Fabian Hervas Peters

$UNIONS-3500: 3500 deg²$ of lensing in the northern sky 2

On behalf of the UNIONS collaboration

With: Romain Paviot, Lucie Baumont, <u>Lisa Goh, Sacha Guerrini</u>, Axel Guinot, Hendrik Hildebrandt, Mike Hudson, <u>Martin Kilbinger,</u> Ludovic van Waerbeke, Anna Wittje, et al.

2 Fabian Hervas Peters ● October 2024 ● ADE Credit & PI: Jean-Charles Cuillandre

A collaboration of 3 Hawai'i based telescopes

UNIONS sky coverage goal with current completion (November 2023)

Galactic plane

BOSS

- UNIONS-u area goal: $9,000$ deg.²
- UNIONS- r area goal : 4,800 deg.²

UNIONS-u covered with 3 exposures (full depth) : 7195 deg.² UNIONS-r covered with 3 exposures (full depth) : 4382 deg. 2

Plot&PI: Jean-Charles Cuillandre

Euclid photometry

Photometry requirements set using COSMOS to reach N=30 gal/arcmin Number density for photometry very different from lensing density!

Credit: S. Arnouts

Competitive seeing for weak-lensing

The Landscape of lensing surveys

- Technical specifications of UNIONS:
- -Meant to cover 5000 deg^2 , so far 3500 deg^2 processed
- $-D$ epth of 24.5 mag (in the r -band)
- -Excellent seeing $\approx 0.69''$ in r-band
- -u, g, r, i, and z coverage
- -Processing was done with the ShapePipe pipeline (Farrens 2022)
- -Systematics and first 1500 deg^2 catalog (Guinot 2022)
- ≈ 100 million galaxies

UNIONS: **U**ltraviolet **N**ear-**I**nfrared **O**ptical **N**orthern **S**urvey

Northern Galactic Cap

UNIONS r-band 320° 310* 35° 30° 1.4 LRG **CMASS** ELG 1.2 Density Normalized Density**EXECUTER UNIONS** 1.0 15° 0.8 Normalized

0.4

0.2 10° 5° 0° $140°$ 130° 120°110° $0.2\,$ 0.0 $\frac{21}{r-m}$ agnitude 24 18 19 20

Southern Galactic Cap

UNIONS Footprint

Magnitude distribution

I) PSF modelling & systematic diagnostics

II) Shape measurement & image simulations

III) Direct measurement of intrinsic alignment with

UNIONSxBOSS/eBOSS

IV) UNIONS overview & future synergies

UNIONS status

I) PSF model

Object shape

PSFEx (Bertin 2011)

- CCD by CCD modelling

- Can capture variation across the camera

-
- Fewer parameters
- Simple but robust

MCCD (Liaudat 2022)

- Models the full focal

- - plane
-
- More parameters
- For validation
	- → 80% training stars,
		- 20% validation stars

Credit: Paulin-Henriksson 2008

Credit: Axel Guinot

9 Fabian Hervas Peters • October 2024 • ADE

I) PSF diagnsotics

Credit: Sacha Guerrini

Initial galaxy stamp (SNR 120):

How well does my shape measurement method capture a kown change in ellipticity? \rightarrow estimate a shear response

Deconvolve[!]

Initial PSF stamp

Metacalibration/ngmix

II) Shape measurement

Initial galaxy stamp (SNR 120):

III) Shape measurement

Initial PSF stamp

How well does my shape measurement method capture a kown change in ellipticity? \rightarrow estimate a shear response

Deconvolve[.]

Initial galaxy stamp (SNR 120):

cea 5

Initial PSF stamp

Finite difference shear response:

How well does my shape measurement method capture a kown change in ellipticity? \rightarrow estimate a shear response

Deconvolve -

II) Shape measurement

 $\gamma_{obs} = (1 + m) \gamma_{true} + c$

Blending Bias: Close or overlapping galaxies might not be well disentangled due to the PSF and can bias the shear

multiplicative bias *m*

Calibrated with Image simulations (+ redshift biases)

Shear biases

II) Image simulations - Input

Multiple biases need to be accounted for in a shear measurement, for example blending bias:

Input of the image simulations (Li 2023):

- Realistic galaxy distribution from simulations
- Galaxy morphologies from COSMOS
- Star catalog generated with TRILEGAL (Ghirardi)
- Realistic positions from N-body simulations

