

Expected performance of the ATLAS Phase-II Inner Tracker

Thomas Strebler

Centre de Physique des Particules de Marseille Aix-Marseille Université / CNRS-IN2P3

> CPPM seminar June 10th, 2024

Summary of this talk

ATLAS Inner Tracker (2029-2041)

Introduction

- ATLAS CPPM group heavily involved since the beginning:
 - Technical design, production and installation of the ITk Pixel detector => see Eric Vigeolas's seminar next week
 - Simulation, reconstruction and physics object performance
 - Prospect for physics analyses at HL-LHC

·Large program of ATLAS Phase-II upgrades for High-Luminosity LHC (HL-LHC) data-taking starting in 2029

• ATLAS Inner Tracker (ITk) one of the most ambitious upgrades for a particle physics detector

High-Luminosity LHC & ATLAS Phase-II upgrades

High-Luminosity LHC

LHC Run 2 Run 1 LS1 **EYETS** LS2 **13 TeV Diodes Consolidation** splice consolidation LIU Installation cryolimit interaction 7 TeV 8 TeV button collimators Civil Eng. P1-P5 regions **R2E project** 2012 2014 2016 2017 2018 2020 2013 2015 2019 2011 **ATLAS - CMS** upgrade phase 1 experiment beam pipes 2 x nominal Lumi **ALICE - LHCb** nominal Lumi upgrade 75% nominal Lumi **30 fb⁻¹** 190 fb⁻¹

	Pile-up	Instantaneous Iuminosity	Integrated Iuminosity in 2025
Run 3	60	2 x 10 ³⁴ cm ⁻² s ⁻¹	450 fb-1

Higgs physics prospects

- Since its discovery in 2012, many detailed studies to confirm Higgs boson properties:
 - couplings established to EW bosons + 3rd gen. fermions
 - CP properties
 - differential measurements
- Some channels now dominated by systematics, some still stat. limited

Nature 607, 52 (2022)

Higgs physics prospects

• Higgs self-coupling κ_{λ} still to be measured precisely:

latest combined ATLAS results (single + di-Higgs) $-0.4 < \kappa_{\lambda} < 6.3 @95\%$ CL

Increase in instantaneous luminosity: => ~10 times more HH pairs to be produced by 2040

Higgs bosons produced per experiment, per run

7

Higgs physics prospects

• HL-LHC sensivity expected with 3000 fb-1: 3σ evidence for HH production with ATLAS 5σ observation with ATLAS+CMS 50% uncertainty on κ_{λ}

• Experience demonstrates that projections tend to be conservative:

- object performance assumed to be unchanged
- extrapolation of existing analysis strategies

- physics programme

ATLAS Phase-II upgrades

Muon Detectors

Upgraded Trigger and **Data Acquisition System:**

- L0 rate: 1 MHz
- Event Filter: 10 kHz

Upgraded electronics:

- LAr calorimeter
- Tile Calorimeter
- Muon system

Toroid Magnets

- Extended tracking acceptance up to $|\eta|=4$:
 - increased lepton reconstruction + jet flavour-tagging acceptance
 - improved pile-up suppression

Outer strip detector: 4 barrel layers + 6 end-cap disks (doublesided)

Inner pixel detector: 5 barrel layers + inclined and vertical rings

- innermost layer (L0) at radius ~34 mm [IBL 33.25mm]
- pixel pitch: $25x100 \ \mu m^2$ for L0 barrel / $50x50 \ \mu m^2$ elsewhere [IBL 50x250 µm²]

• To guarantee tracking performance + good data-taking conditions, full replacement of ATLAS tracking detectors with new all-silicon Inner Tracker (ITk)

ITk (Run 4-6)

Significant increase in number of pixels $10^8 \rightarrow 5 \times 10^9$:

- smaller pixel pitch
- increased coverage

Replaceable innermost pixel layers: opportunity for potential hardware upgrade

Inner Detector (Run 2-3)

No more gaseous detector (TRT):

- not adapted to PU=200
- already challenging to operate in Run 3

Comparison of material budget

Comparison of material budget

Increased tracking acceptance for 2.7<lnl<4.0

Expected ITk tracking performance

Tracking challenges at HL-LHC

• Tracking is a **key ingredient for full event reconstruction:** used for almost every physics object reconstruction or identification

Primary vertex reconstruction

Pile-up removal Jet flavour-tagging

Main requirements:

- high efficiency
- precise track parameter estimations
- very low fake rate
- within computing budget

Track reconstruction from detector hits complex combinatorial problem

=> very challenging in HL-LHC pile-up conditions

- larger hit combinatorics (CPU, fake rate)

- wrong cluster-track association (track parameter resolution)

Tracking efficiency and fake rate

- Excellent tracking performance achieved thanks to optimal exploitation of ITk layout
- Inclusive tracking efficiency at μ =200 for particles with $p_T>1$ GeV within 5% of Run-3 efficiency

IDTR-2023-05

• Very high track purity achieved, exploiting optimised seeding strategy + hit requirements (\geq 9 expected): **negligible fake rate O(10-4)** associated with linear increase in number of tracks with number of interactions

Tracking resolutions

smaller pixel pitch

=> instrumental for **pile-up rejection and jet flavour-tagging**

• Improved transverse momentum resolution thanks to better silicon strip sensors resolution in bending direction, compared to current TRT detector

