Action Dark Energy, October 29, 2024

Quantum algorithm for collisionless Boltzmann simulation

Naoki Yoshida (University of Tokyo)

Please find the technical details in Yoshikawa, Tanaka, Yoshida 2021, arxiv:2110.15867 Miyamoto, Yamazaki, Uchida, Fujisawa, Yoshida, 2024, PRD, 6, 013200

The "minimalist" particle

Neutrinos ... they have zero charge, zero size, and possibly zero mass.

Neutrino oscillations have been discovered for atmospheric v and solar v. (2015 Nobel Prize in Physics)

The absolute mass scale is extremely important, but remains largely unknown.

$$\Omega_{\nu}h^2 = \frac{\sum m_{\nu}}{94.12\,\mathrm{eV}/c^2}$$

Cosmological probe of fundamental quantities

Measuring the effect of the relic neutrinos on structure formation

Fugaku (富岳) with its full power

158,976 nodes (52 cores per node)
32 giga byte memory *per node*, 160 peta byte + cloud storage
Peak performance 415 peta-flops
2020-2021 No. 1 in TOP500, HPCG, HPL-AI, Graph500

A 400 trillion-grid Vlasov simulation + 330 billion(!) CDM particles

Nonlinear clustering and neutrino "halos"

2021 Gordon Bell Finalist

v Density Fields

V64MP9

 10^{-1}

k[h/Mpc]

NU1

NU8

 10^{-2}

NU64

NU180

 10^{0}

10-3 10-4

10-5

10-6

 10^{-2}

solid lines : 200 h^{+1} Mpc

dashed lines : 1000 h^{-1} Mp

 10^{-1}

k[h/Mpc]

 10^{0}

10-2

 10^{-1}

k[h/Mpc]

10⁰

✓ Small v mass \rightarrow large velocity dispersion Effective resolution gets worse

 \checkmark

v Velocity Fields

- ✓ Velocity 1st moment
- $\checkmark~$ Impossible to infer the bulk motion for low m_{ν}
- ✓ Vlasov shows no/little shot noise

Total Matter Power Spectrum: Vlasov vs N-body

There are residual shot-noise, but can be made small enough using a large number of particles
 It is safe! to use N-body simulations to calculate the total matter power spectrum

Putting the universe on a quantum computer

Boltzmann solver on a quantum computer

• Time evolution of the velocity distribution function f(x, v, t)

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial x} + F \cdot \frac{\partial f}{\partial \boldsymbol{v}} = 0$$

- Both memory- and CPU-demanding (Curse of dimension!)
- Quantum computing may offer a good solution

Essentially a transport equation $\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial x} = 0$ (but in 6-dimension):

Quantum gate operation

An example: Controlled NOT gate

Quantum gate operation

An example: Controlled NOT gate

Increment operator and decrement operator

$$\sum_{i=0}^{2^n-1} a_i |i\rangle \rightarrow \sum_{i=0}^{2^n-1} a_i |i \pm 1\rangle$$

We use the convention $|2^n\rangle = |0\rangle, |-1\rangle = |2^n - 1\rangle$

Increment with 4 qubits

Recall binary numerics: $1 + 1 \rightarrow 0$

Essentially a transport equation: $\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{x}}$

• Streaming operation can be done by using simple circuits An example with $n_x = n_v = 3$

A unitary matrix

Yamazaki, Uchida, Fujisawa, NY arXiv:2303.16490

In reality, with $n_x = n_v = 3$

- × -

- ×

 α

A self-gravitating system

Yamazaki, Uchida, Fujisawa, NY arXiv:2303.16490

See also Miyamoto et al. arXiv:2310.01832

How fast, and how efficient?

	Time complexity	Space complexity
Quantum	$\tilde{\mathcal{O}}\left((N_v + N_x^3)N_{\rm t}^2 2^{6S}\right)$	$\tilde{O}(N_x^3 N_t)$
Classical	$\mathcal{O}\left(N_x^{3}N_v^{3}N_t\right)$	$\mathcal{O}\left(N_x^{3}N_v^{3}\right)$

- N_x : Number of grids per dimension
- $N_{\rm v}$: Number of velocity grids per dimension
- $N_{\rm t}$: Number of timesteps
- *S* : The order of approximation

Hamiltonian simulation

For an ODE $\frac{d}{dt}\vec{x}(t) = A \vec{x}(t)$, the formal solution is $\vec{x}(t) = e^{At} \vec{x}(0)$

So, the whole point is to calculate the exponential matrix e^{At}

For a particular Schrödinger form $\frac{d}{dt} |\phi(t)\rangle = -iH |\phi(t)\rangle$, the Hermitian operator H is the system's Hamiltonian, and calculating $|\phi(t)\rangle = e^{-iHt} |\phi(0)\rangle$

is called Hamiltonian simulation.

Unfortunately, calculating e^{At} for a large $N \times N$ matrix is extremely hard on a classical computer. But, a quantum computer can make the miracle (we hope).

Hamiltonian simulation as a Vlasov solver

Partial derivatives are approximated as
$$\frac{\partial f}{\partial x} \sim \frac{f(x_{i+1}, v_j) - f(x_{i-1}, v_j)}{2\Delta x}$$
, simple!

