

The dawn of the precision era in neutrino physics

Steven Calvez

IV Nantes
V Université

Seminar IPHC April 10, 2024

The neutrino

- **Neutrinos** are **elementary particles** of the **Standard Model** of **Particle Physics.**
- **Neutrinos** are the **most abundant particles of matter** in the **Universe**.
- Yet, their **elusive nature** means we still know little about their **fundamental properties:**
	- o **3 flavors**: electron, muon and tau neutrinos.
	- **Oscillate** from one flavor to the other...
	- o …which proved neutrinos had **masses**.

2015

What do we know about neutrinos?

• **Neutrinos** are created and interact as **flavor eigenstates**, which are superposition of **mass eigenstates**.

 $c_{ij} \equiv \cos \theta_{ij}$ $s_{ij} \equiv \sin \theta_{ij}$ $U = \begin{pmatrix} c_{12}\,c_{13} & s_{12}\,c_{13} & s_{13}\,e^{-i\delta_{\text{CP}}} \\ -s_{12}\,c_{23}-c_{12}\,s_{13}\,s_{23}\,e^{i\delta_{\text{CP}}} & c_{12}\,c_{23}-s_{12}\,s_{13}\,s_{23}\,e^{i\delta_{\text{CP}}} & c_{13}\,s_{23} \\ s_{12}\,s_{23}-c_{12}\,s_{13}\,c_{23}\,e^{i\delta_{\text{CP}}} & -c_{12}\,s_{23}-s_{12}\,s_{13}\,c_{23}\,e^{i\$ Mixing angles: *θ***12***, θ***13,** *θ2***³** CP-violating phase: $δ_{CP}$

What do we know about neutrinos?

• **Neutrinos** are created and interact as **flavor eigenstates**, which are superposition of **mass eigenstates**.

 $c_{13}c_{23}$

• Absolute **masses** and even the **neutrino mass ordering** remain unknown.

> Mass squared differences: **|Δ***m***² 32|, Δ***m***² 21**

Mixing angles: *θ***12***, θ***13,** *θ2***³** CP-violating phase: $δ_{CP}$

❑ Neutrino **nature** : Dirac or Majorana ?

 \triangleright Search for the **0** $\nu\beta\beta$ decay $\rightarrow \nu \equiv \overline{\nu}$

❑ Neutrino **masses** ?

➢ High precision measurement of β -decay spectrum.

 $□$ Values of $θ_{12}$, $θ_{23}$, $θ_{13}$, $δ_{CP}$, $Δm^2_{32}$, and $Δm^2_{21}$? ➢ Study **neutrino oscillations**.

Key to a fundamental question

Key to a fundamental question

Neutrino oscillations

• **Neutrino oscillations** depend on a few parameters :

 $≥ θ₁₂, θ₂₃, θ₁₃, δ_{CP}, Δm²₃₂, Δm²₂₁$

• For instance, **disappearance probability** $P(\nu_{\mu} \rightarrow \nu_{\mu})$ can be expressed as follows: v_α $P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - (\sin^2(2\theta_{13})\sin^2(\theta_{23}) +$ $P(V_{\alpha})$ Δm^2 L $\cos^4(\theta_{13})\sin^2(2\theta_{23})\right)\sin^2(\theta_{13})$ $L/E(A.U.)$ **Amplitude Period**

➢ **Experiments** study the **oscillation of neutrinos** of different **energies E** over different **baselines L**, giving them access to all the oscillation parameters.

How can we measure the neutrino oscillations parameters ?

How can we measure the neutrino oscillations parameters ?

How can we measure the neutrino oscillations parameters ?

What are the main goals of Long Baseline experiments?

- Long-baseline neutrino oscillation experiments like NOvA, v_e **T2K**, **DUNE** and **HyperK** study accelerator neutrino oscillations over ~100kms.
- Aim to address the following open questions:
	- ο What is the **value of** $θ_{23}$ **?** $θ_{23}$ < 45° or $θ_{23}$ > 45° ? $ν_{μ}$ $ν_{τ}$ symmetry? v_{τ} symmetry
	- o What is the **value of Δ***m***²₃₂? Normal or Inverted Hierarchy?**
	- o Is there **CP violation** in the lepton sector? $\delta_{CP} \neq 0$ or π ? ² [∆] *^m* (2✓23)

• Principle of the **NOvA** and **DUNE** experiments (similar for **T2K** and **T2HK**): \circ Produce a **beam of** ν_{μ} (or $\overline{\nu_{\mu}}$).

