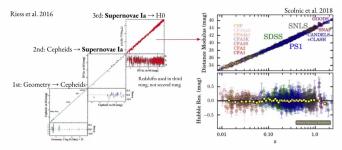
Update on the ω_m tension.

A. Blanchard

Paris, October 28th, 2024

About the Hubble tension...


H_0 can be measured "locally"...

Recording

Type Ia Supernovae (SNe Ia) and Cepheids are standardizable candles

(Merci, Brahim!)

 $H0 = 73,04 \pm 1 \text{ km/s/Mpc}$

The key (of our work) is to make SNe Ia (or Cepheids) <u>consistent between</u> their respective rungs, so impact of systematics is small. Only impact if there is a difference between objects in their different rungs.

H_0 tension

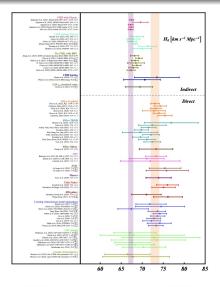
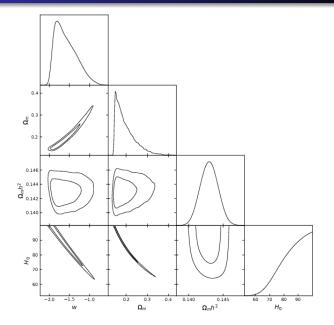



FIG. 2. 68% CL constraint on H₀ from different cosmological probes (based on Refs. [49, 50]).

in 5 σ tension with Planck, BAO, ...

H_0 and Planck

Physics imprints the CMB from two periods:

```
Early universe (z \le 1100) : plasma of photons, baryons, dark matter,
```

Late-time universe : expansion history (D_{ang}) ,

A. Blanchard (1984)

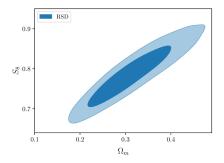
ISW, lensing,...

M. Vonlanthen, S. Räsaäen, and R. Durrer (2010) Lemos and Lewis (2023):

 $\omega_M = 0.1414 \pm 0.0013$

This value is indepedent of the late time universe!

Recipe:

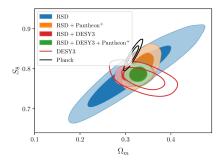

- use only "local" data (i.e. $z \ll 1000$)
- work in the ACDM framework.
- RSD
- SNIa diagram Pantheon+
- WL from DES 3yr

Blanchard et al. (2024) OJAp 7E, 32B arXiv:2205.05017

RSD from surveys

Survey	\mathbf{z}	$\mathrm{f}\sigma_8$	Refs
2MFT	0.001	0.51 + / -0.085	[19]
6dFGS	0.067	0.423 + / -0.055	[20]
SDSS DR13	0.1	0.48 + / -0.16	[21]
2dFGRS	0.17	0.51 + / -0.06	[22]
GAMA	0.18	0.36 + / - 0.09	[23]
WiggleZ	0.22	0.42 + / -0.07	[24]
SDSS LRG60	0.25	0.35 + / - 0.06	[25]
BOSS LOW Z	0.32	0.48 + / - 0.1	[26]
GAMA	0.36	0.44 + / - 0.06	[23]
SDSS LRG 200	0.37	0.46 + / - 0.04	[25]
WiggleZ	0.41	0.45 + / -0.04	[24]
CMASS BOSS	0.57	0.453 + / -0.02	[27]
WiggleZ	0.6	0.43 + / -0.04	[24]
VIPERS	0.6	0.48 + / -0.12	[28]
SDSS IV	0.69	0.447 + / -0.039	[29]
VIPERS	0.76	0.44 + / -0.04	[30]
SDSS IV	0.77	0.432 + / -0.038	[31]
WiggleZ	0.78	0.38 + / -0.04	[24]
SDSS IV	0.85	0.52 + / -0.10	[32]
VIPERS	0.86	0.48 + / -0.10	[28]
SDSS IV	0.978	0.379 + / -0.176	[31]
SDSS IV	1.23	0.385 + / - 0.1	[31]
Fastsound	1.4	0.494 + / -0.123	[33]
SDSS IV	1.52	0.426 + / -0.077	[34]
SDSS IV	1.944	0.364 + / -0.106	[31]

RSD from surveys: constraints



Not surprisingly strong degeneracy

Need to combine with other low - z data

RSD from surveys + DES3yr +Pantheon+ compared with Planck

(no lensing)

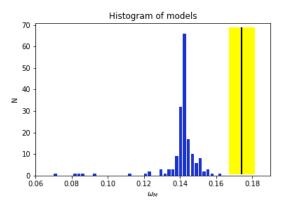
 $\Omega_M = 0.3326 \pm 0.013$

Blanchard et al. (2024) OJAp 7E, 32B arXiv:2205.05017

A (new) stress test for extensions...

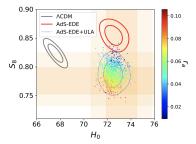
With *low-z* measurements of Ω_M :

 $\Omega_M = 0.3326 \pm 0.013 (\text{RSD+DESY3+Pantheon+})$


 $\begin{array}{l} {\rm SNIa: Pantheon} + \ \Omega_{M} = 0.334 \pm 0.018 \\ {\rm SNIa: DES5yr} \ \Omega_{M} = 0.352 \pm 0.017 \\ {\rm SNIa: Amalgame} \ \Omega_{M} = 0.328 \pm 0.024 \\ {\rm SNIa: Unity} \ \Omega_{M} = 0.356 \pm 0.027 \\ \hline {\rm BAO: DESI} \ \Omega_{M} = 0.295 \pm 0.015 \\ \hline {\rm Combined} \ \hline \Omega_{M} = 0.322 \pm 0.008 \\ \hline \end{array}$

using SH0ES: $H_0 = 73.3 \pm 1.04$ km/s/Mpc, we can infer :

$$\omega_{M} = 0.17 \pm 0.005$$


compared to Planck L&L : 5.7σ away!

Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions

A (new) stress test for extensions...

arXiv:2107.13391v2: EDE+ ultralight axion

However ω_m value > 2.6 σ away.

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Planck provides a tight constraint on ω_M independent of the late time universe.
- Ω_M is tightly constrained from local data: $\Omega_M = 0.316 \pm 0.0094.$
- The SH0ES H_0 leads to $\omega_M = 0.17 \pm 0.005$, in 5.7 σ tension.
- Very hard to solve on the theoretical side? Thank You