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The redshift calibration challenge

• Photometric surveys: we are measuring a bunch of 2-points correlation 
functions (3x2) for different bins 

• To infer cosmological constrain, we need to model these measurements.

• A key ingredient is the redshift distribution. 

• We need to estimate them, their uncertainties, and marginalise to avoid 
biasing cosmology.

• Requirement on z-calibration:
• Euclid: the mean-z of every tomographic bin: 𝝈 𝒛 𝒊 = 𝟎. 𝟎𝟎𝟐×(𝟏 + 𝒛)	
• Additional req. on the 2nd moment, but not ‘official’ req.

J. Prat, 2022

Redshift distribution of source bin 𝑖

@Jessie Muir
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The redshift calibration challenge

S. Samuroff, 2016

• Here, GGL and GC, 3 scenarios:
• True-z, and no-z-uncertainty (green)
• Mean-z bias and z-uncertainty (purple)
• Mean-z bias and no-z-uncertainty (blue)
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Two main methods:
• SOM (self organised maps)
• Cz (clustering-redshifts)

Combination of the two methods for DES

The two methods for Euclid



1-Self Organised Map in mag (SOM)
Two main methods: 

Stanford et al. (2021) 4

• SOM: a machine learning technique, to 
categorize N-Dim vectors into a 2D map

• Photo-z: dimensions are fluxes, gal. with 
similar fluxes (and so z)  are ‘close’ in the SOM

• Trained with a calibration sample (spectroscopic, or 
high quality photo-z like COSMOS)

• These calibration samples are not complete nor 
representative

• Crucial step of re-weighting this calibration sample 
with the WL one. (Deep survey)

KIDS: H. Hildebrandt 2020, A. Wright 2020
DES: G. Gianninin 2022, A. Alarcon 2022, A. Campos 2024.
Euclid: W. Roster in prep

Credit: G. Giannini
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Self-Organised-Maps: uncertainties

Credit: A. Alarcon, C. Sanchez

• In DES: The product of the SOM calibration is a set of n(z) realisations
whose overall variance span all the uncertainties included in the 
SOMPZ methodology: 
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• A photometric galaxy sample is spread over a large redshift range

• Idea : Correlate it with many spectroscopic samples at different –𝑧, compare 
random expectation (RR) 

• Galaxies are tracing the DM field, so we measure the fraction of photo-gal. that 
are tracing the same DM field as the spec-gal.
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2- Clustering redshifts
Two main methods: 
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Two main methods:
• SOM (self organised maps)
• Cz (clustering-redshifts)

Combination of the two methods for DES

The two methods for Euclid



SOM x Cz

• In DES: SOM calibration à a set of n(z) realisations whose overall
variance span all the uncertainties in the SOMPZ methodology: 

• Idea of SOMx Cz: Assign to each of these realisations a Cz likelihood, and 
select the best !

log(𝐿(𝐶𝑍))
𝑛! 𝑧 ! ℒ 𝑛! 𝐶𝑧) 𝑛" 𝑧 "

Big set of SOM 𝑛(𝑧)

Evaluate and select the
best subset

Subset of SOM 𝑛 𝑧  
with high-Cz L
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G. Bernstein, M. Troxel, A. Amon, 
B. Yin, A. Alarcon, W. d’Assignies
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C𝑧 Likelihood

• One can model Cz :

Systematics Magnification

8

G. Bernstein, M. Troxel, A. Amon, 
B. Yin, A. Alarcon, W. d’Assignies
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C𝑧 Likelihood

Systematics Magnification

Marginalisation over sys. and magn.

• One can write the Likelihood of our Cz  given a 𝑛#(𝑧) :
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G. Bernstein, M. Troxel, A. Amon, 
B. Yin, A. Alarcon, W. d’Assignies

• One can model Cz :
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C𝑧 Likelihood

Systematics Magnification

Marginalisation over sys. and magn.

• One can write the Likelihood of our Cz  given a 𝑛#(𝑧) :

• Since sys and magn parameters act linearly, one can solve analytically
• Numerically very fast.

8

G. Bernstein, M. Troxel, A. Amon, 
B. Yin, A. Alarcon, W. d’Assignies

• One can model Cz :
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• Prior on the nuisance parameters s of the 
Sys(z, s) are estimated in simulations

• If independant systematics, add them
linearly : Sys(z, s) = ∑! Sys (z, s_i)

Maglim lenses

DES sources

9

C𝑧 Likelihood G. Bernstein, M. Troxel, A. Amon, 
B. Yin, A. Alarcon, W. d’Assignies
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• 4 DES source bin. 
• Top panel, 𝑛(𝑧) generated with the SOM
• Bottom, 𝑛(𝑧) generated with the SOM, with high- Cz- Likelihood.
• Remove fluctuations and individual 𝑛 𝑧 are -smoother-

