

Félix Bretaudeau, Laurent Aphecetche, Valentin Decoene, Richard Dallier and Lilian Martin for the KM3NeT Collaboration

KM3Ne1

Cosmic Rays and Neutrinos in the Multi-Messenger Context

AstroParticle and Cosmology Laboratory, Paris

Disclaimer: Slides are really dense (you can find them online), follow the sign 🐼 that indicates the key information of the slide

✤ Most energetic radio signal ever detected: E_{iso} ~10³⁵-10⁴³ erg

- Extremely short (-ms), with µs sub-structures
- Most coherent emissions in the Universe \Rightarrow Non-thermal mechanism

Which population of sources can produce such features?

Total number of detected FRBs from the online catalogue Blinkverse	816 Total FRBs (source)	67 (8.21%) Repeaters	749 (91.79%) Non-repeaters	48 (5.88%) FRB Hosts
DIII IKVEI SE				

Fast Radio Bursts context

- ✤ 2016: Discovery of first repeating source [3]
- Repeater bursts are random, often clustered together
- Repeaters seem statistically different from the One-off FRBs
- April 28, 2022: Hard X-Ray Burst (HXRB) detected in coincidence with galactic FRB coming from magnetar SGR 1953+2154 [5]

Lightcurve of the HXRB measured by INTEGRAL (from [5])

Smoothed distributions of FRB per category in duration and bandwidth (from [4])

35 -25 30 -25 -20 X-Ray burst ISGRI counts ms⁻¹ Peak 2 20 15 пΠ 10 Peak 3 Peak 0.40 0.42 0.44 0.50 0.46 0.48 5-0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 seconds since 2020-04-28T14:34:24.0 UTC, geocenter FRB

Hypothesis of the magnetar source strongly favored!

Fast Radio Burst Models

Many models emerged to explain FRB emissions [6,7]. They mostly fall into two categories: Magnetospheric models Comptonized Magnetically powered Magnetically powered

Magnetospheric model (from 8])

Mechanisms

Curvature radiation of bunches Mag. Field Lines Reconnection "Pulsar mechanism" Inverse Compton Scattering

Sources Magnetars

Neutron Star mergers Neutron star with companion (asteroid, White Dwarf)

Mechanisms

...

Maser Mag. Field Line Reconnection Plasma Laser

Sources

Magnetars

Black Holes BH - NS merger NS - WD merger Axion stars / Quark stars / ...

- Soth Shock & Magnetosphere models involve dense, highly magnetized media ⇒ High Energy counterparts
- High Energy Neutrino counterpart?
 - > Can escape dense media
 - ➤ Missing piece of the FRB puzzle?

Some models [11-13] postulate the emission of neutrinos from magnetars (without assuming any FRB emission model):

> Emitted **simultaneously**?

-

-

Emission sites for a possible neutrino production in magnetars. The magnetosphere, the current sheets and relativistics socks region are studied. From [13]

6

- FRB-Neutrino search in experiments: Looking for spatial and temporal coincident neutrino candidates
- ANTARES: 12 One-Off FRBs studied [15]
 - > New bursts since, Larger detector
- IceCube: 4, 13, and 28 FRBs studied [16-18]

Let's try with KM3NeT!

*

New bursts since, Different sky coverage

⇒ Flux Upper Limit ~1 GeV.cm⁻² @ 100 TeV

⇒ Flux Upper Limit ~10⁻² GeV.cm⁻² @ 100 TeV

Upper limits on a neutrino flux coming from FRB sources (from [18])

7

KM3NeT is a neutrino telescope in the Mediterranean Sea (see Aart's presentation tomorrow!) *

- Detects atmospheric and cosmic neutrinos \succ with the Cherenkov light from their interactions products
- ➤ KM3NeT/ARCA aims an angular resolution of ~ 0.1° at 1 TeV, most sensitive in the 100 GeV – 1 PeV range [19]

➤ KM3NeT/ORCA and KM3NeT/ARCA under construction, finished in the 2030's (

- Analysis Strategy: Spatial and Temporal correlation 🖉
 - > Time Window of 1000 seconds centered around the FRB time
 - On/Off search: OFF region to estimate with large statistics the background in the ON region.
 The ON region size is determined with the detector's angular resolution
 - > 250 FRBs studied with different configurations of ORCA & ARCA, from 2020 to 2024

✤ Results: Come see my poster!

References

[1] The CHIME/FRB Collaboration. *Nature* 587, 54–58 (2020). https://doi.org/10.1038/s41586-020-2863-u

[2] Nimmo, K., Hessels, J.W.T., Kirsten, F. *et al. Nat. Astron.* 6, 393-401 (2022). https://doi.org/10.1038/s41550-021-01569-9

[3] Spitler, L., Scholz, P., Hessels, J. *et al. Nature* 531, 202–205 (2016). https://doi.org/10.1038/nature17168

[4] Pleunis Z. et al. ApJ 923 1 (2021). https://doi.org/10.3847/1538-4357/ac33ac

[5] Mereghetti S. et al. ApJL 898 L29 (2020). https://doi.org/10.3847/2041-8213/aba2cf

