Action Dark Energy, October 29, 2024

Quantum algorithm for collisionless Boltzmann simulation

Naoki Yoshida (University of Tokyo)

Please find the technical details in Yoshikawa, Tanaka, Yoshida 2021, arxiv:2110.15867 Miyamoto, Yamazaki, Uchida, Fujisawa, Yoshida, 2024, PRD, 6, 013200

The "minimalist" particle

*Neutrinos … they have zero charge, zero size, and possibly zero mass***.**

Neutrino oscillations have been discovered for atmospheric ν and solar ν. (2015 Nobel Prize in Physics)

The absolute mass scale is extremely important, but remains largely unknown.

$$
\Omega_\nu h^2 = \frac{\sum m_\nu}{94.12\,\mathrm{eV}/c^2}
$$

Cosmological probe of fundamental quantities

Measuring the effect of the relic neutrinos on structure formation

Fugaku (富岳) with its full power

158,976 nodes (52 cores per node) 32 giga byte memory *per node*, 160 peta byte + cloud storage Peak performance 415 peta-flops 2020-2021 No. 1 in TOP500, HPCG, HPL-AI, Graph500

A 400 trillion-grid Vlasov simulation + 330 billion(!) CDM particles

Nonlinear clustering and neutrino "halos"

2021 Gordon Bell Finalist

ν Density Fields

V64MP9

 $10^{\mbox{-}1}$

 $k[h/\mathrm{Mpc}]$

 $NU1$

NU8

 10^{-2}

NU64

NU180

 $10⁰$

 $10[°]$ 10^{-4}

 10^{-6}

 10^{-5} solid lines : 200 h^{-1} Mpx

 10^{-2}

dashed lines: $1000 h^{-1}$ Mpc

 $10^{\text{-}1}$

 $k[h/\mathrm{Mpc}]$

 $10^{\rm o}$

 10^{-2}

 $10^{\mbox{-}1}$

 $k[h/\mathrm{Mpc}]$

 $10⁰$

 \checkmark Small v mass \to large velocity dispersion Effective resolution gets worse

ν Velocity Fields

- ü *Velocity 1st moment*
- \checkmark Impossible to infer the bulk motion for low m_v
- \checkmark Vlasov shows no/little shot noise

Total Matter Power Spectrum: Vlasov vs *N*-body

 \triangleright There are residual shot-noise, but can be made small enough using a large number of particles Ø *It is safe! to use N-body simulations to calculate the total matter power spectrum*

Putting the universe on a quantum computer

Boltzmann solver on a quantum computer

• Time evolution of the velocity distribution function $f(x, v, t)$

$$
\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial x} + F \cdot \frac{\partial f}{\partial v} = 0
$$

- Both memory- and CPU-demanding (Curse of dimension!)
- Quantum computing may offer a good solution

Essentially a transport equation $\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial x} = 0$ (but in 6-dimension):

Quantum gate operation

An example: Controlled NOT gate

Quantum gate operation

An example: Controlled NOT gate

Increment operator and decrement operator

$$
\sum_{i=0}^{2^{n}-1} a_{i} |i\rangle \rightarrow \sum_{i=0}^{2^{n}-1} a_{i} |i \pm 1\rangle
$$

We use the convention $|2^n\rangle = |0\rangle, |-1\rangle = |2^n - 1\rangle$

Increment with 4 qubits 0

Recall binary numerics: $1 + 1 \rightarrow 0$

Essentially a transport equation: $\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial x}$

• Streaming operation can be done by using simple circuits An example with $n_x = n_v = 3$

Yamazaki, Uchida, Fujisawa, NY arXiv:2303.16490

In reality, with $n_x = n_y = 3$

A self-gravitating system

Yamazaki, Uchida, Fujisawa, NY arXiv:2303.16490 See also Miyamoto et al. arXiv:2310.01832

How fast, and how efficient ?

- N_x : Number of grids per dimension
- $N_{\rm v}$: Number of velocity grids per dimension
- N_t : Number of timesteps
- S : The order of approximation

Hamiltonian simulation

For an ODE $\overline{}$ $\overline{x}(t) = A \overline{x}(t)$, the formal solution is d d*t* $\vec{x}(t) = A \vec{x}(t)$, the formal solution is $\vec{x}(t) = e^{At} \vec{x}(0)$

So, the whole point is to calculate the exponential matrix *eAt*

For a particular Schrödinger form $\frac{d}{dt} |\phi(t)\rangle = -iH |\phi(t)\rangle$, the Hermitian operator *H* is the system's Hamiltonian, and calculating d d*t* $|\phi(t)\rangle = -iH|\phi(t)\rangle$ $|\phi(t)\rangle = e^{-iHt} |\phi(0)\rangle$

is called Hamiltonian simulation.

Unfortunately, calculating e^{At} for a large $N \times N$ matrix is extremely hard on a classical computer. But, a quantum computer can make the miracle (we hope).

Hamiltonian simulation as a Vlasov solver

Partial derivatives are approximated as
$$
\frac{\partial f}{\partial x} \sim \frac{f(x_{i+1}, v_j) - f(x_{i-1}, v_j)}{2\Delta x}
$$
, simple!