Preliminary
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SOM and WZ joint constrains: 
G. Bernstein, M. Troxel, A. Amon, 
B. Yin, A. Alarcon, W. d’AssigniesWilliam d’Assignies



Redshift uncertainty marginalisation for cosmology

• The results of the SOM x WZ is a set of 𝑛(𝑧) realisations.
• Computationally we can’t sample each realisation at each step of the inference process

• Need to explore the photo-z uncertainty thought a reduce small set of parameter.
• Usually it us a ‘shift and  stretch ’ model. (simple but brutal)

• Idea (DESY6): Use Principal Component Analysis to extract a set of orthogonal modes 
that capture (most) of the variations within the set of 𝑛(𝑧).

• MCMC: sample mode coefficients 𝜆!:

𝑛 𝑧 = 𝑛$ 𝑧 +/
!

𝜆! . 𝑒!(𝑧)

11
G. Bernstein, M. Troxel, A. Amon, 
B. Yin, A. Alarcon, W. d’Assignies
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Two main methods:
• SOM (self organised maps)
• Cz (clustering-redshifts)

Combination of the two methods for DES

The two methods for Euclid



@Antoine Rocher

Past: 
• BOSS/ eBOSS. 

Future:
• DESI (north),  
• 4MOST(south), 
• Euclid H𝛼 (both)

• Dense samples for 0 < 𝑧 < 1.8
• QSO covering 1 < 𝑧 < 3.5

• Photometric : Euclid and LSST:
à Challenging requirements!

Clustering redshifts and future surveys
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DES bin 3 with 
BOSS Cz
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• Newman, 2008, 2-10 Mpc
• S. Schmidt, 2013, 0.003-3 Mpc (30-300 kpc)
• B. Menard, 2013, 0.003-3 Mpc 

• M. Gatti, 2017, 0.5-1.5 Mpc
• C. Davis, 2018, 0.1-10 Mpc
• M. Gatti, 2022, 1.5-5 Mpc
• R. Cawthon, 2022, 0.5-1.5 Mpc

• J.L. Van der Bush, 2021, 0.1-1 Mpc

• K. Naidoo, 2022, 0.1-1  Mpc

Clustering redshifts and  scale choice

DES:

Kids:

Euclid:

‘Systematic errors introduced by violating the 
assumption of linear bias are out- weighed by an 
improved SNR for r < 1 Mpc’

Schmidt, 2013

Mocks based on Millennium and  Las- Damas simulations. 
3 parameters HOD, different biases scenario.  

𝑛# 𝑧! ∝ 𝜔%# 𝜃, 𝑧! / 𝜉&(𝜃, 𝑧!)
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Sample a

Sample b

- 𝑛' 𝑧 = (
)*

- 𝑛+ 𝑧 = (
)*

• The ansatz is the following: two samples in the same 𝑧-bin. 

• Cross-correlation:  𝜔'+ 𝑟#, 𝑧! ≈ 𝑏'× 𝑏+ ×𝜉&
• Auto-correlation : 𝜔'' 𝑧! , 𝑟# ≈ 𝑏',×𝜉&
• For clust-z, we don’t want the biases : -!"

-!!-""
≈ 𝟏

• For clust-z, very small scales ∼ 1 Mpc or even smaller and we used linear 
biases…

• 1st idea:  Use Flagship simulation,  a and b 
into small redshift bins and measure the ratio 
for each bin, for different 𝑟#

Impact of scales and biases (1/2)

à
"*+($,,&-)
"**"++

≈ 1
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Impact of scales and biases (2/2)

Q: is this ‘real’ or coming from the MOCKs

• We used the public DESY3 ‘lens’ samples : Maglim (blue and red) and 
Redmagic.  (red)

• We removed the Redmagic galaxies which are part of Maglim

15
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Impact of scales and biases (2/2)

Q: is this ‘real’ or coming from the MOCKs

• We used the public DESY3 ‘lens’ samples : Maglim (blue and red) and 
Redmagic.  (red)

• We removed the Redmagic galaxies which are part of Maglim

15

• We report : 𝜂./ 𝑟0 = 1&' 2(

1&& 2( 1'' 2(
(× 𝐶3 correction due to 𝑛(𝑧) mismatch)

• We detect under-correlation for red x 
blue for 𝑟 < 1	Mpc/h

• We detect over-correlation for two red 
samples for 𝑟 < 1	Mpc/h

• This indicates that the effect exists! 
We decided to discard 𝑟 < 1	Mpc/h
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Results with our new pipeline for Euclid

Main differences:
o FS1à FS2 (400à 1000 sq.deg)
o Estimator for pair count
o scale range and weighting
o 𝑛(𝑧) fitting 
o do not combine samples of 
different spec. tracers (LRG,ELG…)
o photo bias correction
o How do extract the mean-z form the data vector

The new Cz pipeline fullfill the Euclid requirements !