Impact of ITk layout on tracking performance

- To allow for contingency with tight HL-LHC schedule, options for staged-installation of ITk Pixel detector investigated in particular for outermost layer => opportunity to confirm impact of ITk layout on tracking performance **Options not pursued ultimately**
- Extra redundancy brought with five pixel layers ensures much better robustness against detector defects

stage to reduce combinatorics and CPU => critical element for trigger reconstruction (fast tracking)

	Number of Pixel seeds per event	Track Finding CPU[s]
Full Detector	26017	5.04
Default Tracking	20017	
Full Detector	0/68	1.48
Fast Tracking	9400	
	Number of Pixel seeds per event	Track Finding CPU[s]
"No L4" Detector	51047	7.32
Default Tracking	51047	
"No L4" Detector	10340	2.04
Fast Tracking	19340	

Tracking in dense environment

- Studies started to adapt those with ITk, expected to benefit from smaller pixel pitch
- Instrumental for boosted hadronic decay tagging

- In core of high pT jets, very high particle density => pixel cluster merging
- Track reconstruction allows for shared hits between several tracks: trade-off between tracking efficiency and fake rate
 - Merged pixel identification developed based on Neural Networks continuously improved since Run 1

T. Strebler – CPPM seminar 2024

19

Tracking reconstruction beyond primary interaction

- hadron decays)
- particles with larger displacement:

• Default tracking reconstruction optimised for charged particles produced in primary interaction or secondary vertices with limited displacements (τ or B-

Secondary passes through left-over space-points aimed at reconstructing charged

- photon conversion reconstruction seeded by EM calo cluster

Offline reconstruction = default + LRT

Trigger reconstruction = default + LRT

First ITk Strip layer

- long-lived particle decay products with Large Radius Tracking (LRT) => efficient reconstruction algorithms adapted to ITk

Expected high-level objects performance

Primary vertexing performance

- algorithm

- Direct impact on **object** performance relying on precise primary vertex reconstruction:
 - lepton isolation
 - pile-up jet rejection
 - flavour-tagging

• Ultimate pile-up scenario $<\mu>=200$ associated with significant increase in local pile-up density around primary vertex

• Primary vertexing aims at reconstructing positions of proton-proton **interactions** (hard-scatter + pile-up): based on Adaptive Multi-Vertex Finder

Strong benefit from improved track longitudinal impact parameter resolution

T. Strebler – CPPM seminar 2024

Primary vertexing performance

Efficiency **ATLAS** Simulation Preliminary $\sqrt{s} = 14 \text{TeV}, \text{HL-LHC}$.05 ITk layout: 23-00-03 n and Reconstruction 66 1 $t\bar{t}, p_{T} > 1 \text{ GeV}$ • Need to pick the hard-scatter vertex **- Run-2**, (μ) = 38 among all of the \rightarrow ITk, $\langle \mu \rangle$ = 200 reconstructed Vtx Selectio primary vertices 0.9 0.85<u>⊫</u>0 50 250 100 200 150

Number of interactions

- Default HS vertex selection criteria based on Σp_T^2 : getting harder with increasing number of vertices
- Σp_T^2 known to perform poorly on signal topologies with low central track multiplicity: $H \rightarrow \gamma \gamma$, VBF $H \rightarrow invisible$
- Ongoing effort to develop improved unified vertex selection criteria based on NN to be adapted for HL-LHC conditions

Jet tagging performance

- Impact-parameter based flavour-tagging algorithm (IP3D) directly benefits from improved ITk IP resolutions + track categorisation optimised for new detector layout
- Secondary vertexing (SV1) to be studied in more details

 Pile-up jet rejection performance directly connected to z0 **resolution:** better performance in central region with lower material

Dramatic improvement in forward region with respect to Run 2 with no tracking coverage for current detector (PU jet rejection based on calorimeter timing), to be further improved with HGTD timing information => direct impact on VBF/VBS analyses

T. Strebler – CPPM seminar 2024

24

Jet tagging performance

Towards 4D Tracking?

- opportunity for potential hardware upgrade
- y/z + time) mature enough by then to be considered for upgrade

ATL-PHYS-PUB-2023-023

Towards 4D Tracking?

- Benefit from reduction of pile-up tracks faking large-IP tracks from b hadron decays => strong improvement on b-tagging performance
- Can also benefit to:
 - pile-up jet rejection
 - search for long-lived particle exploiting calorimeter timing

Conclusion

- occupancy due to increased pile-up
- current ATLAS detector
- **analyses** with datasets collected at HL-LHC
- Future upgrades beyond Run 4 exploiting timing information could further improve the performance

• ITk detector will face unprecedented challenges for tracking reconstruction: sizeable increase in detector

• Excellent tracking performance expected, both for particles produced in primary interaction or displaced vertices, directly benefitting from optimised ITk detector layout and years of experience in tracking reconstruction with

• Will directly benefit to high-level object reconstruction and identification and ultimately to sensitivity of physics

30/01/1933 -09/06/2024

ES-

Thank you for your attention

Back up

Software developments

- Will thus benefit from:
 - constraints
 - improved maintainability
 - reconstruction

T. Strebler – CPPM seminar 2024

Tracking efficiency and fake rate

T. Strebler – CPPM seminar 2024

Tracking resolutions

T. Strebler – CPPM seminar 2024

Impact of ITk layout on tracking performance

Impact of ITk layout on tracking performance

No outermost layer

Jet tagging performance

ATL-PHYS-PUB-2022-047

Jet tagging performance

ATL-PHYS-PUB-2022-047