 \rightarrow we need to match properties like depth, densities, elipticity, size, SNR... \rightarrow simulating 100 deg² for calibration & to validate shear measurement

II) Image simulations - Survey strategy

Properties of the survey entering the image simulations:

- Focal plane setup
- Dither pattern (wide dither different from previous surveys)
- Noise (encodes exposure time/ depth)
- Draw from our PSF model (Both MCCD and PSFEx)

One image

Real CFHT Exposure and the state of the Simulated Exposure

16 Fabian Hervas Peters • October 2024 • ADE

II) Image simulations - Ellipticity recovery (preliminary)

Current effort:

- 100 $\rm deg^2$ with $\,$ 4 shear realizations & 2 rotations to cancel shape noise \rightarrow 800 $\rm deg^2$
- Run simulations on a grid and with realistic placement to estimate blend bias

Validation plans

Roadmap for validation:

- PSF model residuals ✅
- PSF leakage ✅
- γ_{\times} modes $\sqrt{ }$
- B-modes ≅ (depends on scale)
- Simulation validation ≅ (in progress)

Northern Galactic Cap

20 Fabian Hervas Peters ● October 2024 ● ADE n(z) distribution

Declination

III) A direct measurement of intrinsic alignment

Combining spectroscopic and imaging information

Total ellipticity described as:

$$
\gamma = \gamma_I + \gamma_G
$$

$$
\langle \gamma \gamma \rangle = \gamma_G \gamma_G + \gamma_I \gamma_I + 2 \gamma_I \gamma_G
$$

Lensing-Lensing Lensing-Intrinsic

What we measure \rightarrow Need to model both effects jointly

Intrinsic-Intrinsic

Credit: *Fortuna and Chisari 2022*

Cosmic Shear 2PCF:

Want to measure for Cosmic shear

III) A direct measurement of intrinsic alignment

r

 γ *_I* ∝ *A*₁ $\delta(r)$ Ω_m $D_{+}(z)$ $\delta(r) =$ $\rho(r)-\bar{\rho}$ $$ Overdensities: NLA parametrisation: - $D_+(z)$ linear growth factor $-A_1$ (or A_{IA}) free parameter

Halo gravitational potential

Intrinsic Alignment

Testing the Non Linear Alignment Model:

$$
\xi_{g+}(r_t, \Pi) = \frac{\text{Shape}_{+}(\text{Density} - \text{Rand}_D)}{\text{Rand}_D \text{Rand}_S}
$$

Landy-Szalay type estimator (Mandelbaum 2006):

Integrate the correlation function:

 $w_{g+}(r_t) = \left| \right|$ Π*max* $-\Pi_{max}$ $\zeta_{g+}(r_t, \Pi)$ dΠ; Π_{*max*} = 150 Mpc

 \rightarrow \times mode to diagnose systematics

 $\langle \gamma \gamma \rangle = \gamma_G \gamma_G + \gamma_I \gamma_I + 2 \gamma_I \gamma_G$ intrinsic-intrinsic

Models: Non-Linear Alignment (NLA) & Tidal Alignment and Tidal Torque (TATT)

Cosmological intrinsic-gravitational

$$
s_{ij}(k) = (\hat{k}_i \hat{k}_j - \frac{1}{3} \delta_{ij}) \delta(k)
$$

The tidal tensor field:

$$
\gamma_{ij}^I(x) = \frac{\overline{\bigcap_{i=1}^{N} \sum_{j=1}^{N} \sum_{j
$$

Observable: Integrated correlation function W_{g+}

The Intrinsic contribution to shear is given by:

Intrinsic Alignment models & measurement

$$
w_{g+} \propto \int \frac{k \, dk}{2\pi} J_2(r, k) P_{gI}(k, z) \longrightarrow \text{measure and model}
$$

of w_{gg}

 $\langle z \rangle = 0.85$ $\#$ shape sample ≈ 15 000 $\sigma_{\!\scriptscriptstyle C}^{}=0.17$ ELG

 $A_1 = 3.1_{-2.9}^{+3.3}$

Direct measurement of intrinsic alignment

CMASS LRG $\langle z \rangle = 0.55$ $\#$ shape sample \approx 200 000 $\sigma_{\!e} = 0.16$

 $\langle z \rangle = 0.74$ $\#$ shape sample $\approx 80~000$ $\sigma_{\!\scriptscriptstyle C}^{}=0.18$

 $A_1 = 3.3 \pm 1.0$

Testing diagnostics: w_{g}

NLA or TATT ?

