Impact of clusters' connectivity on their evolution and gas accretion

Colloque national Action Dark Energy 2024 - 8ème édition

Gouin Celine, IAP, France

Collaborators: N.Aghanim (IAS), S.Gallo (IAS), D. Galarraga-Espinosa (MPA), M. Bonnemente (Univ. Alabama), C. Laigle (IAP), T. Bonnaire (ENS), C. Park (KIAS), S. Walker (Univ. Alabama), M. Mirakhor (Univ. Alabama)

Introduction to galaxy clusters Nodes of Cosmic web

Nodes of cosmic web:

- Located at the intersection of cosmic filaments
- Matter flow from void > wall > filaments > nodes

- Growth of massive structures
- Complex gas physics out-of-hydrostatic eq.
- Environmental driven galaxy evolution

Credit to Miguel Aragon Calvo

II - How gas is changing during it infall?

I - Is cosmic web environments influencing cluster properties?

Connectivity

Number of connected cosmic filaments

Kuchner, et al. 2020

More massive, more connected to the cosmic web

see Aragón-Calvo et al. 2010; Pichon et al. 2010; Codis et al 2018

Colloque national Action Dark Energy 2024 - 8ème édition

Darragh Ford et al. 2019 (HorizonAGN and COSMOS)

Merging event

One crucial property govern by the mass: the dynamical state

Dynamical state Fraction of substructure Center offset Virial ratio

Colloque national Action Dark Energy 2024 - 8ème édition

Kuchner, et al. 2020

ThreeHundred simulations

Relaxed

Unrelaxed

Kuchner, et al. 2020

One crucial property govern by the mass: the dynamical state

Colloque national Action Dark Energy 2024 - 8ème édition

Kuchner, et al. 2020

ThreeHundred simulations

Relaxed

Unrelaxed

Kuchner, et al. 2020

IllustrisTNG (z=0)

~2000 halos with M₂₀₀>10¹³Mo/h

Cosmic web skeleton

T-ReX algorithm Bonnaire et al (2020)

Relaxedness

Substructure Center offset Virial ratio

Colloque national Action Dark Energy 2024 - 8ème édition

Highly connected clusters are less relaxed than low-connected clusters

IllustrisTNG (z=0)

~2000 halos with M₂₀₀>10¹³Mo/h

Cosmic web skeleton

T-ReX algorithm Bonnaire et al (2020)

Relaxedness

Substructure Center offset Virial ratio

Colloque national Action Dark Energy 2024 - 8ème édition

Mass assembly history proxies

Mass accretion rate

Formation redshift

Unrelaxed halos are more recently formed and are in fast accreting phase

See also Power et al. (2012), Diemer et al (2014) Mostoghiu et al. (2019)

Relaxed

IllustrisTNG (z=0)

~2000 halos with M₂₀₀>10¹³Mo/h

Cosmic web skeleton

T-ReX algorithm Bonnaire et al (2020)

Colloque national Action Dark Energy 2024 - 8ème édition

Unrelaxed

Mass assembly history proxies

Mass accretion rate

Formation redshift

Unrelaxed recently formed fast accreting halos Relaxed early-formed slow accreting halos

Cluster connectivity traduces different evolutionary state

Ellipticity

Colloque national Action Dark Energy 2024 - 8ème édition

Gouin+21

Connectivity

See also Darragh Ford et al. 2019 (Connectivity & Merging events)

OBSERVATIONS

***** A2142 cluster (Einasto et al. 2020)

- elongated shape
- large number of substructures
- merging system
- ➡ Recently formed type of objects

★ COMA cluster (Malavasi et al. 2020)

- more spherical
- high concentration
 - & low accretion rate
- → Early formed type of objects

<u>Need larger statistics of connectivity and dynamical state in observations</u>

EUCLID - GAE SWG WP3 - Galaxy evolution in different environments

Detection of cosmic skeleton in 2D and 3D Euclid data / flackship mock

M. Magliocchetti, J. Sorce, Y. Bahé, K. kraljic, U. Kuchner, C. Laigle, F. Sarron, P. Jablonka, N. Malavasi, P. Jablonka, M. Balogh, F. Durret, C. Gouin

Colloque national Action Dark Energy 2024 - 8ème édition

From **HOT** gas inside clusters to **WHIM** gas out of clusters Phase space diagram

Colloque national Action Dark Energy 2024 - 8ème édition

Gouin+22

~400 clusters with $M_{200}>5 \times 10^{13}$ Mo/h

environments

II - How gas is changing during it infall?

From **HOT** gas inside clusters to **WHIM** gas out of clusters

Radial velocity of the in-falling gas

Colloque national Action Dark Energy 2024 - 8ème édition

Gouin+22

~400 clusters with $M_{200}>5 \times 10^{13}$ Mo/h

Comparison to other studies

Gas preferentially enters through filaments, and leaves clusters outside filaments

Rost+24 (TheThreeHundred) See also Vurm+23 (C-EAGLE)

II - How gas is changing during it infall?

Probing angular patterns beyond spherical symmetry = highlight asymmetries

Observation

Eckert, et al. 2015

HOT GAS - Hot dense plama T~10⁷-10⁸ K WHIM - Low dense plasma T~10⁵-10⁷ K

Simulation

HOT GAS

DM distribution (Gouin et al. 2017, Codis et al 2017) and galaxy distribution (Gouin et al. 2020)

Colloque national Action Dark Energy 2024 - 8ème édition

Decomposition in 2-D harmonic space

II - How gas is changing during it infall?

ICM asymmetries = tracer of cluster evolution

More asymmetric = Unrelaxed, fast accretion, recently formed

Colloque national Action Dark Energy 2024 - 8ème édition

WHIM asymmetries = tracer of connectivity

DM filamentary patterns

Comparison to other studies

WHIM gas phase is tracing large scale cosmic filaments

Martizzi+19 (TNG), Galarraga-Espinosa+21 (TNG), Tuominen+21 (EAGLE)...

WHIM gas asymmetries is tracing the DM filamentary patterns

ASYMETRIC

Colloque national Action Dark Energy 2024 - 8ème édition

Application to the X-ray observations of A2744

Gallo, Aghanim, Gouin, Eckert, et al., 2024

Eckert + 2015 First detection by eyes

Harmonic detection on X map

Cluster environnements : from cosmic filaments to cluster cores

Colloque national Action Dark Energy 2024 - 8ème édition

Connectivity affect the cluster dynamical states

✓ Tracing mass assembly history

From WHIM, to HOT gas phase

✓ Multi-phase, multi flow, and asymmetric ✓ Asymmetries trace cluster mass assembly

✓ Apply on Abell 2744 X-ray observations

To be continued

Chandra

Walker+2019

Thank you !

Gouin+22

Gallo+24

