

Indiscriminate $R \sim 50$ spectroscopy in the entire footprint: the spectro-photometric approach of J-PAS

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

EXCELENCIA

SEVERO

OCHOA

Carlos Hernández-Monteagudo (IAC/ULL)

On behalf of the J-PAS collaboration

Outline

- Spectro-photometry as midway approach to full spectroscopic and photometric surveys
- The Javalambre PAU Astrophysical Survey (J-PAS)
- Predictions versus first observations in miniJPAS and J-NEP: depth, photo-z precision and accuracy, and galaxy cluster and group abundances
- Prospects for Dark Energy Probes: Multi-probe clustering, galaxy clusters, and QSOs
- Current status and forecasts for the future

Photometry

VS.

- Unbiased samples
- Faster & cheaper
- Large Volumes
- High number density

Spectroscopy

- SED of targets
- Precise redshifts

Photometry

- Unbiased samples
- Faster & cheaper
- Large Volumes

₿ 40

- High number density

Spectro-Photometry

VS.

Spectroscopy

4

- SED of targets
- Precise redshifts

Spectro-Photometry

Javalambre Photometric Local Universe Survey

The Observatorio Astrofísico de Javalambre (OAJ)

Pico del Buitre (Vulture's Peak), By *Arcos de las Salinas*, about 60' from Teruel and 80' from Valencia

The Observatorio Astrofísico de Javalambre (OAJ)

Parque

Natura

Alto

ESPANA

Aragór

Cella

Pico del Buitre (Vulture's Peak), By Arcos de las Salinas, about 60' from Teruel and 80' from Valencia

Utrillas

Mas de las Matas

Morella

Villafranca del Cid /

Vilafranca

Embalse de Sántole

Natura

Ports

Vinar

La Sénia

Universe Astrophysical Survey

Benicarlo

EL PAIS

ANDALUCÍA CATALUÑA C. VALENCIANA GALICIA MADRID PAÍS VASCO MÁS COMUNID

La Laponia española

The "Spanish Lapland Valsalobre

La región de los Montes Universales, entre Teruel y Cuenca, tiene una densi Laponia. Un recorrido por esta zona permite ver cómo es la aislada vida de s

The Javalambre Observatory (OAJ)

In the "Sierra de Javalambre" @1960m

now officially a Spanish "scientific and technical facility" (20% available for open-time)

The OAJ exploits the niche of a site and instrumentation devoted to **spectro-photometric** surveys: telescopes with **wide field-of-views** and **multi-narrow band filter** systems

The Telescopes

JPCam

T80Cam

CCD290-99 Science CCDs CCD44-82

Wavefront CCDs CCD47-20 Autoguider CCDs J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

The camera

IDC am

	Telescope		Camera				
	Size	FoV	# CCDs	CCD format	# of pixels	Resolution	Filters
LSST	8.4m	9.6 sq. deg.	189	4096 x 4096	3.2 Gpixels	0.2"/pix	u, g, r, i, z, y
PanStarrs	1.8m	6.7 sq. deg.	60	4600 x 4600	1.3 Gpixels	0.26"/pix	g, r, i, z, y
JPCam	2.5m	4.9 sq. deg.	14	9231 x 9216	1.2 Gpixels	0.23"/pix	54NB + 2BB
HyperSuprimeCam	8.2m	1.8 sq. deg.	112	2048 x 4096	940 Mpixels	0.18"/pix	r, i, z, y
VIS (Euclid)	1.2m	0.5 sq. deg.	36	4096 x 4096	520 Mpixels	0.1"/pix	R, I, Z
DECam	4m	3 sq. deg.	62	2048 x 4096	500 Mpixels	0.27"/pix	g, r, i, z, y
Megacam	3.6m	1 sq. deg.	32	2048 x 4096	340 Mpixels	0.19"/pix	u, g, r, i, z
Omegacam	2.6m	1 sq. deg.	32	2048 x 4096	340 Mpixels	0.21"/pix	u, g, r, i, z
JPAS-Path Finder	2.5m	0.45 sq. deg.	1	10580x10560	110 Mpixels	0.23"/pix	g, r, i + NBs
T80Cam	0.8m	2.1 sq. deg.	1	10580x10560	110 Mpixels	0.5"/pix	u, g, r, i, z + 7NB
SuprimeCam	8.2m	0.25 sq. deg.	10	2048 x 4096	80 Mpixels	0.2"/pix	g, r, i, z, y

0

Fig. 2: The measured transmission curves of the J-PAS filters. Effects of the CCD quantum efficiency, the entire optical system of the JST/T250 telescope and sky absorption are included. The HTML color representation of each filter is provided in the miniJPAS database in the table minijpas.Filter.

