

Euclid preparation: simulations and non-linearities beyond ΛCDM

Michel-Andrès Breton 28/10/2024

Simulations & non-linearities beyond LCDM

- Joint effort between Theory and Simulation groups
- 4 papers in this project

Title	Content	Status	
Numerical methods and validation	<i>N</i> -body methods code comparison challenge for modified gravity	Accepted (after revision)	
Results from non-standard simulations	Pipeline and data release from non-standard simulations	Accepted (after revision)	
Cosmological constraints on non-standard cosmologies from simulated Euclid probes	Parameter inference from RSD analysis	In prep	
Constraints on $f(R)$ models from the photometric primary probes	Forecasts on MG effects on 3×2 -point statistics	Accepted	

Setup (from Winther et al. 2015)

- ΛCDM cosmology
- Box length : 256 h^{-1} Mpc
- 512³ particles
- 2LPT with *z*_{ini} = 49

Assess the impact of MG

- Power spectrum
- Halo mass function

Codes in *N*-body comparison challenge

Code (Reference)	Models	Solver type –	Solver type –	Approximations	Treatment of mas-	
code (reference)	models	gravity	scalar field		sive neutrinos	
C-Gadget (Baldi et al. 2010)	interacting DE, dark scattering	TreePM (FFT)	linear Poisson	quasi-static approximation	N-body particles	
ECOSMOG (Li et al. 2012, 2013b)	f(R), nDGP, cubic galileon	AMR + multigrid	NGS + multigrid	quasi-static approximation	-	
ISIS (Llinares et al. 2014)	f(R), nDGP, symmetron	AMR + multigrid	NGS + multigrid	quasi-static approximation	-	
MG-Gadget (Puch- wein et al. 2013)	f(R)	TreePM (FFT)	NGS + multigrid quasi-static approximation		N-body particles	
MG-Arepo (Arnold et al. 2019; Hernández-Aguayo et al. 2021)	f(R), nDGP + hydro	TreePM	NGS + multigrid	quasi-static approximation	N-body particles	
PANDA (Casalino & Baldi in prep.)	<i>f</i> (<i>R</i>), nDGP	TreePM (FFT)	TreePM (FFT) linear Poisson + screening quasi-static approximation, type 2 parame- terised modified gravity		N-body particles	
PySCo (Breton in prep.)	f(R)	PM + multigrid	cubic multigrid	quasi-static approximation	-	
MG-COLA (Winther et al. 2017; Wright et al. 2017)	<i>f</i> (<i>R</i>), nDGP; cubic galileon, symmetron	2LPT + PM (FFT)	linear Poisson + screening	quasi-static approximation, type 1 or type 2 parameterised modified gravity	mesh	

f(R) gravity

Cosmological action (GR + \wedge CDM)

$$S = \int \left[\frac{1}{2\kappa} \left(R - 2\Lambda \right) + \mathcal{L}_m \right] \sqrt{-g} d^4 x \tag{1}$$

Only two free parameters (one is constrained by observations)

$$\frac{c_1}{c_2} = 6 \frac{\Omega_{\Lambda,0}}{\Omega_{m,0}} \qquad \qquad \frac{c_1}{c_2^2} = -\frac{1}{n} \left[3 + 12 \frac{\Omega_{\Lambda,0}}{\Omega_{m,0}} \right] f_{R0} \qquad (4)$$

Modified set of equations

• Exact solution

$$\nabla^2 \Phi = \underbrace{4\pi G a^2 \delta \rho}_{Newton} - \frac{c^2}{2} \nabla^2 f_R \quad (5) \text{ linear Poisson equation with modified source term}$$

Non-linear equation : need

 $\nabla^2 f_R = A\delta\rho + B + f_R^{-\frac{1}{n+1}}C$ (6) appropriate the non-linear m

appropriate tools (such as non-linear multigrid)

Modified set of equations

• Exact solution

$$\nabla^2 \Phi = \underbrace{4\pi G a^2 \delta \rho}_{Newton} - \frac{c^2}{2} \nabla^2 f_R \quad (5) \text{ linear Poisson equation with modified source term}$$

Non-linear equation : need appropriate tools (such as non-linear multigrid)

• Approximated solution

 $-k^2 \phi = 4\pi G_{eff}(a, k) a^2 \delta \rho$

 $\nabla^2 \mathbf{f}_R = A\delta\rho + B + \mathbf{f}_R^{-\frac{1}{n+1}}C \quad (6)$

linear Poisson equation with scale and time-dependent gravitational constant

(7)

