

The dawn of the precision era in neutrino physics

Steven Calvez

Seminar IPHC April 10, 2024

The neutrino

- **Neutrinos** are **elementary particles** of the **Standard** Model of Particle Physics.
- **Neutrinos** are the **most abundant particles of matter** in the **Universe**.
- Yet, their elusive nature means we still know little about their fundamental properties:
 - 3 flavors: electron, muon and tau neutrinos.
 - Oscillate from one flavor to the other...
 - ...which proved neutrinos had masses.

2015

What do we know about neutrinos?

 Neutrinos are created and interact as flavor eigenstates, which are superposition of mass eigenstates.

 $c_{ij} \equiv \cos \theta_{ij} \quad s_{ij} \equiv \sin \theta_{ij}$ $U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta_{CP}} \\ -s_{12} c_{23} - c_{12} s_{13} s_{23} e^{i\delta_{CP}} & c_{12} c_{23} - s_{12} s_{13} s_{23} e^{i\delta_{CP}} & c_{13} s_{23} \\ s_{12} s_{23} - c_{12} s_{13} c_{23} e^{i\delta_{CP}} & -c_{12} s_{23} - s_{12} s_{13} c_{23} e^{i\delta_{CP}} & c_{13} c_{23} \end{pmatrix}$ $Mixing angles: \theta_{12}, \theta_{13}, \theta_{23}$ $CP-violating phase: \delta_{CP}$

What do we know about neutrinos?

• Neutrinos are created and interact as flavor eigenstates, which are superposition of mass eigenstates.

Mixing angles: θ_{12} , θ_{13} , θ_{23} CP-violating phase: δ_{CP} Absolute masses and even the neutrino mass ordering remain unknown.

> Mass squared differences: $|\Delta m^{2}_{32}|, \Delta m^{2}_{21}$

□ Neutrino **nature** : Dirac or Majorana ?

Search for the 0νββ decay → ν ≡ ν̄

□ Neutrino masses ?

High precision measurement
 of β-decay spectrum.

Values of θ₁₂, θ₂₃, θ₁₃, δ_{CP}, Δm²₃₂, and Δm²₂₁?
 Study neutrino oscillations.

Key to a fundamental question

Key to a fundamental question

Neutrino oscillations

• Neutrino oscillations depend on a few parameters :

 \succ θ_{12} , θ_{23} , θ_{13} , δ_{CP} , Δm^2_{32} , Δm^2_{21}

- For instance, disappearance probability $P(\nu_{\mu} \rightarrow \nu_{\mu}) \text{ can be expressed as follows:}$ $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \left(\sin^{2}(2\theta_{13})\sin^{2}(\theta_{23}) + \cos^{4}(\theta_{13})\sin^{2}(2\theta_{23})\right) \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$ Amplitude Period
- Experiments study the oscillation of neutrinos of different energies E over different baselines L, giving them access to all the oscillation parameters.

How can we measure the neutrino oscillations parameters ?

How can we measure the neutrino oscillations parameters ?

How can we measure the neutrino oscillations parameters ?

What are the main goals of Long Baseline experiments?

- Long-baseline neutrino oscillation experiments like NOvA, T2K, DUNE and HyperK study accelerator neutrino oscillations over ~100kms.
- Aim to address the following open questions:
 - What is the value of θ_{23} ? $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$? ν_{μ} ν_{τ} symmetry?
 - What is the **value of** Δm_{32}^2 ? Normal or Inverted Hierarchy?
 - Is there **CP violation** in the lepton sector? $\delta_{CP} \neq 0$ or π?

Principle of the NOvA and DUNE experiments (similar for T2K and T2HK):

 Produce a beam of ν_μ (or ν_μ).

- Principle of the NOvA and DUNE experiments (similar for T2K and T2HK):
 - Produce a **beam of** v_{μ} (or $\overline{v_{\mu}}$).
 - Measure the ν_{μ} spectrum in a Near Detector (ND).

