Cosmology at WST

Christophe Yèche (CEA-Saclay)

The Wide-field Spectroscopic Telescope (WST) Science White Paper, Vincenzo Mainieri et al., arXiv:2403.05398

Action Dark Energy, IHP, October 28-30, 2024

Wide-field Spectroscopic Telescope (WST)

Ch. Yèche Action Dark Energy, October 30, 2024

Slide 2

Wide-field Spectroscopic Telescope (WST)

irfu

 $\mathbb{C}2\mathbb{Z}$

History and current status

- Consortium created in 2021 in the context of the EU Horizon infrastructure concept call
- Resubmission of a proposal to Horizon 2024 with success
- Preparation of preliminary design (2025-2028)
- Not an ESO project yet
- But fully supported by ESO community
- First light: ~2040

Timeline for the EU Horizon Grant

Preparing the ESO call for project after ELT

- Three year project \Rightarrow Full design of WST (telescope and instruments)
- Perfectly in line with ESO call

Ch. Yèche Action Dark Energy, October 30, 2024

Science with WST – Four main topics

- Cosmology: mainly LSS for z>2
- Extragalactic: Cosmic web and its time evolution
- Galactic: Origin of elements
- Time domain: Gravitational waves with EM counterpart

<u>cea</u> irfu

Key numbers for a cosmological program

Telescope:

- 12m
- Cassegrain focus
- Segmented mirror
 MOS:
- ~20000 positioners
- LR spectrograph
 - R~3000-4000
 - Δλ: 370-970 nm

IFS:

irfu

Cea

- Integral field spectrograph
- 3x3 arcmin²

Progress in Spectroscopic Surveys

- Exponential increase in the number of redshifts
- 50,000 LRGs in SDSS-I (2005), 40M redshifts in DESI (2025)
- Mean slope: a factor ~8 in the number of redshifts every 10 years

Cea

irfu

Increase in redshift range: SDSS-I (z<0.5) Stage V (z>2)

Ch. Yèche Action Dark Energy, October 30, 2024

Motivations for Stage V projects

Science case in LSS for stage V

- H₀ tension: Early Dark Energy
- Dynamical EoS of Dark Energy
- S8 tension: Growth of the structures
- Inflation: Scale dependence of bias, bi-spectrum
- Neutrino masses

Future spectroscopic surveys require mapping 2<z<4.5 (even 2<z<5.5) Universe

- Larger redshift range and therefore volume
- Several projects
 - Spec-S5: twin 6m telescopes with 13,000 robotic positioners
 - MUST: 6.5 telescope with ~20,000 robotic positioners
 - WST: ~12m telescope with ~20,000 robotic positioners
- New-developed technologies $\rightarrow x10 \text{ modes}$ compared to DESI and Euclid

Telescopes for cosmology by 2035

Instrument (year)	$Primary/m^2$	Nfiber	Reflections	Product	Speed vs SDSS
SDSS (1999)	3.68	640	0.9^{2}	1908	1.00
BOSS (2009)	3.68	1000	0.9^{2}	2980	1.56
DESI (2020)	9.5	5000	0.9^{1}	42,750	22.4
PFS (2024)	50	2400	0.9^{1}	$108,\!000$	56.6
4MOST (2024)	12	1624	0.9^{2}	$15,\!800$	8.3
MUST (2030)	28	20,000	0.9^{2}	$454,\!000$	238
Spec-S5 (Twin DESI) (2035)	$30{ imes}2$	$13,\!000$	0.9^{1}	702000	368
MSE (2040)	78	3249	0.9^{1}	$228,\!000$	119
WST (2040)	105	$20,\!000$	0.9^2	1,701,000	891

How to read the table? FoM?

- Speed = Surface x Number of positioners
- WST is ~2.5 times faster than Spec-S5
- Timescale: Spec-S5~ 2035 / WST ~2040

Ch. Yèche Action Dark Energy, October 30, 2024

Volume to explore with WST

- A legacy low-z (z<1.6) redshift survey (cluster of galaxies, extragalactic transients, cross-correlation with other surveys (HI and CMB maps, Weak lensing), science of cosmic voids...)
- A z>2 galaxy and quasar survey (Lyman-Break galaxies, LBG and Ly-α Emitter Galaxies, LAE)

Selection of z>2 galaxies

Validation with Pilot Surveys

irfu

cea

LBG selection with u-dropouts

Principles

- Redshift range: 2<z<3.5</p>
- Use the flux decrement bluewards of the Lyman limit due to HI absorption

irfu

– Need a deep u-band: LSST/Rubin In South

Cea

Future Imaging in South

- LSST-Rubin will be available at the time of WST
- Footprint ~15,000 deg²

- Depth (10 years), u: 26.1, g: 27.4, r: 27.5, i: 26.8, z: 26.1, y: 24.1

Proof of principle with DESI and with CLAUDS imaging

Deep u-band imaging with CLAUDS for pilot survey

Strategy

 $[u^*, u]$ -band depth $(5\sigma/2'')$

- u-dropout with CLAUDS in COSMOS and XMM fields
- Ultra-deep u-bands: u-depth better than ~27-27.5
- The depth is sufficient to validate the imaging that will be available for future spectroscopic surveys (Spec-S5, WST,....)

