-COSMO DR2 sample

Rigault, Smith et al. subm. 2024, <u>Arxiv:2409.04346</u>

Zwicky Transient Facility (ZTF):

- Large field-of-view camera : 47 deg^2
- High cadence
- 20 000 deg^2 of the sky.

 \rightarrow detect and sample SNIa light-curve efficiently.

About 3600 spectroscopically classified SNe Ia :
→ detected between March 2018 to December 2020.

All SNe Ia with redshift. $\sigma_z \sim [10^{-3}, 10^{-5}]$:

 \rightarrow from SNe Ia spectra

 \rightarrow from SNe Ia hosts.

~ 1000 volume-limited SNe Ia of cosmological quality, $z \le 0.06$.

The ZTF-COSMO DR2 sample

Rigault, Smith et al. subm. 2024, <u>Arxiv:2409.04346</u>

Testing the dependency of the SNe Ia

 \rightarrow SNe Ia are not all the same: Properties of their light curve can change.

- Stretch x_1 :

 \rightarrow How long the SNe Ia light-curve evolves in time.

- Colour c:

 \rightarrow the difference between the light-curves in the respective bands (zg, zi, zr)

2018-Jul

Tracing the low redshift LSS with SDSS

SDSS-DR7 Main Sample

(Blanton 2005)

(Abazajian 2009)

Widest LSS spectroscopic sample available at low redshift, z < 0.1

Selection of 341433 Galaxies

- Contiguous footprint in the North Galactic Cap.
- Galaxy redshift in $z \in [0.018, 0.11]$

Aubert et al 2024 ; <u>Arxiv:2406.11680</u>

Void properties extraction

Void centre definition

$$X_{v} = \frac{\sum_{i} V_{i} X_{i}^{g}}{\sum_{i} V_{i}}$$

Voids \rightarrow R.A, Dec, z with fiducial cosmology

Radius

Fiducial cosmology : Flat $\Lambda CDM \Omega_m = 0.31 \rightarrow \text{Revolver Nadathur et al 2019}$

Based on ZOBOV Neyrinck, 2008 <u>Arxiv:0712.3049</u> $\rightarrow \rho_{loc} = 1/V_i$

Byproduct :

 V_i : local volume around each galaxies

Final void and SNe Ia samples selection

Void sample selection

- Use voids distinct from the edges

- $-R_{v} \ge 10 \, \text{Mpc} \, . \, h^{-1}$
- **Redshift max** : z = [0.018, 0.07]

SNe Ia sample selection

- ZTF SNIa DR2 overlapping with SDSS
- Volume-limited z = [0.02, 0.06]

Fiducial cosmology : Flat $\Lambda CDM \Omega_m = 0.31$

- SN Ia positions in R.A, Dec, z with $\sigma_7 = [10^{-5} 10^{-3}]$
- Void positions and radius (r_v) .
- Galaxies positions.

Available

information :

Matching SNe Ia in pairs

Nearest 3D distance matching **Comoving coodinates (**Mpc . h⁻¹**)**

A single SNe Ia is matched to :

- Nearest neighbouring void
- Nearest neighbouring galaxy

Fiducial cosmology : Flat $\Lambda CDM \Omega_m = 0.31$

Available information :

- SN Ia positions in R.A, Dec, z with $\sigma_z = [10^{-5}, \sim 10^{-3}]$

- Void positions and radius (r_v) .

SNe Ia distance from void centre distribution overlaps properly with that of the galaxies distribution.

 \rightarrow They do not singularly sample a zone in the LSS.

Aubert et al 2024 ; <u>Arxiv:2406.11680</u>

Matching SNe Ia in pairs

Nearest 3D distance matching **Comoving coodinates (**Mpc . h⁻¹**)**

Fiducial cosmology : Flat $\Lambda CDM \Omega_m = 0.31$

Available information : - SN la positions in R.A, Dec, z with $\sigma_7 = [10^{-5}, \sim 10^{-3}]$

- Void positions and radius (r_v) .

Confirmation with the void density profile from SNe Ia and galaxies.

 \rightarrow SNe Ia sample pretty well the LSS as traced by SDSS galaxies.

 \rightarrow No sampling « bias ».

Aubert et al 2024 ; <u>Arxiv:2406.11680</u>

Matching SNe Ia in pairs

Nearest 3D distance matching **Comoving coodinates (**Mpc . h⁻¹**)**

Light curve properties around voids

However, limited statistic within the core of the void.