- Principle of the NOvA and DUNE experiments (similar for T2K and T2HK):
 - Produce a **beam of** v_{μ} (or $\overline{v_{\mu}}$).
 - Measure the ν_{μ} spectrum in a Near Detector (ND).
 - Measure the disappearing ν_{μ} and appearing ν_{e} spectra in a Far Detector (FD).

- Principle of the NOvA and DUNE experiments (similar for T2K and T2HK):
 - Produce a **beam of** v_{μ} (or $\overline{v_{\mu}}$).
 - Measure the ν_{μ} spectrum in a Near Detector (ND).
 - Measure the disappearing ν_{μ} and appearing ν_{e} spectra in a Far Detector (FD).
 - Extrapolate and test oscillation parameters.

NOvA Preliminary

• Measure $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m^2_{32}|$:

• Measure $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m^2_{32}|$:

• Measure $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m^2_{32}|$:

• Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :

$$V_e$$
 appearance probability.
 $P(\nu_{\mu} \rightarrow \nu_e) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^2$

$$\approx P_{\rm atm} + P_{\rm sol} + 2\sqrt{P_{\rm atm}P_{\rm sol}} \left(\cos\Delta_{32}\cos\delta_{CP} \mp \sin\Delta_{32}\sin\delta_{CP}\right)$$
$$\swarrow \sqrt{P_{\rm atm}} = \sin(\theta_{23})\sin(2\theta_{13})\frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL}\Delta_{31}$$

vooronoo probability

• Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :

- Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :
 - v_e appearance probability:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\swarrow \sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

> CP-violation generates opposite effects in v and \overline{v} oscillation probabilities.

- Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :
 - v_e appearance probability:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\swarrow \sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

Other CP-conserving phase yields slightly different oscillation probabilities.

• Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\swarrow \sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

> Other maximum violating **CP phase** enhances ν_e appearance. δ_{CP} is cyclical.

- Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :
 - v_e appearance probability:

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\swarrow \sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

> Matter effects also generate opposite effects in $\nu - \overline{\nu}$ oscillations depending on the Mass Hierarchy.

- Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :
 - v_e appearance probability:

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\frac{\checkmark}{\sqrt{P_{\text{atm}}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

> θ_{23} can increase or decrease ν and $\overline{\nu}$ oscillations probabilities.

Constraining oscillation parameters in NOvA

- Limited statistics (~100s signal candidates), physical boundaries, degenerate parameter space makes reporting statistically accurate measurements challenging.
- Frequentist approach in NOvA: generate and fit millions of pseudoexperiments (<u>arXiv:2207.14353</u>) on supercomputers (<u>CHEP2018</u>).
- Normal Ordering favored at 1.0σ level.
- Exclusion of :
 - $\delta_{CP} = 3\pi/2$ NH at >2 σ
 - $\circ \delta_{CP} = \pi/2$ IH at >3 σ

Latest NOvA-T2K results

- First joint NOvA-T2K oscillation analysis results recently released . Next few figures from :
 - Fermilab seminar
 - KEK <u>seminar</u>.
- Particularly **interesting** given **slight tension** in preferred regions of the parameter space.

Latest NOvA-T2K results: $sin^2\theta_{23}$

- Slight preference for the θ_{23} upper octant.
- Maximum mixing still compatible with measurements.

Latest NOvA-T2K results: Δm_{32}^2

- Joint NOvA-T2K analysis provides the most accurate measurement of Δm²₃₂.
- Δm_{32}^2 is the most precisely known parameter, yet we still don't know its sign.

Latest NOvA-T2K results: δ_{CP}

- Combination in Normal Ordering:
 - Less stringent constraint on parameter space allowing wider range of values.
 - **CP conservation** slightly preferred.
- Combination in Inverted Ordering:
 - Enhanced preference for maximum CP violation.
 - **CP conservation** (0, π) **disfavored** (outside 3σ credible interval).
- $\delta_{CP} = \pi/2$ outside 3σ interval in both orderings.

