

Spectrophotometric standardisation of ZTF type Ia supernovae

Constance GANOT - IP2I (Lyon) Under supervision of Yannick COPIN & Mickael RIGAULT

ADE - october 2024

ÉCOLE DOCTORALE 52 ------

S	I	Q	U	E
١				

Summary

- Spectrophotometric standardisation context
- Presentation of Twins Embedding
- Presentation of ZTF spectra sample (and flux calibration)
- Twins Embedding method applied on ZTF spectra
- ZTF standardisation result

Constance GANOT - Spectrophotometric standardisation of type Ia Supernovae

Spectro-photometric standardisation

Constance GANOT - Spectrophotometric standardisation of type Ia Supernovae

-> New standardisation of distance modulus, using spectral information

at phase -3.73days

Before standardisation : $\sigma_{mag} = 0.40$ mag **Photometry**: $\sigma_{mag} = 0.15$ mag With SNFactory Twins Embedding : $\sigma_{mag} = 0.07$ mag

Twins - Fakhouri et al. 2015

Spectral time-series of two 'Twins' SNe - SNfactory Figure from Fakhouri 2015

Twins have lower dispersion in luminosity than spectroscopically dissimilar SNe Figure from Fakhouri 2015

-> magnitude dispersion is smaller for the lowest 'twiness' parameters

> -> Only one spectrum at maximum per SN la is sufficient to have the variation information

Twins Embedding - Boone et al. 2021

1. Generate at maximum luminosity

Quadratic evolution in phase of SN la spectra

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Constance GANOT - Spectrophotometric standardisation of type Ia Supernovae

3 steps

2. RBTL - fit one offset and a color outside the lines

 Δm_i a magnitude offset compared to reference spectrum $\Delta \tilde{A}_{V,i}$ a color coefficient compared to reference spectrum

and residuals intrinsic dispersion (std) Credit : Boone et al. 2021

Twins Embedding

- **1. Generate at maximum luminosity**
- 2. RBTL fit one offset and a color outside the lines
- 3. Manifold Learning parameters reduction

86.6% of variance explained with 3 components

From K.Boone et al. 2021. SN Factory spectra fluxes STD, in function of wavelengths, for different numbers of Manifold Learning components (parameters reduction)

3 steps

Twins Embedding components variation effects on spectra. *Credit : Boone et al. 2021*

9	Value
þ	onent
-2	Com

Zwicky Transient Facility - spectra sample

Purpose : typing and redshift 3628 Supernovae Ia - 4114 spectra (until 2020) **2594** spectra from the SEDm Low resolution : $R = \frac{\lambda}{\Delta \lambda} \sim 100$ Optical window: 3,650 - 10,000 Å spectral extraction by pysedm Correction of host galaxy by Hypergal

SEDm (P60)- Integral field Spectrograph field of view of ZTF18abqlpgq *Source : pysedm - Rigault, Neill*

Cut	Interval	Quantity remove
from SEDm		40 %
Quality		20 %
Z	<0.1	around 7/8%
phase	[-5,+5] days	around 50%
cosmo		around 15%

-> 752 spectra from 695 Sne la

ZTF flux-calibrated spectra

Example of flux calibration with ZTF20aayvubx_20200524_SEDm_0

at z=0.05 For phases in [-5,5], and cosmo cuts

- **Institution** Flux-calibrated
- **Corrected** from the Milky Way
- Shift spectra at same z=0.05
- Shift spectra at phase=0 (step1 of the Twins Embedding)

RBTL applicated to **ZTF**

ZTF spectra before/after dereddening, and residuals intrinsic dispersion (nMAD)

Spectral dispersion (nMAD) after RBTL correction for SNf and ZTF

RBTL linear standardisation For SNFactory sample

$$\Delta \mu = \mu_{z=0.05} - (m_{band} - M_{offset})$$

168 SNe la before/after standardisation after a cut on DAv < 0.5

RBTL linear standardisation For ZTF sample

647 SNe la before/after standardisation after a cut on DAv < 0.5 (remove around 7% SNe)

Comparable dispersion that photometric standardisation with only 1 parameter

11

Conclusion

- * RBTL step is working well
- * Standardisation with Manifold still in prep
- * A paper to come on a whole study TE+ZTF

Constance GANOT - Spectrophotometric standardisation of type Ia Supernovae

SNFactory 2004 -> 2013

ZTF 2018 -> 2025

E+ZTF

12

Differential time evolution model => Spectra @ max

Formula of quadratic evolution in phase :