Λ CDM Power spectrum

f(R) Power spectrum

ΛCDM Halo mass function

f(R) Halo mass function

Runtime comparison

Common pipeline to analyse simulation snapshots

Models

- ΛCDM
- w₀CDM
- w₀ w_aCDM
- K-essence
- Interacting dark energy
- Modified gravity :
 f(R), nDGP
- Massive neutrinos
- Primordial non-Gaussianities

Name/Reference	Code	Nsim	L [h ⁻¹ Gpc]	N _{DM}	$m_{\rm DM} \left[h^{-1} M_\odot \right]$	Zinit	LPT order	Model
Complementary Rácz et al. (2023)	GIZMO	2 2	1.5 1.5	2160^3 2160^3	2.89×10^{10} 2.88×10^{10}	127	1LPT	ACDM wCDM
DEMNUNI Carbone et al. (2016)	p-GADGET3 p-GADGET3 p-GADGET3	100 15 2	1.0 2.0 0.5	$\begin{array}{c} 1024^3 \\ 2048^3 \\ 2048^3 \end{array}$	8×10^{10} 8×10^{10} 1.25×10^{9}	99	1LPT	$\begin{array}{c} \Lambda {\rm CDM} + m_{\gamma} \\ {\rm CPL} + m_{\gamma} \\ \Lambda {\rm CDM} + m_{\gamma} \end{array}$
RAYGAL Rasera et al. (2022)	RAMSES	1 1	2.625 2.625	4096 ³ 4096 ³	1.88×10^{10} 2.0×10^{10}	49	2LPT	ACDM wCDM
ELEPHANT Cautun et al. (2018)	ECOSMOG	11 11	1.024 1.024	1024^3 1024^3	8.85×10^{10} 8.85×10^{10}	49	2LPT	ACDM nDGP
COLA HIRES Fiorini et al. (2023)	MG-COLA	5 2	1.024 1.024	2048^3 2048^3	1.07×10^{10} 1.07×10^{10}	127	2LPT	nDGP ACDM
DUSTGRAIN Giocoli et al. (2018)	MG-GADGET	3 11	2.0 0.75	$ \begin{array}{r} 2048^{3} \\ 768^{3} \end{array} $	8.27×10^{10} 8.1×10^{10}	99	1LPT	nDGP $f(R) + m_v$
CiDER Baldi (2023)	c-GADGET	4	1.0	1024 ³	8.1×10^{10}	99	2LPT	cDE
DAKAR (1&2) Baldi & Simpson (2017)	c-GADGET	5	1.0	1024 ³	8.1×10^{10}	99	1LPT	DS
CLUSTERING DE Hassani et al. (2019, 2020)	k-evolution	1 1	2.0 2.0	2400^3 1200^3	4.2×10^{10} 3.3×10^{11}	100	ILPT	$w_0 c_8^2 \text{CDM}$ $w_0 c_8^2 \text{CDM}$
FORGE Arnold et al. (2021)	MG-Arepo	100 98	0.5 0.5	1024^3 1024^3	$\sim 10^{10} \\ \sim 10^{10}$	127	2LPT	$\Lambda CDM f(R)$
BRIDGE Harnois-Déraps et al. (2023)	MG-Arepo	98	0.5	1024 ³	$\sim 10^{10}$	127	2LPT	nDGP
PNG-UNIT Adame et al. (2023)	GADGET-2	1	1.0	4096 ³	1.2×10^9	99	2LPT	PNG

Paper II : Scientific results from non-standard simulations

For each simulation snapshot

- Halo catalogues : modified ROCKSTAR (new inputs, added cosmological models, extra output info, etc.)
- DM and halo density fields
- Power spectra : DM/halo and real/redshift space
- Covariance for redshift-space multipoles
- Halo bias
- Halo mass function
- Halo density profiles
- Void catalogues

Soon available on Cosmohub!

- Fair consensus among different numerical implementation for the outputs of different simulation codes beyond ACDM regarding the P(k) and HMF boost.
- Small differences due to convergence thresholds
- Approximated methods to solve the additional field have a clear different trend from compared to exact methods. Not sure if important
- Exact solvers are much more expensive than approximated ones
- Production of halo catalogues and statistical outputs from hundreds of non-standard simulations (DE, MG, PNG etc. . .)
- Soon available publicly
- To do : extend to lightcones