Table 3: Filter system main characteristics. The full table is available in the miniJPAS database in the ADQL table minijpas.Filter.

Filter #	Filter name	Central Wavelength	FWHM
		[Å]	[Å]
1	uJAVA	3497	495
2	J0378	3782	155
3	J0390	3904	145
4	<i>J</i> 0400	3996	145
5	J0410	4110	145
54	J0900	9000	145
55	J0910	9107	145
D Acto	bol 1007 30	209316	High-pass filter

Colloque national Action Dark Energy, IAP, October 1287-30 202346 High-pass J

The filter system

- 54 NB filters (FWHM~145Å; Δλ~10nm) From 3785Å to 9100Å

- 1 Blue MB filter (FWHM~260Å; λ_c ~3600Å)

- 1 Red BB filter (FWHM~620Å; λ_c ~9500Å)

- Sloan i-band

Colloque national Action Dark Energy, IAP, October 28-30 2024

Photo-z precision as

good as 0.003(1+z)

The filter system

I-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

16

The camera + filters

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

Footprint

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

The first areas covered by J-PAS: miniJPAS and J-NEP

miniJPAS AEGIS fields (~1 sq.deg)

Bonoli + J-PAS Collab. 2021

A&A proofs: manuscript no. mini_jpas

Astronomy & Astrophysics manuscript no. mini_jpas July 10, 2020

miniJPAS data publicly available! https://archive.cefca.es/catalogues

The miniJPAS survey: a preview of the Universe in 56 colours

S. Bonoli^{1,2,3*}, A. Marín-Franch⁴, J. Varela⁴, H. Vázquez Ramió⁴, L. R. Abramo⁵, A. J. Cenarro⁴, R. A. Dupke^{6,31,32**}, J. M. Vílchez⁷, D. Cristóbal-Hornillos¹, R. M. González Delgado⁷, C. Hernández-Monteagudo⁴, C. López-Sanjuan⁴, D. J. Muniesa¹, T. Civera¹, A. Ederoclite¹³, A. Hernán-Caballero¹, V. Marra⁸, P.O. Baqui⁸, A. Cortesi²⁰, E.S. Cypriano¹³, S. Daflon⁶, A. L. de Amorim²⁴, L. A. Díaz-García¹¹, J. M. Diego¹², G. Martínez-Solaeche⁷, E. Pérez⁷, V. M. Placco^{17,18}, F. Prada⁷, C. Queiroz⁵, J. Alcaniz^{6,45}, A. Alvarez-Candal^{22,6}, J. Cepa^{41,42}, A. L. Maroto²³, F. Roig⁶, B. B. Siffert¹⁵, K. Taylor³⁴, N. Benitez⁷, M. Moles^{1,7}, L. Sodré Jr.¹³, S. Carneiro¹⁰, C. Mendes de Oliveira¹³, E. Abdalla⁵, R. E. Angulo^{2, 3}, M. Aparicio Resco²³, A. Balaguera-Antolínez^{41,42}, F. J. Ballesteros⁵⁰, D. Brito-Silva¹³, T. Broadhurst^{2, 3,40}, E. R. Carrasco⁴⁸, T. Castro^{25, 26, 27, 28}, R. Cid Fernandes²⁴, P. Coelho¹³, R. B. de Melo^{6, 32}, L. Doubrawa¹³, A. Fernandez-Soto^{12, 39}, F. Ferrari¹⁴, A. Finoguenov³⁷ R. García-Benito⁷, J. Iglesias-Páramo⁷, Y. Jiménez-Teja⁷, F. S. Kitaura^{41,42}, J. Laur²⁹, P. A. A. Lopes²⁰, G. Lucatelli¹⁴, V. J. Martínez^{39,50,51}, M. Maturi^{35,36}, M. Quartin^{19,20}, C. Pigozzo¹⁰, J. E. Rodrìguez-Martìn⁷, V. Salzano⁵⁸, A. Tamm²⁹, E. Tempel²⁹, K. Umetsu¹¹, L. Valdivielso¹, R. von Marttens⁶, A. Zitrin¹⁶, M. C. Díaz-Martín¹, G. López-Alegre¹, A. López-Sainz¹, A. Yanes-Díaz¹, F. Rueda-Teruel¹, S. Rueda-Teruel¹, J. Abril Ibañez^{1,30}, J.L Antón Bravo¹, R. Bello Ferrer¹, S. Bielsa¹, J. M. Casino¹, J. Castillo¹, S. Chueca¹, L. Cuesta¹, J. Garzarán Calderaro¹, R. Iglesias-Marzoa¹, C. Íniguez¹, J. L. Lamadrid Gutierrez¹, F. Lopez-Martinez¹, D. Lozano-Pérez¹, N. Maícas Sacristán¹, E. L. Molina-Ibáñez¹, A. Moreno-Signes¹, S. Rodríguez Llano¹, M. Royo Navarro¹, V. Tilve Rua¹, U. Andrade⁶, E. J. Alfaro⁷, S. Akras¹⁴, P. Arnalte-Mur^{50,51}. B. Ascaso⁵⁵, C. E. Barbosa¹³, J. Beltrán Jiménez⁶³, M. Benetti^{59,60}, C. A. P. Bengaly⁶, A. Bernui⁶, J. J. Blanco-Pillado^{3,40}, M. Borges Fernandes⁶, J. N. Bregman³¹, G. Bruzual⁵³, G. Calderone²⁶, J. M. Carvano⁶, L. Casarini⁹, A. L Chies-Santos⁴⁵, G. Coutinho de Carvalho⁴⁹, P. Dimauro⁶, S. Duarte Puertas⁷, D. Figueruelo⁶³, J. I. González-Serrano¹², M. A. Guerrero⁷, S. Gurung-López^{1,47}, D. Herranz¹², M. Huertas-Company^{41,42,43,44}, J. A. Irwin³², D. Izquierdo-Villalba¹, A. Kanaan²⁴, C. Kehrig⁷, C. C. Kirkpatrick³⁷, J. Lim⁵⁶, A. R. Lopes⁶, R. Lopes de Oliveira^{9,6}, A. Marcos-Caballero⁴⁰, D. Martínez-Delgado⁷, E. Martínez-González¹², G. Martínez-Somonte^{12,62}, N. Oliveira⁶, A. A. Orsi¹, R. A. Overzier⁶, M. Penna-Lima³³, R. R. R. Reis^{19,20}, D. Spinoso¹, S. Tsujikawa⁶¹, P. Vielva¹², A. Z. Vitorelli¹³, J. Q. Xia²¹, A. A. Orsi¹, R. A. Overzier⁵, M. Penna-Lima⁵⁵, R. R. R. Reis^{17,20}, D. Spinoso¹, S. Isujikawa⁶¹, P. Vielva¹², A. Z. Vitorelli¹⁵, J. Q. Xia²¹,
 H. B. Yuan²¹, A. Arroyo-Polonio⁷, M. L. L. Dantas¹³, C. A. Galarza⁶, D. R. Gonçalves²⁰, R. S. Gonçalves⁶, J. E. Gonzalez^{6,45}, A. H. Gonzalez⁵⁴, N. Greisel¹, R. G. Landim³⁸, D. Lazzaro⁶, G. Magris⁵², R. Monteiro-Oliveira¹³, C.B. Pereira⁶, M. J. Rebouças⁵⁷, J. M. Rodriguez-Espinosa⁴², S. Santos da Costa⁶, E. Telles⁶

(Affiliations can be found after the references)

July 10, 2020

Bonoli et al. 2021

The miniJPAS depth and **FWHM** values

Fig. 5: Statistics of the PSF FWHM. The coloured symbols represent the average values for each filter, while the gray ones are the value for each pointing. The larger symbols indicate the FWHM of the broad bands.