- Principle of the **NOvA** and **DUNE** experiments (similar for **T2K** and **T2HK**):
	- \circ Produce a **beam of** ν_{μ} (or $\overline{\nu_{\mu}}$).
	- \circ Measure the v_{μ} spectrum in a **Near Detector (ND)**.

- Principle of the **NOvA** and **DUNE** experiments (similar for **T2K** and **T2HK**):
	- \circ Produce a **beam of** ν_{μ} (or $\overline{\nu_{\mu}}$).
	- \circ Measure the v_u spectrum in a **Near Detector (ND)**.
	- \circ Measure the **disappearing** v_{μ} and **appearing** v_{e} spectra in a Far Detector (FD).

- Principle of the **NOvA** and **DUNE** experiments (similar for **T2K** and **T2HK**):
	- \circ Produce a **beam of** ν_{μ} (or $\overline{\nu_{\mu}}$).
	- \circ Measure the v_u spectrum in a **Near Detector (ND)**.
	- \circ Measure the **disappearing** v_{μ} and **appearing** v_{e} spectra in a Far Detector (FD).
	- Extrapolate and test **oscillation parameters.**

NOvA Preliminary

• Measure $v_\mu\to v_\mu$ and $\overline{v_\mu}\to\overline{v_\mu}$ disappearance to constrain $\sin^2\!2\theta_{23}$ and $|\Delta m^2_{~32}|$:

• Measure $v_\mu\to v_\mu$ and $\overline{v_\mu}\to\overline{v_\mu}$ disappearance to constrain $\sin^2\!2\theta_{23}$ and $|\Delta m^2_{~32}|$:

• Measure $v_\mu\to v_\mu$ and $\overline{v_\mu}\to\overline{v_\mu}$ disappearance to constrain $\sin^2\!2\theta_{23}$ and $|\Delta m^2_{~32}|$:

• Measure $v_\mu\to v_e$ and $\overline{v_\mu}\to\overline{v_e}$ appearance to constrain $\sin^2\theta_{23}$, $\Delta m^2_{~32}$ and $\delta_{\rm CP}$:

$$
V_e \text{ appendance probability.}
$$
\n
$$
P(\nu_{\mu} \to \nu_e) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^2
$$
\n
$$
\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}} P_{\text{sol}}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)
$$
\n
$$
\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}
$$

arongo probability:

• Measure $v_\mu\to v_e$ and $\overline{v_\mu}\to\overline{v_e}$ appearance to constrain $\sin^2\theta_{23}$, $\Delta m^2_{~32}$ and $\delta_{\rm CP}$:

• Measure $v_\mu\to v_e$ and $\overline{v_\mu}\to\overline{v_e}$ appearance to constrain $\sin^2\theta_{23}$, $\Delta m^2_{~32}$ and $\delta_{\rm CP}$:

•
$$
v_e
$$
 appearance probability:

$$
P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}
$$

$$
\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}} P_{\text{sol}}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)
$$

$$
\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}
$$

➢ **CP-violation** generates **opposite effects** in **v** and \bar{v} oscillation probabilities.

• Measure $v_\mu\to v_e$ and $\overline{v_\mu}\to\overline{v_e}$ appearance to constrain $\sin^2\theta_{23}$, $\Delta m^2_{~32}$ and $\delta_{\rm CP}$:

•
$$
v_e
$$
 appearance probability:

$$
P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}
$$

$$
\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}} P_{\text{sol}}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)
$$

$$
\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}
$$

➢ Other **CP-conserving phase** yields slightly different oscillation probabilities.

• Measure $v_\mu\to v_e$ and $\overline{v_\mu}\to\overline{v_e}$ appearance to constrain $\sin^2\theta_{23}$, $\Delta m^2_{~32}$ and $\delta_{\rm CP}$:

$$
P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}
$$

$$
\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}} P_{\text{sol}}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)
$$

$$
\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}
$$

➢ Other maximum violating **CP phase** \mathbf{e} nhances \boldsymbol{v}_{e} appearance. $\boldsymbol{\delta}_{\mathrm{CP}}$ is cyclical.