Best fit for TATT:

Best fit for NLA:

*χ*²/d.o.f.=6.33/(6-1)=1.266

-We see a strong dependence in luminosity

-Recover results in agreement with previous studies

-For a global prior for Euclid we need to understand some discrepancies

 $-$ Poor reduced χ^2 : $\chi^2=2.42\;$ (single power law) $\chi^2=2.19$ (double power law) indicate that other factors need to be considered (redness, shape measurement algorithm, redshift…)

-Recently shown (Fortuna 2024) that luminosity is a proxy for halo mass, $M_H - L$ scaling relation

5

-Slight preference for the double power-law

Luminosity dependence of intrinsic alignment

Statistical fluctuation or observational effects affecting Intrinsic Alignment:

- -Color band in which the shape is measured (Georgiou 2019) (UNIONS r & DES riz)
- -Shape measurement method (Singh 2015, Leonard 2018)
- -Weight function, PSF? (UNIONS 0.65 arcsec & DES 0.95 arcsec)
- -Extinction? Background subtraction?

UNIONS status

Status:

- Shape catalogue close to being validated
- Pipelines for cosmic shear and 3x2 point ready
- Photo-z are being validated
- -Masks are being validated

Existing papers:

‣ **ShapePipe: shape measurement pipeline and weak-lensing application to UNIONS/CFIS data**, Guinot et al., 2022, A&A ‣ **The shape of dark matter haloes: results from weak lensing in the Ultraviolet Near-Infrared Optical Northern Survey**

-
- **(UNIONS)**, Robison et al., 2023, MNRAS
- ‣ **UNIONS: The impact of systematic errors on weak-lensing peak counts**, Ayçoberry et al, 2023, A&A
- ‣ **Black-Hole-to-Halo Mass Relation From UNIONS Weak Lensing,** Li et al., 2024, A&A
- 2024, A&A
- al. , (internal)
-

‣ **Point-Spread Function errors for weak lensing - density cross-correlations. Application to UNIONS**, Zhang et al,

 $\bm{\nu}$ τ -statistics as a probe of contamination from PSF systematics using a semi-analytical covariance matrix, Guerrini et

‣ **UNIONS-3500: a direct measurement of intrinsic alignment with BOSS/eBOSS spectroscopy**, FHP et al., (internal)

Stay tuned for:

Density split, mass mapping, simulation based inference, lensing of mergers, splahback radius & much more :)

Synergy: DESI Y1 & Y3

2 Million galaxies inside UNIONS footprint

DESI Y3:

Potentially more then all other stage III surveys combined

Credit: DESI collaboration

DESI Y1:

Synergy: J-PLUS (DR3) & J-PAS

Median redshift uncertainty : $\sigma(z) \approx 0.02$

J-PLUS DR3:

1.5 Million galaxies inside UNIONS footprint

CLASS_STAR>0.5

 $ODDS > 0.5$

J-PAS footprint similar? complementary lensing effort?

Looking for a job!

Set for PhD defense in October 2025:

Interested in: lensing data, spectroscopic data, cosmological analysis, dark matter models

https://www.cosmostat.org/people/fabian-hervas-peters

Thank you for your attention! Stay tuned for

ONIGNS

If you need shapes in the North, get in touch!

Analytical Covariance

$$
Cov^{TOT}[w_{g+}w_{g+}] = \frac{1}{\mathcal{A}(\bar{z})} \int \frac{k \, dk}{2\pi} J_2(kr_t)
$$

UNIONS ugriz sky coverage status (May 2023)

CFHT_u

50000

CFHT r

Subaru g

Subaru z

Pan-STARRS z

Pan-STARRS i

Séminaire LPNHE | Paris | June 2023

UNIONS extension

Technical choices for UNIONS

Shape measurement: r-band from CFHT **Model fitting:** gaussian mixture model NGMIX, (Sheldon 2005) **PSF-measurement**: MCCD (Liaudat et al. 2022) \rightarrow Fitting the whole focal plane at once **Calibration**: METACALIBRATION (Huff & Sheldon 2017) \rightarrow Shearing galaxies artificially to calibrate model, noise and selection bias Technical paper : Guinot et al. 2022 (presenting systematics) \rightarrow Shapepipe, publicly available software, Farrens et al. 2022 <https://github.com/CosmoStat/shapepipe> New paper: *"Black-Hole-to-Halo Mass Relation From UNIONS Weak Lensing"* , Li et al. 2402.10740