Fig. 4: Estimated depths (5σ at 3 arcsec aperture), computed from the noise in each tile, for the narrow bands (left) and broad bands (right). The coloured symbols show the average values for each filter, while the gray ones are the values for the co-added images of each pointing. For the narrow bands, the dashed gray line indicates the approximate targeted minimum depth, as defined in Benítez Colloque national Action Dark Energy, IAP, October 28-30 2024

Bonoli + J-PAS Collab. 2021

Bonoli + J-PAS Collab. 2021

ELGs, LRGs, and QSOs

Bonoli + J-PAS Collab. 2021

Stars

Photo-z precision as good as 0.003(1+z)

Photo-z precision as good as 0.003(1+z)

Javalambre Physics of the Acceleratir Universe Astrophysical Survey

Photo-z precision as good as 0.003(1+z)

Hernán-Caballero +J-PAS, 2021,2023

The **odds** parameter **captures** the precision of the photo-*z* independently of galaxy's magnitude or type: selections must be done in **odds**

Colloque national Action Dark Energy, IAP, October 28-30 2024

J-PAS Javalambre Physics of the Acceleratin Universe Astrophysical Survey

J-PAS LSS Cosmological probes of Dark Energy

QSO science

Clusters

- ~1 M QSOs with photo-z precision of 0.3% or better SNIa - MoU with WEAVE-QSO to conduct Ly- α forest science using WEAVE MOS.

- 700k clusters with more than 10 members – down to ~few $\times 10^{13} M_{\odot}$

- Combine lensing and optical richness for mass calibration 90M galaxies
(LRG, ELG) with
photo-*z* precision of
0.3%
ks LAE

Optimization of BB observations in the best nights
Redshift precision for lenses and background galaxies

Clustering

Lensing

LSS in miniJPAS

- High quality photo-zs for all red galaxies up to z~0.9
- High quality photo-zs for a large fraction of blue galaxies up to z~0.9
- **Multi-tracer** science enabled in a very wide redshift range *z* ~ [0,1]
- Clustering science cases augmented after the inclusion of the J-PAS QSO population (~1.5 M) sampling the redshift interval z ~[1,3.5]
- Further science cases after obtaining spectra with WEAVE-QSO

QSOs in J-PAS

Colloque national Action Dark Energy, IAP, October 28-30 2024

J-PAS Javalambre Physics of the Acceleratin Universe Astrophysical Survey

NUMBER DENSITY OF **QSO** CANDIDATES FROM **miniJPAS**

Ongoing program with WEAVE QSO: about ~700 sq.deg per year of our QSO candidates will be covered with their fibers, enabling Lyman-alpha science

How's the impact of miniJPAS photo-z errors in clustering analysis?

Projections of miniJPAS on LSS clustering

Ratio of $P_0(k)s$:

Obtained from ideal, Gaussian Photo-z errors at the targetted level of J-PAS

Forecasts on sensitivity of J-PAS to the dark sector (interacting dark matter and dark energy, exotic dark energy models) and **modified gravity** can be found in Salzano et al., 2021, Figueruelo et al. 2021, Aparicio-Resco et al. 2020, Costa et al. 2019.

Projections of miniJPAS on LSS clustering

Ratio of $P_0(k)s$:

Obtained from **real photo-z PDF**s obtained from **miniJPAS** data

Forecasts on sensitivity of J-PAS to the dark sector (interacting dark matter and dark energy, exotic dark energy models) and **modified gravity** can be found in Salzano et al., 2021, Figueruelo et al. 2021, Aparicio-Resco et al. 2020, Costa et al. 2019.

J-PAS Fisher forecasts from Benitez+2014

- Forecasts show that J-PAS should recover practically all the information on **linear** cosmological scales on a very wide redshift range $z \in [0,3.5]$.
- Measured miniJPAS galaxy and QSO number densities yield typically low(er) values for shot noise, **but**,
- The recovery of mildly to highly non-linear scales is compromised/ hampered by photo-*z* errors, deeming it challenging ...

A low redshift example: tomographic analysis of J-PLUS

J-PLUS DR3 (~3,000 sq.deg)

4000

0 telescope and sky absorption are included. The HTML color representation of each filter is provided in the miniJPAS the table minijpas.Filter.

Colloque national Action Dark Energy, IAP, October 28-30 2024

-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

10000

8000

Wavelength (Å)

6000

12000

J-PLUS DR3 samples

Total area covered	3192 deg ² (~2881 deg ² after masking)
Image size	9500x9500 pixels (~2 deg ²)
Image pixel scale	0.555 arcsec
Total number of fields	1642
Number of objects in dual catalogue	~47.4 million (~29.8 million with MAG_AUTO(rSDSS)≤21)
Number of objects with estimations of photo-z (with their full PDFs)	~44.1 million
Number of detections in single catalogue	~338.4 million
Size of the database	~373 GB
Number of Single Frames	62310
Tile Images Total Size (compressed)	~962.1 GB
Single Frames Total Size (compressed)	~4.46 TB