- Measure $v_\mu\to v_e$ and $\overline{v_\mu}\to\overline{v_e}$ appearance to constrain $\sin^2\theta_{23}$, $\Delta m^2_{~32}$ and $\delta_{\rm CP}$:
	- v_e appearance probability:

$$
P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}
$$

$$
\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}} P_{\text{sol}}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)
$$

$$
\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}
$$

➢ **Matter effects** also generate opposite effects in $v\text{-}\overline{v}$ oscillations depending on the **Mass Hierarchy.**

- Measure $v_\mu\to v_e$ and $\overline{v_\mu}\to\overline{v_e}$ appearance to constrain $\sin^2\theta_{23}$, $\Delta m^2_{~32}$ and $\delta_{\rm CP}$:
	- v_e appearance probability:

$$
P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}
$$

$$
\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}} P_{\text{sol}}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)
$$

$$
\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}
$$

➢ *θ2***3** can increase or decrease and $\overline{\nu}$ oscillations probabilities.

Constraining oscillation parameters in NOvA

- **Limited statistics** (~100s signal candidates), physical boundaries, degenerate parameter space makes reporting **statistically accurate measurements** challenging.
- Frequentist approach in NOvA: generate and fit **millions of pseudoexperiments** (*[arXiv:2207.14353](https://arxiv.org/abs/2207.14353)*) on **supercomputers** (*[CHEP2018](https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_05012.pdf)*).
- **Normal Ordering** favored at **1.0σ** level.
- Exclusion of :
	- o *δCP* **= 3π/2 NH** at >**2σ**
	- o *δCP* **= π/2 IH** at >**3σ**

Latest NOvA-T2K results

- **First joint NOvA-T2K** oscillation analysis results recently released . Next few figures from :
	- Fermilab [seminar](https://indico.fnal.gov/event/62062/)
	- KEK [seminar.](https://kds.kek.jp/event/49811/)
- Particularly **interesting** given **slight tension** in preferred regions of the parameter space.

Latest NOvA-T2K results: sin²θ₂₃

- Slight preference for the θ_{23} upper octant.
- **Maximum mixing** still compatible with measurements.

Latest NOvA-T2K results: Δ*m*²₃₂

- **Joint NOvA-T2K analysis** provides the **most accurate** measurement of **Δ***m***² 32**.
- **Δ***m***² ³²** is the most precisely known parameter, yet we still don't know **its sign**.

Latest NOvA-T2K results: δ_{CP}

- Combination in Normal Ordering:
	- o Less stringent constraint on parameter space allowing wider range of values.
	- o **CP conservation** slightly preferred.
- Combination in Inverted Ordering:
	- o Enhanced preference for **maximum CP violation.**
	- o **CP conservation** (0, π) **disfavored** (outside 3σ credible interval).
- *δCP* **=π/2** outside 3σ interval in both orderings.

Latest NOvA-T2K results: δ_{CP}

- **Precision** on **δ**_{CP} improved in Inverted Ordering.
- But **uncertainties** on δ_{CP} remain large (~30%), especially in Normal Ordering.

Latest NOvA-T2K results: δ_{CP}

- **Jarlskog invariant** quantifies **CP-violation** in lepton and quark sectors.
	- $J \equiv s_{13}c_{13}^2s_{12}c_{12}s_{23}c_{23}\sin\delta$
- **Broad range** of values allowed in **Normal Ordering**.
- **CP conservation**, i.e. J=0**, outside 3σ interval** in **Inverted Ordering**.

Latest NOvA-T2K results: sin²*θ¹³*

- **sin²***θ13* is a subdominant degenerate term in LBL oscillations.
- Measurements compatible with **reactor experiments** but not competitive.

Latest NOvA-T2K results: neutrino mass ordering

- Still no strong preference for the **neutrino mass ordering** :
	- o Each experiment individually **favors Normal Ordering**.
	- o Joint fit flips the **preference for Inverted Ordering** (IO 58%, NO 42%).
	- o Including an external constraint on Δ*m*² ³² (and *θ13*) brings back the slight **preference for Normal Ordering** (IO 59%, NO 41%).

• **JUNO** will provide a **very precise measurement of Δ***m***² ³²** which will help **LBL experiments** resolve the **neutrino mass ordering**.

Current limitations of LBL experiments

- **NOvA** and **T2K** measurements are still **statistically limited**.
- Expected to **double their datasets** over next **few years**.

- **Neutrino cross-sections** would become the **dominating uncertainty** in nextgeneration experiments within a few months if they are not better understood today:
	- o Study **neutrino-nucleus interactions** in **Near Detectors** and compare/feed **models**.
	- o Contributed to the **measurement** of **neutrino cross-sections** of some of the main **interaction channels** with **NOvA ND**:
		- \bar{v}_e + N $\rightarrow e^+$ + X : world first double-differential measurement.
		- \cdot *ν***_μ** + **N** → **μ**[−] + π[±] + **X** : first double-differential measurement in NOvA.