This transforms the original partial differential equation to an ODE $\frac{d}{dt}f = Af$

Here,
$$\vec{f} = (f(t, x_1, v_1), \dots, f(t, x_{ngr}, v_{ngr}))$$

We linearize the Vlasov equation by assuming (approximating) gravity is dominated by CDM:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} + \mathbf{F}_{\text{CDM}} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

Note that $\rho_{\nu}/\rho = 7.6 \times 10^{-3} (M_{\nu}/0.1 \text{eV})$

In reality, the huge matrix would look like

$$\frac{\mathrm{d}}{\mathrm{d}t}f = Af$$

$$A = A_{x} + A_{y} + A_{z} + A_{v_{x}} + A_{v_{y}} + A_{z}:$$

$$A_{x} = -\begin{pmatrix} 0 & 1/2\Delta_{x} & -1/2\Delta_{x} \\ -1/2\Delta_{x} & 0 & 1/2\Delta_{x} \\ & \ddots & \ddots & \ddots \\ & -1/2\Delta_{x} & 0 & 1/2\Delta_{x} \\ 1/2\Delta_{x} & -1/2\Delta_{x} & 0 \end{pmatrix} \otimes \operatorname{diag}(v_{x,1}, \dots, v_{x,n_{gr}})$$

$$A_{v_{x}} = -\operatorname{diag}\left(F_{\text{CDM},x}(t, x_{1}), \dots, F_{\text{CDM},x}(t, x_{n_{gr}})\right) \otimes \begin{pmatrix} 0 & 1/2\Delta_{v} & \\ -1/2\Delta_{v} & 0 & 1/2\Delta_{v} \\ & \ddots & \ddots & \ddots \\ & -1/2\Delta_{v} & 0 & 1/2\Delta_{v} \\ & & -1/2\Delta_{v} & 0 \end{pmatrix}$$

Note that A is anti-Hermitian: $A = -A^{\dagger}$

So we write $\frac{d}{dt}|f\rangle = -iH|f\rangle$ with H = -iA This is Schrödinger equation!

Neutrino power spectrum

We can solve the Schrödinger equation on a quantum computer,

to obtain a quantum state $|f\rangle = \sum_{i,j} f(t, x_i, v_j) |i\rangle |j\rangle$ Excellent!

However, maybe we are not very much interested in the final quantum state itself.

Often we are interested in summary statistics such as P(k).

We apply quantum Fourier-transform (QFT) to $|f\rangle$ via summation to obtain

$$\left| \left< \Omega_{i_k} \right| W \left| f \right> \right|^2 = C \left| \tilde{\delta}_{i_k} \right|^2$$
 with proper normalization.

A quantum circuit that calculates P(k)

Quantum Amplitude Estimation

There are efficient algorithms that yields a good estimate of the amplitude of

a target basis state $|\psi\rangle$ in $|\Psi\rangle$. To be specific,

given a quantum circuit that generates $|\Psi\rangle$ by $A|0\rangle = a|\psi\rangle + \sqrt{1 - |a|^2}|\psi'\rangle|0\rangle$,

QAE estimates the amplitude $|a|^2$ with accuracy ε .

The algorithm is used to extract the solution embedded in the amplitude

of
$$|x(t)\rangle = \frac{1}{\|x(t)\|} \sum x_i |i\rangle$$

Brassard et al., Contemporary Mathematics, 305, 53 (2002)

Proof of concept

A simulation of quantum simulation with 6 + 6 qubits ($N_{\text{grid}} = 64$)

1-dimensional gravitational instability

\$3B+ in near-term value creation based on IBM roadmap, with inflection points starting in 2023

IBM Quantum

	~	2019	\checkmark	2020	\checkmark	2021	2022	2023	2024	2025	2026+
Value creati (\$M) 3	ion ,000	Run quantum circuits on the IBM cloud		Demonstrate and prototype quantum applications		Run quantum applications 100x faster on the IBM Cloud	Dynamic circuits for increased circuit variety, algorithmic complexity	Frictionless development with quantum workflows built in the cloud	Call 1K+ qubit services from Cloud API and investigate error correction	Enhance quant workflows thro HPC and quant resources	um ugh um
2	,500 -	ć									
2	,000 -			non-convex cons		Other use cases					
1	.,500 -		, N N	Drug discovery e.g., candidate screening for molecular compounds of >26 atoms (approximate simulation)							Financial Services
1	.,000 -	(Materials design								
	500 -			e.g. Simulation o cells of electroni	ic materials						
	0		_								Materials design
Quantum systems		Falcon 27 qubits		Hummingbird 65 qubits	T	Eagle 127 qubits	Osprey 433 qubits	Condor 1121 qubits	Beyond 1K - 1M+ qubits		
						\diamond	\bigcirc				
IBM Clou	ıd	Circuits				Programs		Applications			

Summary

- Largest cosmological Vlasov-Poisson simulations have been performed.
 Extensive comparisons with N-body simulations have been done.
- > Velocity moments are substantially affected by particle shot-noise.
- New observables are needed to discern the differences between neutrino mass hierarchies.
- ➤ The simulation method is applicable to non-standard DM models such as thermal/non-thermal warm dark matter models.
- Road ahead to cosmological quantum computing