 $m_i(p;\lambda_k) - m_i(0;\lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$

with *p* the phase,

 $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p, \lambda_k)$ the magnitude of the SN *i*

Quadratic evolution in phase of SN Ia spectra

$$f_{\text{meas., s}}(p; \lambda_k) \sim N(f_s(p; \lambda_k); \sigma_{\text{tot., s}}^2 \ (p; \lambda_k))$$

$$f_s(p;\lambda_k) = 10^{-0.4(m_i(p;\lambda_k) + m_{\text{gray},s})}$$

$$\sigma_{\text{tot.,s}}^2 (p; \lambda_k) = \sigma_{\text{meas.,s}}^2(\lambda_k) + (\epsilon(p; \lambda_k) \cdot f_s(p; \lambda_k)) \cdot f_s(p; \lambda_k) + (\epsilon(p; \lambda_k) \cdot f_s(p; \lambda_k)) + (\epsilon(p; \lambda_k) \cdot f_s(p;$$

<u>Fitted parameters :</u> $f_s(p, \lambda_k)$ the model flux of spectrum s $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, $m_{gray,s}$ the gray offset of the spectrum s $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

<u>Known:</u>

 $f_{obs}(p, \lambda_k)$ the observed flux of spectrum s

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Differential time evolution model => Spectra @ max

Formula of quadratic evolution in phase :

$$m_i(p;\lambda_k) - m_i(0;\lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$$

with p the phase,

 $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p, \lambda_k)$ the magnitude of the SN *i*

Quadratic evolution in phase of SN Ia spectra

$$f_{\text{meas., s}}(p; \lambda_k) \sim N(f_s(p; \lambda_k); \sigma_{\text{tot., s}}^2 \ (p; \lambda_k))$$

$$f_s(p;\lambda_k) = 10^{-0.4(m_i(p;\lambda_k) + m_{\text{gray},s})}$$

$$\sigma_{tot,s}^2(p;\lambda_k) = \sigma_{meas.,s}^2(\lambda_k) + (\epsilon(p;\lambda_k) \cdot f_s(p;\lambda_k))$$

<u>Fitted parameters :</u> $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, $m_{gray,s}$ the gray offset of the spectrum s $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

Known:

 $f_{meas.,s}(p, \lambda_k)$ the observed flux of spectrum s $\sigma_{meas.,s}(\lambda_k)$ the measured uncertainty of sp. s

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Differential time evolution model => Spectra @ max

Formula of quadratic evolution in phase :

$$m_i(p;\lambda_k) - m_i(0;\lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$$

with *p* the phase, $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p, \lambda_k)$ the magnitude of the SN *i*

Quadratic evolution in phase of SN Ia spectra

 $f_{\text{meas., s}}(p; \lambda_k) \sim N(f_s(p; \lambda_k); \sigma_{\text{tot., s}}^2 \ (p; \lambda_k))$

$$\sigma_{\text{tot.,s}}^2 (p; \lambda_k) = \sigma_{\text{meas.,s}}^2(\lambda_k) + (\epsilon(p; \lambda_k)) \cdot f_s(p; \lambda_k)$$

Fitted parameters : $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, $m_{gray,s}$ the gray offset of the spectrum s $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

<u>Known:</u> $f_{meas.,s}(p, \lambda_k)$ the observed flux of spectrum s $\sigma_{meas.,s}(\lambda_k)$ the measured uncertainty of sp. s

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Read between the lines (RBTL)

Capture Grey scatter + Extinction

Remove variability:

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

Fitted parameters : Δm_i the offset with mean for SN i $\Delta \tilde{A}_{V,i}$ the extinction coefficient for SN i $\eta(\lambda_k)$ the intrinsic dispersion (common to all)

Known: $f_{max,i}(\lambda_k)/\sigma_{f_{max},i}^2(\lambda_k)$ the spectrum flux/uncertainty at max for SN i $f_{mean}(\lambda_k)$ the mean spectrum at max $C(\lambda_k)$ the extinction law (Fitzpatrick 99)

=> Explain Scatter **Between the lines**

Fit all together with bayesian inference :

$$f_{\text{model},i}(\lambda_k) = f_{\text{mean}}(\lambda_k) \times 10^{-0.4(\Delta m_i) + \Delta \tilde{A}_{V,i})}$$

$$\sigma_{\text{total},i}^2(\lambda_k) \neq \sigma_{f_{\max,i}}^2(\lambda_k) + (\eta(\lambda_k)f_{\text{model},i}(\lambda_k))$$

$$f_{\max.,i}(\lambda_k) \sim N(f_{\text{model},i}(\lambda_k); \sigma^2_{\text{total},i}(\lambda_k))$$