17
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(new SOM pipeline for Euclid )

• My results on the Cz pipeline for Euclid:

• William Roster, phd (Max Planck Institute) 
working on SOM for Euclid.

• He has a similar story:
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The new pipelines fullfill the Euclid requirements !
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We can start thinking about the SOM x Cz!
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• LSST, Euclid redshift calibration are challenging and crucial

• SOM methods: Direct use of photometry, high-z range, flexible systematics mitigation, 
but  needs a representative redshift sample, limited by sample variance

• Cz methods: Insensitive to photometric systematics, sample variance, but limited by the z 
range and the sky coverage of spec-samples, sensitive to clustering systematics.

• Using both, through a direct combination or consistency checks. 

Conclusion !
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William d’Assignies, Cz for Euclid
William Roster, SOM for Euclid
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The redshift calibration challenge

• Precise measurements requires precise redshift calibration 

• Unbias cosmology requires unbias redshift calibration

• Requirement on z-calibration:
• Euclid: the mean-z of every tomographic bin: 𝝈 𝒛 𝒊 = 𝟎. 𝟎𝟎𝟐×(𝟏 + 𝒛)	
• Additional req. on the 2nd moment, but not ‘official’ req.

𝑧 ! = ∫ 𝑑𝑧 𝑛! 𝑧 × 𝑧

4



2- Clustering redshifts
Two main methods: 

𝑧"

𝑛 )
(𝑧
)

𝑧"

𝑛 *
(𝑧
)

A photometric 
sample with 
unknown 𝑛(𝑧)

Spectroscopic 
samples in small z-
bin

𝜔%# 𝜃, 𝑧! ≈ 𝑛# 𝑧! × 𝑏% 𝑏# 𝜉&(𝜃, 𝑧!)

𝑛# 𝑧! ∝ 𝜔%# 𝜃, 𝑧! / 𝜉&(𝜃, 𝑧!)

𝑛# 𝑧! =
𝜔%#(𝜃, 𝑧!)

Δ𝑧 𝜔%% 𝜃, 𝑧! . 𝜔##(𝜃, 𝑧!)

• The angular 2-pt cross-correlation is: 

• Assuming 𝛿. = 𝑏.𝛿&

• Two cases:
o Neglecting biases evolution: 

o Measuring biases with auto-correlations: 

𝜔%# 𝜃, 𝑧! = ∫ 𝑑𝑧 𝑛% 𝑧 𝑛# 𝑧 𝛿%𝛿# /,*
≈ 𝑛# 𝑧! 𝛿%𝛿# /,*#
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What we measure (at best) is the product of the 
true 𝑛(𝑧) and the ratio "*+

"**"++

Some ‘toy model’  of ‘catastrophic failures’ :
• If the ratio is z-dependant (decreases with z):
• If we combined two spec-samples into one 

spec sample, with two values for this ratio.

• From a true n(z), assuming this ratio to be 1, 
we would at best measure some biased n(z).

Impact of scales and biases (2/5)

16



• Idea:  Use Flagship 2, ‘realistic mocks’, split into redshift bins with 𝑛' 𝑧! = 𝑛+ 𝑧! and 
measure the ratio for each bin, for different 𝑟#. 

à
-!"
-!!-""

(𝑟#, 𝑧!) ≈ 1.   (indeed what matters is to have a constant ratio)

• high redshift very good
• ELG and BOSS stong over-

correlation at (very) small scales
• BOSS under-correlation at scale 

1-8 Mpc but probably ok since 
not a clear redshift evolution. 

• Even if linear bias not true.            
1< 𝑟# < 6 Mpc, the ratio is ≈1 ! 

simulated simulated simulated

Impact of scales and biases (3/5)
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• Some caveats…
• TB, photo-z bias measurement (𝜔HH) assuming LSST Y10 photometry…
• No interlopers in the Euclid spec-z (last two bins)
• Higher z TB ?
• DR1, what spectroscopic samples ?

Future Euclid work:

• FS2, Cz for Euclid we will fulfil the 
requirements, so let’s wait the data 
(?!)

31



• Interlopers :
• Clustering with the spec-z bin
• Clustering with the line interloper
• Clustering with noise interloper

• DR1, not   a lot of spectroscopic samples: 
need to find other methods.
• Typically in DES subsample with a 

qualitative photo-z. More complicated. 

𝑧"

𝑛 )
(𝑧
)

𝑧"

𝑛 +
(𝑧
)

𝑧"
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!
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𝜔#$# 𝑧 ∝ ∫ 𝑑𝑧 𝑛#$ 𝑧 𝑛# 𝑧 𝜉&(𝑧)

Future Euclid work:

𝑧"
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(𝑧
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Spec-z cut

Line interlopers
noise
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• From DESI, we will have 200 
QSO per deg2,  1/3 at z>2.1

• Q and challenges since density 
is low. In theory what matters 
is the total number of spectras.