Latest NOvA-T2K results: δ_{CP}

- Precision on δ_{CP} improved in Inverted Ordering.
- But uncertainties on δ_{CP} remain large (~30%), especially in Normal Ordering.

Latest NOvA-T2K results: δ_{CP}

- Jarlskog invariant quantifies CP-violation in lepton and quark sectors.
 - $J \equiv s_{13}c_{13}^2 s_{12}c_{12}s_{23}c_{23}\sin\delta$
- Broad range of values allowed in Normal Ordering.
- CP conservation, i.e. J=0, outside 3σ interval in Inverted Ordering.

Latest NOvA-T2K results: $sin^2\theta_{13}$

- sin²θ₁₃ is a subdominant degenerate term in LBL oscillations.
- Measurements compatible with **reactor experiments** but not competitive.

Latest NOvA-T2K results: neutrino mass ordering

- Still no strong preference for the **neutrino mass ordering** :
 - o Each experiment individually favors Normal Ordering.
 - Joint fit flips the preference for Inverted Ordering (IO 58%, NO 42%).
 - Including an external constraint on Δm_{32}^2 (and θ_{13}) brings back the slight **preference for Normal Ordering** (IO 59%, NO 41%).

 JUNO will provide a very precise measurement of Δm²₃₂ which will help LBL experiments resolve the neutrino mass ordering.

Current limitations of LBL experiments

- NOvA and T2K measurements are still statistically limited.
- Expected to double their datasets over next few years.

- Neutrino cross-sections would become the dominating uncertainty in nextgeneration experiments within a few months if they are not better understood today:
 - Study neutrino-nucleus interactions in Near Detectors and compare/feed models.
 - Contributed to the measurement of neutrino cross-sections of some of the main interaction channels with NOvA ND:
 - $\overline{\nu_e}$ + N $\rightarrow e^+$ + X : world first double-differential measurement.
 - ν_{μ} + N \rightarrow μ^{-} + π^{\pm} + X : first double-differential measurement in NOvA.

Next generation of LBL experiments in numbers

- 14kt segmented liquid scintillator
- 700 kW neutrino beam
- □ 810 km baseline

55kt water
 Cherenkov
 500 kW
 295 km

➢ Longer baseline → More matter effects → NMO Improved technologies
 Larger detectors

Higher beam power

40kt Liquid Argon TPC
 1.2-2.4 MW
 1300 km

187kt water
 Cherenkov
 1.3 MW
 295 km

DUNE and HyperK sensitivity to Neutrino Mass Ordering

- NMO determination at 5σ guaranteed with **DUNE** in Phase I.
 - In **1 year** in most favorable case.
 - After **4 years** regardless of θ_{23} and δ_{CP} values.

- HyperK has more modest sensitivity to NMO because of shorter baseline:
 - 5σ after 6 years in most favorable case.

DUNE and HyperK sensitivity to δ_{CP}

- HyperK has better sensitivity to δ_{CP} than DUNE:
 - HyperK can exclude CP conservation (>3σ) in just 1 year in the most favorable case.
 - **DUNE** needs favorable δ_{CP} to reach same 3σ sensitivity.
- They will ultimately reach 7°- 20° precision on δ_{CP} .

ESSnuSB+

- ESSnuSB+ is a future next-generation LBL experiment.
- ESSnuSB+ plans to measure v_e appearance at second probability maximum:
 - \circ 5-10 MW neutrino beam
 - o 540 kton water Cherenkov far detector
 - o 360-540 km baseline

> 5°- 7° precision on δ_{CP} after 10 years.

> 5 σ discovery of CP violation for 71% of δ_{CP} values.

Jiangmen Underground Neutrino Observatory

 JUNO is a 20-kton Liquid Scintillator neutrino observatory located in Southern China.