Next generation of LBL experiments in numbers

- ❑ **14kt** segmented liquid scintillator
- ❑ **700 kW** neutrino beam
- ❑ **810 km** baseline

❑ **55kt** water **Cherenkov** ❑ **500 kW** ❑ **295 km**

 \triangleright Longer baseline \rightarrow More matter effects → **NMO**

- ➢ Larger detectors
- ➢ Higher beam power

❑ **40kt** Liquid Argon TPC ❑ **1.2-2.4** MW ❑ **1300 km**

❑ **187kt** water **Cherenkov** ❑ **1.3 MW** ❑ **295 km**

DUNE and HyperK sensitivity to Neutrino Mass Ordering

- **NMO determination** at **5σ** guaranteed with **DUNE** in Phase I.
	- In **1 year** in most favorable case.

DUNE MO Sensitivity

All Systematics Normal Ordering

 $\sqrt{\frac{2}{\Delta \chi^2}}$

– After **4 years** regardless of *θ²*³ and *δCP* values.

> Phase I: $\delta_{\text{eq}} = -\pi/2$ hase I: 100% of $\delta_{\rm{cp}}$ values

> > ramp to 1.2 MW

Years

- **HyperK** has more **modest sensitivity** to **NMO** because of **shorter baseline**:
	- **5σ after 6 years** in most favorable case.

DUNE and HyperK sensitivity to *δCP*

- **HyperK** has **better sensitivity** to *δCP* than **DUNE:**
	- **HyperK** can **exclude CP conservation (>3σ)** in just **1 year** in the most favorable case.
	- **DUNE** needs favorable *δCP* to reach same **3σ sensitivity.**
- They will ultimately reach **7º- 20º precision** on *δCP*.

ESSnuSB+

- **ESSnuSB+** is a future **next-generation LBL experiment**.
- **ESSnuSB+** plans to measure v_e appearance at second probability maximum:
	- o 5-10 MW neutrino beam
	- o 540 kton water Cherenkov far detector
	- \circ 360-540 km baseline

➢ **5º- 7º precision** on *δCP* after **10 years**.

➢ **5σ discovery** of **CP violation** for **71% of** *δCP* **values**.

Jiangmen Underground Neutrino Observatory

• **JUNO** is a **20-kton Liquid Scintillator** neutrino observatory located in Southern China.

Jiangmen Underground Neutrino Observatory

- **JUNO** is a **20-kton Liquid Scintillator** neutrino observatory located in Southern China.
- JUNO studies **reactor electron antineutrino disappearance** over a medium baseline to:

TAO

- Determine the **neutrino mass ordering.**
- Measure **Δ***m***² ³¹, Δ***m***² 21 ,** and **sin²2θ12**.

NAPARA MA

8 reactors

26.6 GW_{th}

• **Large statistics**

- o 20-kton Liquid Scintillator (LS)
- \circ Powerful nuclear reactors (26.6 GW_{th})

• **Energy resolution: 3% @ 1MeV**

- o High photon yield, highly transparent LS
- o Very high PMTs coverage (78 %)
- o High PMT efficiency (30%)

• **Low background**

- o 650m or 1800 m.w.e overburden
- o Efficient veto system (>99.5%)
- o Material screening, clean environment

• **Precise knowledge of reactor spectra**

o Satellite detector TAO

- Large statistics
	- o **20-kton Liquid Scintillator (LS)**
	- \circ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
	- o **High photon yield, highly transparent LS**
	- o Very high PMTs coverage (78 %)
	- o High PMT efficiency (30%)
- Low background
	- o 650m or 1800 m.w.e overburden
	- o Efficient veto system (>99.5%)
	- o **Material screening, clean environment**
- Precise knowledge of reactor spectra Satellite detector TAO

- \cdot **20kton LS**: LAB + 2.5g/L PPO + 3 mg/L bis-MSB
- **Osiris**: measures radiopurity of LS.

