Modified gravity interpretation of the evolving dark energy in light of DESI data

Anton Chudaykin University of Geneva

> w/M. Kunz 2407.02558

DESI BAO DR1

DESI+CMB+SN

Preference for time-evolving dark energy ranges from $2.5\sigma - 3.9\sigma$

What drives this preference?

DESI vs Planck ACDM

DESI vs SDSS

DESI vs SDSS

$w_0 w_a CDM$ analysis

DESI:

CMB: Planck 2018, Planck&ACT CMB lensing SN: Pantheon+

Data	$z_{ m eff}$	$N_{\rm data}$
BGS	0.30	1
LRG1	0.51	2
LRG2	0.71	2
LRG3+ELG1	0.93	2
ELG2	1.32	2
QSO	1.49	1
Lya	2.33	2
MGS	0.15	1
BOSS DR12	$0.38\mathrm{and}0.51$	4
eBOSS DR16	0.7	2

$w_0 w_a CDM$ analysis

Data	$z_{ m eff}$	$N_{\rm data}$
BGS	0.30	1
LRG1	0.51	2
LRG2	0.71	2
LRG3+ELG1	0.93	2
ELG2	1.32	2
QSO	1.49	1
Lya	2.33	2
MGS	0.15	1
BOSS DR12	$0.38\mathrm{and}0.51$	4
eBOSS DR16	0.7	2

DESI:

CMB: Planck 2018, Planck&ACT CMB lensing SN: Pantheon+

$w_0 w_a CDM$ analysis

DESI:

 $\Delta \chi^2_{w_0 w_a} \equiv \chi^2_{w_0 w_a} - \chi^2_{\Lambda \text{CDM}}$

 χ^2 -analysis

LRG1 and LRG2 largely contribute into the DESI's preference for evolving dark energy

EFT of Dark Energy

$$\alpha_i(a) = c_i \Omega_{\text{DE}}(a)$$
$$c_K = 1 \quad c_T = 0$$

$$(w_0, w_a, c_B, c_M)$$

EFT of Dark Energy

EFTofDE vs $w_0 w_a CDM$

EFTofDE vs $w_0 w_a CDM$

While modified gravity does not show a preference over ΛCDM , it offers a physical mechanism to safely cross the phantom divide

Conclusions

 \checkmark DESI's preference for evolving dark energy is largely driven by the two LRG samples at $z_{\rm eff} = 0.51$ and 0.71, with the latter having the most significant impact

Modified gravity offers a viable physical explanation for DESI's preference for evolving dark energy

Future DESI DR3 and Euclid BAO data will help to clarify whether this is a statistical fluctuation or due to new physics in the dark sector

Backup