Jiangmen Underground Neutrino Observatory

- JUNO is a 20-kton Liquid Scintillator neutrino observatory located in Southern China.
- JUNO studies reactor electron antineutrino **disappearance** over a medium baseline to:

TAO

- Determine the **neutrino mass ordering**. •
- Measure Δm_{31}^2 , Δm_{21}^2 , and $\sin^2 2\theta_{12}$.

DADAA MO

8 reactors

26.6 GW_{th}

Large statistics

- 20-kton Liquid Scintillator (LS)
- Powerful nuclear reactors (26.6 GW_{th})

Energy resolution: 3% @ 1MeV

- o High photon yield, highly transparent LS
- Very high PMTs coverage (78 %)
- High PMT efficiency (30%)

Low background

- o 650m or 1800 m.w.e overburden
- Efficient veto system (>99.5%)
- Material screening, clean environment

Precise knowledge of reactor spectra

Satellite detector TAO

- Large statistics
 - 20-kton Liquid Scintillator (LS)
 - Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
 - High photon yield, highly transparent LS
 - Very high PMTs coverage (78 %)
 - High PMT efficiency (30%)
- Low background
 - o 650m or 1800 m.w.e overburden
 - Efficient veto system (>99.5%)
 - Material screening, clean environment
- Precise knowledge of reactor spectra

 Satellite detector TAO

- **20kton LS**: LAB + 2.5g/L PPO + 3 mg/L bis-MSB
- Osiris: measures radiopurity of LS.

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - Very high PMTs coverage (78 %)
 - High PMT efficiency (30%)
- Low background
 - o 650m or 1800 m.w.e overburden
 - Efficient veto system (>99.5%)
 - ✓ Material screening, clean environment
- Precise knowledge of reactor spectra

 Satellite detector TAO

Yangjiang

- Two nuclear power plants
- 8 reactor cores
- 26.6 GW_{th}

Reactor	Power (GW_{th})	Baseline (km)	IBD Rate (day^{-1})	Relative Flux (%)
Taishan	9.2	52.71	15.1	32.1
Core 1	4.6	52.77	7.5	16.0
Core 2	4.6	52.64	7.6	16.1
Yangjiang	17.4	52.46	29.0	61.5
Core 1	2.9	52.74	4.8	10.1
Core 2	2.9	52.82	4.7	10.1
Core 3	2.9	52.41	4.8	10.3
Core 4	2.9	52.49	4.8	10.2
Core 5	2.9	52.11	4.9	10.4
Core 6	2.9	52.19	4.9	10.4
Daya Bay	17.4	215	3.0	6.4

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - Very high PMTs coverage (78 %)
 - High PMT efficiency (30%)
- Low background
 - o 650m or 1800 m.w.e overburden
 - Efficient veto system (>99.5%)
 - ✓ Material screening, clean environment
- Precise knowledge of reactor spectra

 Satellite detector TAO

17,512 20" PMTs + 25,600 3" PMTs

		LPMT (20-inch)		SPMT (3-inch)	
		Hamamatsu	NNVT	HZC	
Quantity		5000	15012	25600	
Charge Collection		Dynode	MCP	Dynode	
Photon Detection Efficiency		28.5%	30.1%	25%	
Mean Dark Count Rate [kHz]	Bare	15.3	49.3	0.5	
	Potted	17.0	31.2		
Transit Time Spread (σ) [ns]		1.3	7.0	1.6	
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs	
Coverage		75%		3%	
Reference		arXiv: 2205.08629		NIM.A 1005 (2021) 165347	

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
- Low background
 - o 650m or 1800 m.w.e overburden
 - Efficient veto system (>99.5%)
 - ✓ Material screening, clean environment
- Precise knowledge of reactor spectra

 Satellite detector TAO

- **650m overburden**: 4Hz of cosmic muons in LS
- Top Tracker: <u>arXiv:2303.05172</u>
 - Opera plastic scintillator
- Outer Cherenkov Detector:
 - \circ 35 kton ultrapure water
 - o 2400 20" PMTs

Veto strategy :