Pilot survey with DESI

- 15000 LBG Targets observed with DESI
- Two observed fields (COSMOS and XMM)
- Exposure time: from 2 hours to 5 hours
- Results in two papers:
 - Ruhlmann-Kleider V. et al., arXiv:2404.03569 (validation of u/g dropout)
 - Payerne C. et al., arXiv:2410.08062 (u dropout with CFIS)

<u>cea</u> irfu

Redshift and Efficiencies

- Excellent agreement between photo-z and spectro redshifts
- Total efficiency >70% for 2 hours and z>2.8 (<0.5h with 12m Tel.)
- Low efficiency for z<2.5, two possible origins:
 - Lower SNR due to degraded throughput of the instrument in blue
 - Lower fraction of Ly- α emission (galaxy evolution)

Clustering with LBGs

<u>cea</u> irfu

g-dropout with HSC and DESI

- Same principle: ugr bands \rightarrow gri bands
- Spectro-redshift distribution (3.5<z<4.5)
- Efficiency: ~20% with 2 hours and ~35% with 5.5 hours
- For 12m telescope, it will require ~1 hour to get a efficiency at ~50%

Cea

Forecast for WST

LBG surveys – n(z)

- r-dropout possible with 12m telescope \Rightarrow Eff=50% for 2 hours

Cea

irfu

Overlap with QSOs distribution and CMB lensing kernel

Ch. Yèche

Action Dark Energy, October 30, 2024

Dark Energy and structure growth

Configuration for WST

- Surface: 15,000 deg²
- Redshift range: 2.0<z<5.5
- Exposure time: 0.5h, 1h, 2h
- Δz binning: 0.1

DE content: for 2<z<4, almost at cosmic variance limitation

- Measurements up to z=5.5 (matter-dominated era)
- Indirect constraints on EDE models and exotic models

Testing Inflation with Non-Gaussianity

Description of the primordial potential Φ

 $\Phi = \varphi + f_{NL}.\,(\varphi^2 - <\varphi^2>)$

 φ : a gaussian random field $f_{\rm NL}$: amplitude of the non-Gaussianity

Primordial Non-Gaussianity, a test of inflation

- Primordial fluctuations distributed almost Gaussian with the simplest slow-roll models f_{NL} ~ O(10⁻³)
- But many alternative inflation models predict $f_{NL} > 1$
- CMB is cosmic variance limited : $\sigma(f_{NL})$ ~5

3D survey of galaxies

- Scale dependence of the bias at large scales in power spectrum
- Large volume (optimal for high-z), $\sigma(f_{NL}) \sim 1$ (better with bi-spectrum)

Primordial Non-Gaussianities

irfu

Cea

Credit: William d'Assignies D.

- Sensitive to inflation models with multi-fields
- Gain by adding r-dropouts: $\sigma(f_{NL})=1.06 \rightarrow \sigma(f_{NL})=0.86$
- Possible with 12m telescope

Neutrino masses with cosmology

Measurement of neutrinos masses with cosmological neutrinos

- Particles Physics: atmospheric and solar oscillations
- No constraint on absolute masses
- Current constraint by cosmology (<~80meV at 95%)</p>
- > Normal hierarchy favored by cosmology: minimal mass~60 meV
- > With $\sigma(\Sigma m_{\nu}) \sim 20/15 \text{ meV} \rightarrow \text{Precision better than } 3\sigma/4\sigma$

Neutrino mass

irfu

Cea

Neutrino mass with future CMB projects

- With LiteBIRD, expected error on $\sigma(\tau)$: ~0.02
- Sensitivity on $\Sigma m_v < 15 \text{ meV}$
- Measurement of Σm_v better than 4σ

Relativistic Doppler

- With large amount of galaxies at high-z, galaxy clustering is sensitive to relativistic Doppler effect predicted by GR
- Split in two sub-samples (bright/faint) based on m_s
- \rightarrow Cross-correlation between the two subsamples
- $4\sigma/5\sigma$ detection of relativistic Doppler with u/g dropouts

Another Tracer of Matter: Ly- α forest

- We expect low density gas (IGM) to follow the dark matter density
- Compute correlation function between HI 'clouds'
- Measure the location of BAO
- An option: use Ly- α forest of LBGs?

<u>cea</u> irfu

- For z>2, cross-correlation with LAE and LBG tracers
- Use Ly-α forests of quasars (2.0<z<4.5)
- HI absorption in intergalactic medium (IGM) along the line of sight of quasars

Slide 28

Ch. Yèche

Action Dark Energy, October 30, 2024

Ly- α Forest of QSOs (and LBGs?)

- Compared to DESI with r>24: 60 deg⁻² \rightarrow 150 deg⁻²
- With exposure time ~0.5h: SNR~2-3 per pixel
- Gain in BAO compared to DESI: factor ~2.5
- Warm Dark Matter: 15 QSOs (z>4.0) \rightarrow >1000 QSOs (z>4.0)

Ly- α Tomography

- 3D map: use Ly-a forest as tracer of IGM for 2.0<z<3.5
- u-dropouts: 500 to 1000 LoS per deg² with LBGs
- 150 LoS per deg² with QSOs
- Proto-clusters Science and Voids Science

Ch. Yèche Action Dark Energy, October 30, 2024

Synergy with the IFU of WST

Integral Field Spectrograph

- IFS: 3x3 arcmin²
- Synergy
 - MOS: Ly- α tomography with LBGs
 - IFS: resolved Ly- α emission

Conclusions

Feasibility of a high-z survey with WST

- Validation of both the u-dropout and g-dropout selections for LBGs with DESI
- Provide a realistic scenario in terms of exposure time, target density, redshift success rate and galaxy bias.

Forecasts for WST

- ~8000-10000 targets per sq. deg. with LSST 10 years
- Redshift range with LBGs: 2.0<z<5.5
- With u/g/r dropouts we can break $\sigma(f_{NI}) \sim 1$ barrier
- Measurement of Σm_{ν} better than 4σ

Many other topics: Legacy low-z survey, WDM, Ly- α tomography with Ly- α forest of QSOs and LBGs....

Ch. Yèche Action Dark Energy, October 30, 2024