[6] Zhang B. Rev. Mod. Phys. 95, 035005 (2023). https://doi.org/10.1103/RevModPhys.95.035005

[7] Lyubarsky, Y. Universe 7, 56 (2021). https://doi.org/10.3390/universe7030056

[8] Lu W., Kumar P., Zhang B., MNRAS 498 1, 1397–1405 (2020). https://doi.org/10.1093/mnras/staa2450.arXiv:2005.06736

[9] Metzger B. et al. MNRAS 485 3, 4091–4106 (2019). https://doi.org/10.1093/mnras/stz700

[10] Weltman A., Walters A., Nature 587 7832, 43-44 (2020) 10.1038/d41586-020-03018-5

[11] Zhang B. et al. ApJ 595 346 (2003). <u>https://doi.org/10.1086/377192</u>

[12] Metzger B, Fang K., Margalit B. *et al. ApJL* 902 L22 (2020). https://doi.org/10.3847/2041-8213/abbb88

[13] Qu Y., Zhang B., MNRAS, 511-1, 972-979 (2022). https://doi.org/10.1093/mnras/stac117
[14] Parfrey K. et al ApJ 774 92 (2013). https://doi.org/10.1088/0004-637X/774/2/92
[15] Albert A. et al. MNRAS, 482 1, 184-193 (2019). https://doi.org/10.1093/mnras/stu2621
[16] Aartsen M. G. et al. ApJ 857 17, 13 (2018) https://doi.org/10.3847/1538-4357/aab4f8
[17] Aartsen M. G. et al. ApJ 890 111, 9 (2020) https://doi.org/10.3847/1538-4357/ab564b
[18] R. Abbasi et al. ApJ 946 80 (2023) https://doi.org/10.3847/1538-4357/acbea0
[19] Adrián-Martínez S. et al. J. Phys.G: nucl. Part. Phys. 43 084001 (2016). https://doi.org/10.1088/0954-3899/43/8/084001

Backup

Fast Radio Burst Models

Many models emerged to explain FRB emission [6]. They mostly fall into two categories: **Shock/ejecta** models and **Magnetospheric** models

- (Supermassive) Black Holes
- Blitzars
- Stellar flares
- Exotic objects: strange quark stars, Primordial Black Holes, superconducting cos strings, White Holes
- Alien technology (light sails)
- Binary Mergers with NS/WD/BH
- The models involving a Neutron star or a magnetar are studied in depth:
- Magnetar with companion: White dwarf, Asteroid colliding or orbiting
- Magnetars alone
- Magnetars: young neutron stars with intense magnetic fields [7]:
- Twisted magnetospheres with $B\gtrsim10^{14}$ G creating flares
- Magnetically-powered emissions
- Rotation periods ~s

12

Impression of a strange quark star emitting a FRB, by the AI <u>leonardo.ai</u>

Fast Radio Bursts mechanisms

- Reconnection of magnetic field lines
- Maser in distant relativistic shocks
- Curvature radiation by bunches of leptons
- Collimated Alfvén Wave trail (*Wing*) creates coherent re^{Broo}
- Inverse Compton Scattering by bunches
- Free Electron Laser

All of these mechanisms involve highly magnetized and relativistic plasma: it matches really well a **magnetar progenitor** [8]

- Magnetars: young neutron stars with intense magnetic fields [7]:
 - Twisted magnetospheres with $B\gtrsim 10^{14}~\text{G}$ creating flares
- Magnetically-powered emissions

Rotation periods ~s

The rate of magnetic flares is compatible with the expected FRB rate

shadow of the companion

Description of the current sheet formation and magnetic reconnection. The black lines are the field lines, and the color show the toroidal current density. Reconnection begins at t_{rec}, figure (d). From [9]

- Some models postulate the emission of neutrinos from magnetars (without assuming any FRB emission model):
- HE Neutrinos need a hadronic component to be produced (pX or pγ, where X = p,n,N). With pion production, E_ν ~0.05 E_n
 - > Photopion processes: $p + \gamma \rightarrow \pi^{\pm} + n \text{ or } \pi^{0} + p$
 - > Hadronic processes: $p + X \rightarrow \pi^* + Y$
 - > Gamma-ray interactions (subdominant): $\gamma + \gamma \rightarrow \mu^+ + \mu^-$

• Then
$$\boldsymbol{\pi}^{*} \to \mu^{*} + v_{\mu} (\overline{v_{\mu}})$$

• And $\mu^{*} \to \mathbf{e}^{*} + v_{\mathbf{e}} (\overline{v_{\mathbf{e}}}) + \overline{v_{\mu}} (v_{\mu})$

- 3 emission sites (and associated mechanisms):
 - > Magnetosphere (|| **E** field acc.)
 - > Current sheets (Fermi First Order acc.)
 - > Relativistics shocks (Alfvén waves)
- Consider the time delay between FRB and neutrino:
 - > Are they from the same mechanism?
 - > Are they emitted simultaneously?

Expected flux from the magnetar SGR 1935+2154, with the neutrino energy derived from the X-ray energy (E =100 keV). For this model, E_{iso} =10⁴¹ erg, B=2.2 × 10¹⁴ G and D_L =10 kpc. From [14]