57 reactor $\overline{v_e}$ + 127 ⁹Li + 40 ⁸He events/day **47** reactor $\overline{v_e}$ + 0.8 ⁹Li/⁸He events/day

- Large statistics
 - ✓ 20-kton Liquid Scintillator (LS)
 - ✓ Powerful nuclear reactors (26.6 GW_{th})
- Energy resolution: 3% @ 1MeV
 - ✓ High photon yield, highly transparent LS
 - ✓ Very high PMTs coverage (78 %)
 - ✓ High PMT efficiency (30%)
- Low background
 - ✓ 650m or 1800 m.w.e overburden
 - ✓ Efficient veto system (>99.5%)
 - ✓ Material screening, clean environment
- Precise knowledge of reactor spectra
 - ✓ Satellite detector TAO

- TAO can perform a precise measurement of reactor v
 _e spectrum:
 - $\circ~$ 44m from reactor \rightarrow 20 times JUNO event rate
 - o 2.8 ton Gd-LS, 1 ton fiducial volume
 - o 4500 PEs/MeV
 - SiPM: 94% coverage with 50% PDE
 - Energy resolution <2% @ 1 MeV</p>
 - Sub-percent shape uncertainty

Updates on JUNO construction

- Support Structure completed.
- 50% of Acrylic Vessel installed.
- Top hemisphere fully instrumented.
- Detector completion and first data expected by mid-2025.

Double calorimetry strategy

- Unprecedented energy resolution of 3% @ 1 MeV :
- Critical for the determination of the **neutrino mass ordering**.

- Large photomultipliers could exhibit non-linear behavior (high energy events, edge of detector, etc.).
- Use small photomultipliers to detect and control non-linearity effects (e.g <u>arXiv:2312.12991</u>).

JUNO oscillation analysis

- First data mid-2025.
- Development of analysis framework ongoing.
- Development of oscillation analysis and realistic sensitivity studies.
- Updated Neutrino Mass Ordering sensitivity coming soon!
- Preparing the **statistical framework** for measurements at low exposure, e.g. **first 100 days**.

Example spectrum at 100 days

Precision measurement of neutrino oscillations parameters

 JUNO will provide an order of magnitude improvement over current knowledge of Δm²₃₁, Δm²₂₁, and sin²θ₁₂.

arXiv:2204.13249v1

	Central Value	PDG2020	100 days	6 years	20 years
$\Delta m_{31}^2 \; (\times 10^{-3} \; \mathrm{eV^2})$	2.5283	±0.034 (1.3%)	±0.021 (0.8%)	±0.0047 (0.2%)	±0.0029 (0.1%)
$\Delta m_{21}^2 \; (\times 10^{-5} \; \mathrm{eV}^2)$	7.53	±0.18 (2.4%)	±0.074 (1.0%)	±0.024 (0.3%)	±0.017 (0.2%)
$\sin^2 \theta_{12}$	0.307	±0.013 (4.2%)	±0.0058 (1.9%)	±0.0016 (0.5%)	±0.0010 (0.3%)
$\sin^2 \theta_{13}$	0.0218	±0.0007 (3.2%)	±0.010 (47.9%)	±0.0026 (12.1%)	±0.0016 (7.3%)

JUNO sensitivity to neutrino mass ordering

- JUNO will independently determine the neutrino mass ordering with a 3σ sensitivity in 6 years.
- Updated **sensitivity** coming soon.

Dawn of the precision era in neutrino oscillation physics

Conclusions

- Very exciting time for neutrino physics !
- JUNO will be the first experiment to perform sub-percent precision measurements of the neutrino parameters.
- **DUNE** and **HyperK** will further complete the **neutrino picture**.
- With precision measurements over the next 10-20 years, it will be possible to:
 Precisely quantify CP-violation (Jarlskog invariant): answer to baryon asymmetry ?
 Test unitarity of PMNS matrix: window for physics beyond the Standard Model.
 - Better understand origin of mass and flavor.