- Large statistics
	- \checkmark 20-kton Liquid Scintillator (LS)
	- o **Powerful nuclear reactors (26.6 GWth)**
- Energy resolution: 3% @ 1MeV
	- \checkmark High photon yield, highly transparent LS
	- o Very high PMTs coverage (78 %)
	- o High PMT efficiency (30%)
- Low background
	- o 650m or 1800 m.w.e overburden
	- o Efficient veto system (>99.5%)
	- \checkmark Material screening, clean environment
- Precise knowledge of reactor spectra o Satellite detector TAO

Taishan Yangjiang

- Two nuclear power plants
- 8 reactor cores
- **26.6 GWth**

- Large statistics
	- \checkmark 20-kton Liquid Scintillator (LS)
	- \checkmark Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
	- \checkmark High photon yield, highly transparent LS
	- o **Very high PMTs coverage (78 %)**
	- o **High PMT efficiency (30%)**
- Low background
	- o 650m or 1800 m.w.e overburden
	- o Efficient veto system (>99.5%)
	- \checkmark Material screening, clean environment
- Precise knowledge of reactor spectra
	- Satellite detector TAO

• 17,512 **20" PMTs** + 25,600 **3" PMTs**

- Large statistics
	- \checkmark 20-kton Liquid Scintillator (LS)
	- \checkmark Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
	- \checkmark High photon yield, highly transparent LS
	- \checkmark Very high PMTs coverage (78 %)
	- \checkmark High PMT efficiency (30%)
- Low background
	- o **650m or 1800 m.w.e overburden**
	- o **Efficient veto system (>99.5%)**
	- \checkmark Material screening, clean environment
- Precise knowledge of reactor spectra o Satellite detector TAO
- **650m overburden**: 4Hz of cosmic muons in LS
- **Top Tracker**: [arXiv:2303.05172](https://arxiv.org/abs/2303.05172)
	- o Opera plastic scintillator
- **Outer Cherenkov Detector**:
	- o 35 kton ultrapure water
	- o 2400 20" PMTs

• **Veto strategy** :

57 reactor \overline{v}_e + 127 ⁹Li + 40 ⁸He events/day 47 reactor \overline{v}_e + 0.8 ⁹Li/⁸He events/day

- Large statistics
	- \checkmark 20-kton Liquid Scintillator (LS)
	- \checkmark Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
	- \checkmark High photon yield, highly transparent LS
	- \checkmark Very high PMTs coverage (78 %)
	- \checkmark High PMT efficiency (30%)
- Low background
	- \checkmark 650m or 1800 m.w.e overburden
	- \checkmark Efficient veto system (>99.5%)
	- \checkmark Material screening, clean environment
- Precise knowledge of reactor spectra
	- ✓ **Satellite detector TAO**

- **TAO** can perform a precise measurement of \mathbf{r} eactor $\bar{\mathbf{v}_e}$ spectrum:
	- \circ 44m from reactor \rightarrow 20 times JUNO event rate
	- o 2.8 ton Gd-LS, 1 ton fiducial volume
	- \circ 4500 PFs/MeV
	- o SiPM: 94% coverage with 50% PDE
	- \triangleright Energy resolution <2% \oslash 1 MeV
	- \triangleright Sub-percent shape uncertainty

Updates on JUNO construction

- **Support Structure** completed.
- 50% of **Acrylic Vessel** installed.
- Top hemisphere **fully instrumented**.
- **Detector completion** and **first data** expected by **mid-2025**.

June 2023

Double calorimetry strategy

- Unprecedented **energy resolution** of **3% @ 1 MeV** :
- Critical for the determination of the **neutrino mass ordering**.

- **Large photomultipliers** could exhibit **non-linear behavior** (high energy events, edge of detector, etc.).
- ➢ Use **small photomultipliers** to detect and control **non-linearity effects** (e.g [arXiv:2312.12991](https://arxiv.org/abs/2312.12991)).

JUNO oscillation analysis

- **First data mid-2025**.
- Development of **analysis framework ongoing**.
- Development of **oscillation analysis** and **realistic sensitivity studies**.
- Updated **Neutrino Mass Ordering sensitivity** coming soon!
- Preparing the **statistical framework** for measurements at low exposure, e.g. **first 100 days**.

Precision measurement of neutrino oscillations parameters

• **JUNO** will provide an **order of magnitude improvement** over current knowledge of **Δ***m***² 31, Δ***m***² 21 ,** and $sin^2\theta_1$ ².

[arXiv:2204.13249v1](https://arxiv.org/abs/2204.13249)

JUNO sensitivity to neutrino mass ordering

- **JUNO** will independently determine the **neutrino mass ordering** with a **3σ sensitivity** in **6 years.**
- Updated **sensitivity** coming soon.

Dawn of the precision era in neutrino oscillation physics

Conclusions

- **Very exciting time** for **neutrino physics** !
- **JUNO** will be the **first experiment** to perform **sub-percent precision measurements** of the **neutrino parameters**.
- **DUNE** and **HyperK** will further complete the **neutrino picture**.
- With **precision measurements** over the next **10-20 years**, it will be possible to: ➢ Precisely **quantify CP-violation** (Jarlskog invariant): answer to **baryon asymmetry** ? ➢ Test **unitarity** of **PMNS matrix**: window for **physics beyond the Standard Model**.
	- ➢ Better understand **origin of mass and flavor**.