This transforms the original partial differential equation to an ODE d d*t* $f = A f$

Here,
$$
\vec{f} = (f(t, x_1, v_1), \dots, f(t, x_{\text{ngr}}, v_{\text{ngr}}))
$$

We linearize the Vlasov equation by assuming (approximating) gravity is dominated by CDM:

$$
\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} + \mathbf{F}_{\text{CDM}} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0
$$

Note that $\rho_{\nu}/\rho = 7.6 \times 10^{-3} (M_{\nu}/0.1 \text{eV})$

In reality, the huge matrix would look like

$$
\frac{\mathrm{d}}{\mathrm{d}t}f = Af
$$

$$
A = A_x + A_y + A_z + A_{v_x} + A_{v_y} + A_z: \n A_x = - \begin{pmatrix}\n 0 & 1/2\Delta_x & -1/2\Delta_x \\
-1/2\Delta_x & 0 & 1/2\Delta_x \\
\vdots & \vdots & \ddots \\
1/2\Delta_x & 0 & 1/2\Delta_x\n \end{pmatrix} \otimes diag(v_{x,1},...,v_{x,n_{gr}}) \n -1/2\Delta_x & 0 & 1/2\Delta_y \n A_{v_x} = -diag (F_{CDM,x}(t,x_1),...,F_{CDM,x}(t,x_{n_{gr}})) \otimes \begin{pmatrix}\n 0 & 1/2\Delta_v & 0 & 1/2\Delta_v \\
-1/2\Delta_v & 0 & 1/2\Delta_v & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
-1/2\Delta_v & 0 & 1/2\Delta_v & 0\n \end{pmatrix}
$$

Note that A is anti-Hermitian: $A = -A^{\dagger}$

So we write $\frac{d}{dx} |f\rangle = -iH|f\rangle$ with $H = -iA$ This is Schrödinger equation! d d*t* $|f\rangle = -iH|f\rangle$ with $H = -iA$

Neutrino power spectrum

We can solve the Schrödinger equation on a quantum computer,

to obtain a quantum state $|f\rangle = \sum f(t, x_i, v_j) |i\rangle |j\rangle$ Excellent! *i*,*j* $f(t, x_i, v_j) |i\rangle |j\rangle$

However, maybe we are not very much interested in the final quantum state itself.

Often we are interested in summary statistics such as $P(k)$.

We apply quantum Fourier-transform (QFT) to $|f\rangle$ via summation to obtain

$$
\left| \left\langle \Omega_{i_k} \right| W | f \right\rangle \right|^2 = C \left| \tilde{\delta}_{i_k} \right|^2 \text{ with proper normalization.}
$$

A quantum circuit that calculates P(k)

Quantum Amplitude Estimation

There are efficient algorithms that yields a good estimate of the amplitude of

a target basis state $|\psi\rangle$ in $|\Psi\rangle$. To be specific,

given a quantum circuit that generates $|\Psi\rangle$ by $A\,|\,0\rangle = a\,|\,\psi\rangle + \sqrt{1 - |a\,|^2}\,|\psi^\prime\rangle\,|0\rangle$,

QAE estimates the amplitude $|a|^2$ with accuracy ε.

The algorithm is used to extract the solution embedded in the amplitude

of
$$
|x(t)\rangle = \frac{1}{\|x(t)\|} \sum x_i |i\rangle
$$

Brassard et al., Contemporary Mathematics, 305, 53 (2002)

Proof of concept

A simulation of quantum simulation with $6 + 6$ qubits $(N_{grid} = 64)$

1-dimensional gravitational instability

\$3B+ in near-term value creation based on IBM roadmap, with inflection points starting in 2023

☑ 2019 ☑ 2020 ☑ 2021 2022 2024 2025 $2026+$ 2023 Call 1K+ qubit Enhance quantum Run quantum Demonstrate Run quantum Dynamic circuits for Frictionless circuits on the and prototype applications increased circuit development services from workflows through Value creation **IBM** cloud quantum 100x faster on variety, algorithmic with quantum Cloud API and HPC and quantum (SM) the IBM Cloud workflows built resources applications investigate 3,000 in the cloud error correction **Financial services** $\binom{\infty}{10}$ 2,500 e.g., multi-period portfolio optimization with Other use cases non-convex constraints 2,000 **Drug discovery** $\frac{80}{900}$ e.g., candidate screening for molecular compounds 1,500 • Financial Services of >26 atoms (approximate simulation) 1,000 **Materials design** • Drug design e.g. Simulation of active sites of simple catalysts, unit 500 cells of electronic materials • Materials design o Ouantum **Hummingbird** Osprey Condor **Bevond** systems Falcon Eagle 65 qubits 127 aubits 433 qubits $1K - 1M +$ qubits 27 aubits 1121 aubits **IBM Cloud Circuits Applications** Programs

IBM Quantum

BCG CONSULTING

Summary

- Ø Largest cosmological Vlasov-Poisson simulations have been performed. Extensive comparisons with N-body simulations have been done.
- \triangleright Velocity moments are substantially affected by particle shot-noise.
- \triangleright New observables are needed to discern the differences between neutrino mass hierarchies.
- \triangleright The simulation method is applicable to non-standard DM models such as thermal/non-thermal warm dark matter models.
- \triangleright Road ahead to cosmological quantum computing