Backup

Signal in JUNO

• 47 IBD per day expected:

- Prompt + delayed signals to strongly suppress backgrounds.
- 7% backgrounds, mostly below 3MeV.
- $\circ~~\text{~~}10^5$ IBD candidates in 6 years.

JUNO uncertainties

• Statistical and systematic uncertainties for 6 years.

6 years	$\Delta \chi^2_{min}$	stat. + 1 syst.				
Statistics	11.3					
Stat.+Flux error	-0.6					
Stat.+Backgrounds	-1.4					
Stat.+Nonlinearity	-0.4					
Stat.+Others	< -0.05					
Total	9.0					
UNO Simulation Preliminary 0 2 4 6 8 10 12						

Δm_{31}^2	1σ (%)	Δm ² ₂₁		1σ (%)	
Statistics	0.17		Statistics	0.16	
Reactor:			Reactor:		
- Uncorrelated	< 0.01		- Uncorrelated	0.01	
- Correlated	0.01		- Correlated	0.03	
- Reference spectrum	0.05		- Reference spectrum	0.07	
- Spent Nuclear Fuel	< 0.01		- Spent Nuclear Fuel	0.07	
- Non-equilibrium	< 0.01		- Non-equilibrium	0.14	
Detection:			Detection:		
- Efficiency	0.01		- Efficiency	0.02	
- Energy resolution	< 0.01		- Energy resolution	0.01	
- Nonlinearity	0.04		- Nonlinearity	0.05	
- Backgrounds	0.04		- Backgrounds	0.18	
Matter density	0.01		Matter density	0.01	
All systematics	0.08		All systematics	0.27	
Total	0.19		Total	0.32	
$\sin^2 \theta_{12}$	1σ (%)		$\sin^2\theta_{13}$	1σ (%)	
sin²θ ₁₂	1σ (%)		sin ² θ_{13}	1σ (%)	
Peactor:	0.54		Beactor	0.54	
- Uncorrelated	0.10			2.53	
Correlated	0.10		- oncorrelated	2.55	
- Correlated	0.27		Correlated	6.02	
- Reference spectrum	- 0.00		- Correlated	6.83	
Enont Nuclear Fuel	0.09		- Correlated - Reference spectrum	6.83	
- Spent Nuclear Fuel	0.09		- Correlated - Reference spectrum - Spent Nuclear Fuel Non equilibrium	6.83 3.48 1.55	
- Spent Nuclear Fuel - Non-equilibrium	0.09 0.05 0.10		- Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium	6.83 3.48 1.55 2.65	
- Spent Nuclear Fuel - Non-equilibrium Detection:	0.09 0.05 0.10 0.23		- Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: Efficiency	6.83 3.48 1.55 2.65	
Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Encry	0.09 0.05 0.10 0.23		Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Encourtered	6.83 3.48 1.55 2.65 5.81	
Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution	0.09 0.05 0.10 0.23 0.01		Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Efficiency Energy resolution Nonlingarity	6.83 3.48 1.55 2.65 5.81 0.39	
Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backromude	0.09 0.05 0.10 0.23 0.01 0.09 0.20		Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backgroundf	6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89	
Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backgrounds	0.09 0.05 0.10 0.23 0.01 0.09 0.20		Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backgrounds Matter descript	6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.98	
Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backgrounds Matter density	0.09 0.05 0.10 0.23 0.01 0.09 0.20 0.07 0.07		Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backgrounds Matter density	6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.98 9.16	
- Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density All systematics Tetel	0.09 0.05 0.10 0.23 0.01 0.09 0.20 0.07 0.07 0.40		Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backgrounds Matter density All systematics Table	6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.98 8.16	

Solar neutrinos

• JUNO sensitive to both high and intermediate energy solar neutrinos.

arXiv:2210.08437

High energy solar neutrinos

- Model independent detection of ⁸B neutrinos via three interaction channels CC, NC and ES:
 - > 5% uncertainty on ⁸B neutrino flux
 - > 20% uncertainty on Δm_{21}^2
 - > 8% uncertainty on $sin^2\theta_{12}$