-
-
-
-
-

$W_{++} =$ Shape₊Shape₊ Random*^s* Random*^S*

Shape-Shape correlation function *w*++

$$
A_{PSF} = \frac{\int dr_t \langle e_{obs} e_{PSF} \rangle / \langle e_{PSF} e_{PSF} \rangle}{\int dr_t}
$$

From Singh 2016:

Diagnosing PSF Systematic contributions

For CMASS:
$$
A_{PSF} = 2.3^{+0.38}_{-0.38} \times 10^{-2}
$$

For LRG:
$$
A_{PSF} = 6.1^{+6.2}_{-6.2} \times 10^{-3}
$$

$$
\delta \varepsilon = \left(\varepsilon^{\text{obs}} - \varepsilon^{\text{PSF}} \right) \frac{\delta T^{\text{PSF}}}{T} - \frac{T^{\text{PSF}}}{T} \delta \varepsilon^{\text{PSF}}
$$

$$
\lambda_1 = \left\langle \varepsilon T^{\text{PSF}} n \right\rangle \qquad \qquad \lambda_2 = \left\langle \frac{\delta T^{\text{PSF}}}{T^{\text{PSF}}} \varepsilon_T^{\text{PSF}} n \right\rangle \qquad \qquad \lambda_3 = \left\langle \delta \varepsilon T^{\text{PSF}} n \right\rangle
$$

$$
\varepsilon^{\text{obs}} = \varepsilon^{\text{S}} + (1 + m)\gamma + c + \delta\varepsilon + \alpha\varepsilon^{PSF}
$$

$$
\delta \varepsilon = \left(\varepsilon^{\text{obs}} - \varepsilon^{PSF} \right) \frac{\delta T^{PSF}}{T} - \frac{T^{PSF}}{T} \delta \varepsilon^{PSF}
$$

$$
\lambda_2 = \left\langle \frac{\delta T^{PSF}}{T^{PSF}} \varepsilon_T^{PSF} n \right\rangle \qquad \qquad \lambda_3 = \left\langle \delta \varepsilon T^{PSF} n \right\rangle
$$

$$
\delta \gamma_T = \left\langle \frac{T^{PSF}}{T} \right\rangle \left\langle \frac{\delta T^{PSF}}{T^{PSF}} \right\rangle \gamma_T^S + \alpha \lambda_1 - \left\langle \frac{T^{PSF}}{T} \right\rangle \left(\lambda_2 + \lambda_3 \right).
$$

PSF residual from Gaussian error propagation in Paulin-Henriksson et al. (2008):

λ statistics-PSF error propagation

PSF diagnostics

Model PSF errors as additive terms to ellipticity

 $e^{\mathrm{g}}=e^{\mathrm{s}}+g+\delta e^{\mathrm{g}}$

with residual

Propagate to ξ , ξ as $\xi_{\text{sys}}^{\text{PSF}}$ = sum of PSF-/star correlation functions or ρ -statistics (Rowe 2010, Jarvis et al. 2016).

Martin Kilbinger (CEA CosmoStat)

 τ -statistics [Gatti et al. 2021], separate PSF leakage and model errors, fit α , β , η : cross-correlations between galaxies and stars & ϱ -statistics, $\xi_{\text{cyc}}^{\text{PSF}}$:

 $\xi_{\rm sys}^{\rm PSF}(\theta) = \alpha^2 \rho_0(\theta) + \beta^2 \rho_1(\theta) + \eta^2 \rho_3(\theta)$ $+2\alpha\beta\rho_2(\theta)+2\alpha\eta\rho_5(\theta)+2\beta\eta\rho_4(\theta)$

Other PSF diagnostics:

•
$$
\xi_{sys} = \langle e_{g} e_{p} \rangle^{2} / \langle e_{p} e_{p} \rangle
$$

- α leakage
	- object-wise \circ
	- scale-dependent \circ

Thank you for your attention!