Backup

Signal in JUNO

• **47 IBD per day** expected:

- o Prompt + delayed signals to strongly suppress backgrounds.
- o 7% backgrounds, mostly below 3MeV.
- \circ ~10⁵ IBD candidates in 6 years.

JUNO uncertainties

• **Statistical** and **systematic uncertainties** for **6 years**.

Solar neutrinos

• **JUNO** sensitive to both **high** and **intermediate energy** solar neutrinos.

[arXiv:2210.08437](https://arxiv.org/abs/2210.08437)

High energy solar neutrinos

- Model independent detection of **⁸B neutrinos** via three interaction channels **CC, NC** and **ES**:
	- ➢ 5% uncertainty on **⁸B neutrino flux**
	- ➢ 20% uncertainty on **Δ***m***² 21**
	- ➢ 8% uncertainty on **sin²θ¹²**

Intermediate energy solar neutrinos

- Possible thanks to **radiopurity** efforts.
- **World leading constraints** after a few years.
- Day/Night asymmetry sensitivity <1%.

 7 Be \sqrt{v}

pep v

 3 N-v

 15 O-v

1400 1600 1800 2000 2200 2400

IBD radiopurity

Baseline radiopurity Ideal radiopurity

BX-like radiopurity

800

 10^{7}

 10^{6}

 $10⁵$

Events / p.e. 10^4 $10³$ $10²$ $10 \leq$ 1000 1200

Proton decay

- $p \rightarrow \overline{\nu}$ K⁺: three-fold coincidence to detect proton decay with high efficiency (36.9%).
- Good energy resolution helps reduce the backgrounds: less than 0.2 events after 10 years.
- Competitive limit on **proton lifetime** of **9.6 × 10³³ years** for 200 kton-year exposure.
- More details in [arXiv:2212.08502](https://arxiv.org/abs/2212.08502) .

TAO

- **Sub-percent precision** on reactor neutrino **spectrum shape**.
- **TAO** can search for **sterile neutrinos**.

 $sin^2 2\theta_{14}$

Atmospheric neutrinos

- Detect and discriminate v_e and v_u CC interactions through event time profile.
- Sensitivity to **NMO** through **matter effects**: **0.7-1.4σ** in 6 years.
- Can be combined with **reactor NMO analysis**.

JUNO + LBL combination

Better rejection of the wrong hypothesis via combination: arXiv:2008.11280

How are neutrinos produced?

• **Protons** are **accelerated** and smashed into a **target**. **Focusing magnets** allow us to select the charge of the short-lived daughter particles which produce mostly **neutrinos** or **antineutrinos** as they **decay**.

How are neutrinos detected?

• The NOvA **Near Detector** and **Far Detector** are both **segmented liquid scintillator** detectors providing **3D tracking** and **calorimetry**.

• **Near Detector**:

- 290 tons.
- 350 ft underground at Fermilab.

• **Far Detector**:

- 14 ktons.
- 810km away on the surface in Minnesota.

How are neutrinos detected?

• Alternating horizontal/vertical planes composed of extruded PVC **cells** filled with mineral oil doped with **scintillating** material.

-
- An **Avalance PhotoDiode** collects and amplifies the **light signal**.
- **Charged particles** ionize the medium and produce **scintillation light**. The light is picked up by **wavelength shifting fibers**.
What do neutrino events look like in NOvA?

• Use **Machine Learning** techniques to **select** and **identify** neutrino interactions.

What is NOvA's future sensitivity?

- Run until 2026, accumulating more than 3×10^{21} POT in both ν and $\overline{\nu}$ modes.
- Could reach **5σ sensitivity** to **Mass Hierarchy** for most favorable parameters.
- Probe the majority of δ_{CP} **values** at **2σ-level**.

DUNE LArTPC

Asymétrie matière-antimatière

- Explication par baryogénèse sous Conditions de Sakharov :
	- 1) Violation du nombre baryonique.
	- 2) Violation de Charge et de Charge-Parité.
	- 3) Interactions hors-équilibre.
- Neutrino de Majorana (L-violation) et sphalérons (B+L-violation) satisfont 1).
- Observation de violation de CP satisferait 2).
- Désintégration de neutrino lourds satisfait 3).