Aubert et al 2024 ; <u>Arxiv:2406.11680</u>

- 12

- 12

Additional tracer of density : Voronoi volumes

Available information :

- SN Ia positions in R.A, Dec, z with $\sigma_z = [10^{-5}, \sim 10^{-3}]$
- Galaxies positions $+V_c$ (Voronoi volumes)

By definition : $V_c = 1/\rho_{loc}$

Each SN Ia is paired with its nearest neighbouring galaxy.

- \rightarrow We match the SNe Ia to the corresponding Voronoi volume.
- → Again no local density environment is favoured.

Aubert et al 2024 ; <u>Arxiv:2406.11680</u>

with $\sigma_z = [10^{-5}, \sim 10^{-3}]$ pnoi volumes)

Properties w.r.t matched volume

Scatter properties w.r.t their matched Voronoi volume.

Large Voronoi volume → Low local density Small Voronoi volume → High local density

Colour

No significant behavior w.r.t local density

- Two stretch regimes : 'high density' / 'low density'
- Locally dense environment leads to low stretch (cf. Florian Ruppin)
- Voronoi volumes probe intermediate scales as well.

Aubert et al 2024 ; <u>Arxiv:2406.11680</u>

Stretch distribution comparison

One can characterize the PDF of x_1 as :

$$\mathcal{P}(x_1) = r\mathcal{N}(x_1 | x_1^{high}) + (1 - r)\mathcal{N}(x_1 | x_1^{low})$$

Fraction *r* of SNe Ia in the high/low modes is affected by the density environment. (2.52 σ)

 \rightarrow Similar results to Ruppin et al, 2024, <u>Arxiv:2406.01108</u>

Aubert et al 2024 ; <u>Arxiv:2406.11680</u>

The sample is separated into 'low density' stretch sample (V < med V) and 'high density' stretch sample (V > med V).

Conclusion:

SNe Ia properties are affected by their large scale environments

 \rightarrow Impact of high-to-moderate density environment is stronger than low density environment. *Consistency between analyses with clusters and voids/voronoi volumes.*

 \rightarrow Probably a consequence of galaxy properties dependency on LSS.

Despite limiting factors :

For voids & SNe Ia \rightarrow Limiting factor is the statistics. Especially within void core. \rightarrow Need wider overlap of low redshift galaxy sample with ZTF. \rightarrow Need denser SNe Ia sample. (LSST ?)

Food for thoughts :

Relevant for velocity/density field reconstruction methods

- What kind of new test can we devise from SNe Ia X Voids?

Thanks!

Voidfinding in the DR7 sample

- Corrective weights based on $n(z): w_z$ applied in V
- \rightarrow Correct the natural growth of void volumes with redshift.

Fiducial cosmology : Flat $\Lambda CDM \Omega_m = 0.31$

F.
$$V_i^w = w_z V_i$$

If the galaxy is near to edge or masked areas $\rightarrow V_i^w = Flag$

Type la Supernovae

 m_R : Observed Magnitude at peak luminosity in B band

x_1 : Stretch of the light-curve

c : Colour differential between light-curves in different bands

The ZTF-COSMO DR2 sample

Large field-of-view camera : 47 deg^2

Scan the sky every night which enables us to :

 \rightarrow detect and sample SNIa light-curve

Rigault, Smith et al. 2024

SNIa between 2018-2020 - DR2 Overview paper

Cuts	n targets	removed	% remove
Master list	3795	_	_
+ ZTF lightcurve	3778	17	0.4
+ a spectrum	3668	110	2.9
+ confirmed "Ia"	3628	40	1.1
Basic cuts			
good l.c. sampling	2959	669	18.4
$x_1 \in [-3, +3]$	2898	61	2.1
$c \in [-0.2, 0.8]$	2861	37	1.3
$\sigma_{t_0} \leq 1$	2836	25	0.9
$\sigma_{x_1} \leq 1$	2822	14	0.5
$\sigma_c \leq 0.1$	2809	13	0.4
"fitprob" $\geq 10^{-7}$	2666	143	5.1
Subsample examples			
volume ltd ($z \le 0.06$)	989	1677	63.0
non-peculiar SNe Ia	2628	38	1.5

Revolver and the Zobov algorithm

Voronoi tesselation

- Each galaxy is enclosed within a Voronoi cell.
- $\rightarrow \rho_{loc} = 1/V_i$

Tracer distribution

Voronoi tesselation

Neyrinck 2008