Channels	Threshold	Signal	Event numbers	
	[MeV]		$[200 \text{ kt} \times \text{yrs}]$	after cuts
$CC \qquad \nu_e + {}^{13}C \rightarrow e^- + {}^{13}N\left(\frac{1}{2}; \text{gnd}\right)$	$2.2 { m MeV}$	$e^- + {}^{13}N$ decay	3929	647
NC $\nu_x + {}^{13}\text{C} \rightarrow \nu_x + {}^{13}\text{C}(\frac{3}{2}; 3.685 \text{ MeV})$	$3.685 { m MeV}$	γ	3032	738
ES $\nu_x + e \rightarrow \nu_x + e$	0	e^-	$3.0{ imes}10^5$	$6.0{ imes}10^4$

Intermediate energy solar neutrinos

- Possible thanks to radiopurity efforts.
- World leading constraints after a few years.
- Day/Night asymmetry sensitivity <1%.

⁻⁷Be v

pep v

³Ν-ν

¹⁵O-v

800 1000 1200 1400 1600 1800 2000 2200 2400

Baseline radiopurity

IBD radiopurity

Ideal radiopurity

BX-like radiopurity

10⁷

 10^{6}

10⁵

10⁴ 10³

10²

Events / p.e.

Proton decay

- p → v K⁺: three-fold coincidence to detect proton decay with high efficiency (36.9%).
- Good energy resolution helps reduce the backgrounds: less than 0.2 events after 10 years.
- Competitive limit on proton lifetime of
 9.6 × 10³³ years for 200 kton-year exposure.
- More details in <u>arXiv:2212.08502</u>.

TAO

- Sub-percent precision on reactor neutrino spectrum shape.
- TAO can search for sterile neutrinos.

Atmospheric neutrinos

- Detect and discriminate ν_e and ν_{μ} CC interactions through event time profile.
- Sensitivity to NMO through matter effects: 0.7-1.4σ in 6 years.
- Can be combined with reactor NMO analysis.

JUNO + LBL combination

Better rejection of the wrong hypothesis via combination: <u>arXiv:2008.11280</u>

How are neutrinos produced?

 Protons are accelerated and smashed into a target. Focusing magnets allow us to select the charge of the short-lived daughter particles which produce mostly neutrinos or antineutrinos as they decay.

How are neutrinos detected?

 The NOvA Near Detector and Far Detector are both segmented liquid scintillator detectors providing 3D tracking and calorimetry.

• Near Detector:

- 290 tons.
- 350 ft underground at Fermilab.

• Far Detector:

- 14 ktons.
- 810km away on the surface in Minnesota.

How are neutrinos detected?

 Alternating horizontal/vertical planes composed of extruded PVC cells filled with mineral oil doped with scintillating material.

• An Avalance PhotoDiode collects and amplifies the light signal.

• Charged particles ionize the medium and produce scintillation light. The light is picked up by wavelength shifting fibers.
What do neutrino events look like in NOvA?

• Use Machine Learning techniques to select and identify neutrino interactions.

What is NOvA's future sensitivity?

- Run until **2026**, accumulating more than 3×10^{21} POT in both ν and $\overline{\nu}$ modes.
- Could reach 5σ sensitivity to Mass Hierarchy for most favorable parameters.
- Probe the majority of δ_{CP} values at 2σ -level.

DUNE LArTPC

Asymétrie matière-antimatière

- Explication par baryogénèse sous Conditions de Sakharov :
 - 1) Violation du nombre baryonique.
 - 2) Violation de Charge et de Charge-Parité.
 - 3) Interactions hors-équilibre.
- Neutrino de Majorana (L-violation) et sphalérons (B+L-violation) satisfont 1).
- Observation de violation de CP satisferait 2).
- Désintégration de neutrino lourds satisfait 3).