J1048+7143: A SUPERMASSIVE BLACK HOLE BINARY CANDIDATE

Ilja Jaroschewski

Cosmic Rays and Neutrinos in the Multi-Messenger Era

RUB

Collaborators:

DFG

Emma Kun, Julia Becker Tjus, Silke Britzen,

...

SFB1491

Gamma-Ray Light Curve

Fit with two-sided exponential function

J1048+7143

1

Kun, **IJ+** in prep.

Fit with two-sided exponential function

J1048+7143

1

Kun, **IJ+** in prep.

Gamma-Ray Light Curve + Optical

Kun, **IJ+** in prep.

CRS

irfu

Gamma-Ray Light Curve + Optical + Radio

J1048+7143

1

Flare Durations

Not on Poster!

Flare Durations + Periods Between

Not on Poster!

Flare Durations + Periods Between

modified from de Bruijn et al. (2020)

irfu

Cea

modified from de Bruijn et al. (2020)

<u>cea</u> irfu

<u>cea</u> irfu

irfu

Cea

Target

4

Time 20

irfu

Time (2016

irfu

Cea

Target

Double Peak Structure *an* **Explanation** Time (years 2016 ۱. sheath p, 11. spine e^-, e^+ sheath p, e^- 111. р Observer Target

5800 MID

Applying the Jet Precession Model in 2 Steps

Kun, **IJ** et al. (2022)

Applying the Jet Precession Model in 2 Steps

Cea

Kun, **IJ** et al. (2022)

Flare Prediction in Gamma Rays – 4th Flare agrees!

half-opening angle: $\zeta \sim 5.73^{\circ}$

half-opening angle: $\zeta \sim 8.34^\circ$

irfu

Cea

Flare Prediction in Gamma Rays – 4th Flare agrees!

Constrained Binary Mass Ratios

Not on Poster!

Expected Gravitational Wave Signal

analytical **Jet Precession** model applied with:

Time range of next flare, if the jet will point

9 ilja.jaroschewski@cea.fr

re: 2024 March 10 - 2026 November 6

analytical **Jet Precession** model applied with:

Fime range of next flare, if the jet will point

ilja.jaroschewski@cea.fr

9

e: 2024 March 10 - 2026 November (

analytical **Jet Precession** model applied with:

Cea

analytical **Jet Precession** model applied with: in combination with **<u>Spine-Sheath</u>** jet model double-peak structure in gamma rays 1. and optical light curve explainable • 3 flares observed Mass ratio constrained from above optical $\lesssim 0.19$ a 2. 4 flares observed • 4th flare (successfully) predicted Gamma Mass ratio constrained from above AND below rays $0.062 \le q \le 0.088$ 3. 2 flares observed • 3rd flare: more data necessary Radio waves Time range of next flare, if the jet will point Cea at Earth once more: 2024 March 10 - 2026 November 6 ilja.jaroschewski@cea.fr 9

analytical Jet Precession model applied with: in combination with **<u>Spine-Sheath</u>** jet model double-peak structure in gamma rays 1. and optical light curve explainable • 3 flares observed Mass ratio constrained from above optical $\lesssim 0.19$ More coming: ZTF optical light curve \rightarrow combined optical light curve 2. 4 flares observed **Expected Neutrino upper limits** • 4th flare (successfully) predicted Swift X-Ray light curve Gamma Mass ratio constrained from above AND below rays $0.062 \le q \le 0.088$ Goal \rightarrow Combined MM picture! 3. • 2 flares observed • 3rd flare: more data necessary Radio Stay Tuned!!! waves Time range of next flare, if the jet will point Cez at Earth once more: 2024 March 10 - 2026 November 6 ilja.jaroschewski@cea.fr

Appendix

Flare Prediction in Gamma Rays

Flare Prediction in Gamma Rays

irfu

Cea

Kun, IJ et al. (2022)

half-opening angle: $\zeta \sim 5.73^{\circ}$

Backup:

Gamma-Ray Light Curve + X-Ray + Optical + Radio

irfu

Backup: J1048+7143 – Centroid Method (Kun, IJ et al. 2022)

 $X_{i,j} = \frac{\int t \cdot F_{i,j}(t) dt}{\int F_{i,j}(t) dt}$ $Y_{i,j} = \frac{1}{2} \frac{\int F_{i,j}^2(t) dt}{\int F_{i,i}(t) dt}$ $X_{i} = \frac{A_{i}}{A_{i} + B_{i}} X_{i,1}$ $+ \frac{B_{i}}{A_{i} + B_{i}} X_{i,2}$ $Y_i = \frac{A_i}{A_i + B_i} Y_{i,1} + \frac{B_i}{A_i + B_i} Y_{i,2}$

irfu

Cea

Kun, IJ et al. (2024)

Backup: J1048+7143 – Flare Characteristics 1/3

Backup: J1048+7143 – Flare Characteristics 2/3

Difference of main flare centers in the gamma-ray and radio light curve:

Main Flare durations:

irfu

Cea

Backup: J1048+7143 – Flare Characteristics 3/3

Flare areas normalized to last flare

<u>cea</u> irfu

Backup: J1048+7143 – Possible Nutation in Gamma Rays + Optical

cea irfu