Different σ_{Err} for each redshift shells: { $\sigma_{\text{Err}, i=1, \text{nshells}}, b_{i=1, \text{nshells}}, \mathcal{A}_v$ }

Currently two cluster finders in place:

AMICO (Maturi+ 2023) and PzWav (Doubrawa+2023)

> J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

Bonoli et al., 2021

Fig. 27: The most massive cluster found in the miniJPAS footprint, centred at RA=213.6254, DEC=51.9379. This cluster is

Colloque national Action Dark Energy, IAP, October 28-30, 2024 ter with richness $\lambda^2 = 33$. The brightest galaxy has a spect

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

AMICO response to a redshift slice on *z~0.24*, dashed isocontours correspond to X-ray data

Maturi et al. 2023.

Maturi et al. 2023.

Dec.

are provided by X-ray data, color bar renders membership probability for each galaxy assigned by AMICO

Contours

From membership we can assign total luminosities and stellar masses to clusters

Colloque national Action Dark Energy, IAP, October 28-30 2024

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

We can distinguish interloping clusters/groups along very similar lines of sight...

Maturi et al. 2023.

Low scatter in mass proxy – mass relation for Individual clusters (no binning/stacking) Very accurate & precise redshift determination for clusters: We shall be able to conduct galaxy cluster clustering

Universe Astrophysical Survey

Doubrawa+ 2023: Comparing different group finders: Voronoi Tesselation (VT), AMICO, and PzWav.

- ~95 groups with $M_{200} > 10^{13} M_{\odot}$ in ~1 sq.deg with high levels of purity and completeness up to *z~0.4*
- Internal weak lensing cluster mass estimates expected to give $\Delta \log M \sim 3\%$ or $\Delta \sigma_8 \sim 1.5\%$
- Current work towards establishing density-based membership assignments as a proxy for optical mass

Fig. 27: The most massive cluster found in the miniJPAS footprint, centred at RA=213.6254, DEC=51.9379. This cluster is also part of the redMaPPer catalogue where it is listed as a cluster with richness $\lambda = 33$. The brightest galaxy has a spectro-

Bonoli et al. 2021

Current status and future prospects

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey

방법 영화는 것 200 전 전 방법 영화는 것 200 전 영화는 것 200 전 영화는 것 200 전 영화는 것

Current status

Survey growing around 6 seeds

Take Home messages

- 54 NB + 3 MB/BB filters over ~8,500 sq.deg
- 4.5 deg² FoV
- · Up to mag~ 24.5 in BB filters, ~ 22.5 in NB ones
- 90M ELG and LRG
- Reaching ~0.3% photo-z precision for ~1/3rd of galaxies
- Millions of QSOs at similar level of precision (~0.3—0.5%)
- 200M of galaxies
- ~700K of groups and clusters with accurate photo-z and memberships
- ~10 sq.deg of J-PAS data to be public in November 2024
- You can already access real miniJPAS & J-NEP data at https://archive.cefca.es/catalogues
- http://www.j-pas.org

https://archive.cefca.es/catalogues

Developed and maintained by Tamara Civera (CEFCA)

Take Home messages

- 54 NB + 3 MB/BB filters over ~8,500 sq.deg
- 4.5 deg² FoV
- · Up to mag~ 24.5 in BB filters, ~ 22.5 in NB ones
- 90M ELG and LRG
- Reaching ~0.3% photo-z precision for ~1/3rd of galaxies
- Millions of QSOs at similar level of precision (~0.3—0.5%)
- 200M of galaxies
- ~700K of groups and clusters with accurate photo-z and memberships
- ~10 sq.deg of J-PAS data to be public in November 2024
- You can already access real miniJPAS & J-NEP data at https://archive.cefca.es/catalogues
- http://www.j-pas.org

Take Home messages

- 54 NB + 3 MB/BB filters over ~8,500 sq.deg
- 4.5 deg² FoV
- Up to mag~ 24.5 in BB filters, ~ 22.5 in NB ones
- 90M ELG and LRG
- Reaching ~0.3% photo-z precision for ~1/3rd of galaxies
- Millions of QSOs at similar level of precision (~0.3—0.5%)
- 200M of galaxies ____
- ~700K of groups and clusters with accurate photo-z and memberships
- ~10 sq.deg of J-PAS data to be public in November 2024
- You can already access real miniJPAS & J-NEP data at https://archive.cefca.es/catalogues
- http://www.j-pas.org