DESI : arXiv:2208.08511v2 

Callibration at high-𝑧 : QSO

• But still possible, eg. 700 deg2 of DES x eBOSS (scales 1-
15 Mpc…) up to z=2.2

• With DESI, one might go up to z=3. 
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Finding the optimal scale range

33

• We consider the n(z) for 3 estimators (colors, bias correction), but with only one scale: 
• We plot the RMS of Δ𝑛 = 𝑛&1'% 𝑧 − 𝑛2341(𝑧) , SNR and 𝜒,(reduced so ∼ 1)
• Thin lines: 5 sky realisations. Solid: their mean.
• Colors are different estimators, correcting the gal-bias(es)

• The SNR peaks around 1 Mpc (except M0 
low-z but bad 𝜒,à systematic). 

• It appears necessary to correct at least 
for spec-z (M1), and always better to 
correct both

• For M1 and M5 the 𝜒, ∼ 1 between 0.1 
and 10 Mpc.

• Potential additional systematics with 
data wrt simulationà conservative 
choice of scale >1 Mpc

𝑛) 𝑧"|𝑟) =
𝜔+) 𝑟), 𝑧"

Δ𝑧 𝜔++ 𝑟), 𝑧" 𝜔))(𝑟), 𝑧")
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Optimal weighting
• Based on previous test we fix the scale range to be 1-5 Mpc 

(why 5 and not 10:  (i) SNR is decreasing with scale so in practice little impact

(ii) r>5 Mpc are used for clustering, lensing, so keep our study independant, avoid cov-matrix)

• Small points: sky realisations. Big points: their mean

34

• We want to be in the bottom right region (low-std-dev and high-SNR)
• Inverse weigting is the best (darkred ). 
• Two possibility for weighting: 𝑊1 is better than 𝑊3
• We also see at high-z the increase of std dev when neglecting the photo bias (M1 vs M5)

RM
S 
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• For a discrete and ‘perfect’ redshift bin (top plot),
ω44 z = b4 z 5ω67(z)

8
9:

• Photo-z: not possible to split the sample into discrete redshift bins with a 
certain width (bottom plot)

• Idea: Measure the n(z) of the subbins with clustering redshift again and 
correct it 

• Bin width correction:
ω,, z = b, z -𝛚𝐃𝐌(𝐳)

𝟏
𝚫𝐳

• ‘DES’ Y3 correction:
ω,, z = b, z -𝛚𝐃𝐌 𝐳 ∫ 𝐝𝐳 𝐧 𝐳 𝟐

• Mine (‘exact’ correction ): 
ω,, z = b, z - ∫ 𝐝𝐳𝟏𝐝𝐳𝟐𝐧 𝐳𝟏 𝐧 𝐳𝟐 𝛚𝐃𝐌(𝐳𝟏, 𝐳𝟐)

Caveats: the photo-z needs to be good enought such that 
the redshift variation accross the subbins is negligeable. 

How to measure the redshift evo of 𝑏!(𝑧)

DES



Bias correction scheme 

36

• Here we used the shifted-stretched fitting, conclusion are similar for GP
• We plot the mean z (𝛿𝑧) and shape (𝑠) biases for different bias corrections

• M0: without bias correction: excluded for mid-z and high-z
• M1: spec-z bias correction only is ok for low-z and mid-z, not high-z
• M5 using the true-z to measure the photo-bias—> sim only, best case possible
• M3 and M4: spec-bias and photo- bias with the mehodology presented (2 choices, story of binning)
• M3 and M4 similar performance than M5  at high-z  (M3 slightly better)



Bias correction scheme

37

• Same plot but with suppressed GP
• Same conclusion, with bigger errorbars



Another way of visualising the photo-bias impact

38





• We report : 𝜂./ 𝑟0 = 1&' 2(

1&& 2( 1'' 2(
(× 𝐶3 correction due to 𝑛(𝑧) mismatch)

• We detect under-correlation 
for red x blue for 𝑟 <
1	Mpc/h

• We detect over-correlation for 
two red samples for 𝑟 <
1	Mpc/h

• This indicates that the effect 
exists! We decided to discard 
𝑟 < 1	Mpc/h• With 𝐶4 =

∫ 67 4"# 8$
%.'

∫ 67 4(
# 8$

%.'

∫ 67 4"4(8$

𝑛 𝑧  measured with clustering-𝑧 
with eBOSS (large scale)Impact of scales and biases (3/3)
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• 𝐶4 =
∫ 67 4"# 8$

%.'
∫ 67 4(
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%.'
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