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit :

Read between the lines (RBTL)

Remove variability:

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

$$f_{\text{dered.},i}(\lambda_k) = f_{\max.,i}(\lambda_k) \times 10^{+0.4(\Delta m_i + \Delta \tilde{A}_{V,i}C(\lambda_k))}$$

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit

=> Explain Scatter **Between the lines**

Capture Grey scatter + Extinction

SNFactory spectra before/after dereddening, and residual intrinsic dispersion (std) - from Boone 2021

STEP 2

Read between the lines (RBTL)

Remove variability:

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

$$f_{\text{dered.},i}(\lambda_k) = f_{\max.,i}(\lambda_k) \times 10^{+0.4(\Delta m_i + \Delta \tilde{A}_{V,i}C(\lambda_k))}$$

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit

=> Explain Scatter **Between the lines**

Capture Grey scatter + Extinction

SNFactory spectra before/after dereddening, and residual intrinsic dispersion (std) - from Boone 2021

BACK-UP SLIDE The Twins Embedding parameters space => Explain **STEP 3**

Spectral distance between two Sne I and j :

$$\gamma_{ij} = \sqrt{\sum_{k} \left(\frac{f_{\text{dered.},i}(\lambda_k) - f_{\text{dered.},j}(\lambda_k)}{f_{\text{mean}}(\lambda_k)} \right)^2}$$

Isomap algorithm embed high-dimensional space to low-dimentional while preserving distances

But it does not provide a model of a spectrum given its coordinates in the embedding : for that they use Gaussian Process

86.6% of variance explained with 3 components

Fraction of the variance explained for different models from Boone 2021

TWINS EMBEDDING I

Figure from Boone 2021

	51	ا رکہ ا	ا رک م		
Added noise, S/N = 20 -	0.99	0.98	0.96	1.0	
Added noise, S/N = 10 -	0.97	0.96	0.89	- 0.9	lained
Added noise, S/N = 5 -	0.94	0.88	0.79	- 0.8	e Exp
Added noise, S/N = 2 -	0.68	0.12	0.22		/arianc
Binning 2000 km/s -	1.00	1.00	1.00	- 0.7	on of V
Binning 5000 km/s -	1.00	0.99	0.97	- 0.6	Fractic
Binning 10000 km/s -	0.99	0.98	0.90		

and binning

BACK-UP SLIDE The standardisation using Twins Embedding

To map the magnitude residuals through the TE space : linear standardisation not sufficient, instead Gaussian Process regression :

$$\vec{m}_{\text{RBTL}} \sim \mathcal{GP}\Big(m_{\text{ref}} + \omega \Delta \vec{\tilde{A}}_V, \\ \mathbf{I} \cdot (\vec{\sigma}_{\text{p.v.}}^2 + \sigma_u^2) + K_{3/2}(\vec{\xi}, \vec{\xi}; A, l)\Big)$$

Before/after correction of magnitude residuals with GP from Boone 2021b

Fitted parameters :

 m_{ref} a common reference magnitude ω a linear correction term σ_u the unexplained residual dispersion A, l the GP kernel parameters

<u>Known :</u>

 $\overrightarrow{M}_{RBTL}$ the magnitudes residuals of the RBTL, $\overrightarrow{\Delta A}_V$ the reddening coefficients,

 ξ the coordinates in the TE space,

 $\vec{\sigma}_{p,v}^2$ the host galaxy peculiar velocity variance

BACK-UP SLIDE

BACK-UP SLIDE

Coupures sur les parametres:

Parameter	Interval	Remains	Quantity removed
	/	5136	
from SEDm		3069	40 %
goodcoverage			13 %
Offsets	2sigmas		19 %
deg2 coefs	abs<0.028		1 %
Ζ	<0.1		around 7/8%
phase	[-5,+5] days		around 50%
sn_type	cosmo		around 15%
C, C _{err}	[-0.2,0.3], <0.08		13.6% , 7%
X ₁ , X _{1,err}	[-3,3], <1		4.5%, 5.5%
t _{0,err}	<1 day	752	8.3%
			-> 752 spectres de 6

(in general, whatever other cut)

