CTAO SENSITIVITY **TO HEAVY GALACTIC COSMIC RAYS**

09/12/2024 - 17h40

3rd year, <u>mail</u> : coline.dubos@ijclab.in2p3.fr

Cosmic Rays conference

DUBOS Coline

GALACTIC SOURCES

SNRs, PSRs, stellar clusters

GAMMA RAYS

Point to their sources + not absorbed in our Galaxy + created by leptonic and hadronic mechanisms

Earth

air shower

COSMIC RAYS

Charged particles, deflected by magnetic fields

🐞 09/12/2024 - 17h40

CRs conference

DUBOS Coline

© IceCube/WIPAC

(modified)

GALACTIC SOURCES

SNRs, PSRs, stellar clusters

GAMMA RAYS

Point to their sources + not absorbed in our Galaxy + created by leptonic and hadronic mechanisms

Earth

.....

air shower

COSMIC RAYS

Charged particles, deflected by magnetic fields

🔖 09/12/2024 - 17h40

CRs conference

Qer.

p, CNO, Fe

DUBOS Coline

© IceCube/WIPAC

(modified)

Introduction 1

GALACTIC SOURCES

SNRs, PSRs, stellar clusters

GAMMA RAYS

Point to their sources + not absorbed in our Galaxy + created by leptonic and hadronic mechanisms

Earth

....

air shower

COSMIC RAYS

Charged particles, deflected by magnetic fields

🔖 09/12/2024 - 17h40

CRs conference

Q e

p, CNO, Fe

DUBOS Coline

© IceCube/WIPAC

(modified)

HADRONIC PROCESS FOR GAMMA-RAYS CRs-proton interaction -Neutral pion decay process

© NASA's Goddard Space Flight Center

Introduction

GALACTIC SOURCES

SNRs, PSRs, stellar clusters

GAMMA RAYS

Point to their sources + not absorbed in our Galaxy + created by leptonic and hadronic mechanisms

Earth

.

air shower

COSMIC RAYS

Charged particles, deflected by magnetic fields

🔖 09/12/2024 - 17h40

CRs conference

Q e

p, CNO, Fe

DUBOS Coline

© IceCube/WIPAC

(modified)

HADRONIC PROCESS FOR GAMMA-RAYS CRs-proton interaction -Neutral pion decay process

Introduction

GALACTIC SOURCES

SNRs, PSRs, stellar clusters

GAMMA RAYS

Point to their sources + not absorbed in our Galaxy + created by leptonic and hadronic mechanisms

Earth

.....

air shower

COSMIC RAYS Charged particles, deflected by magnetic fields

🔖 09/12/2024 - 17h40

CRs conference

Qer

p, CNO, Fe

DUBOS Coline

© IceCube/WIPAC

(modified)

CONTEXT

COSMIC RAYS SPECTRUM 10⁴ 1 particle per m² – second 10-1 **_____** 111 32 orders of magnitude! SOLAR CRS 10⁻⁶ Flux [m².sr.s.GeV]⁻¹ Knee (1 particle per m² – year) 10-11 GALACTIC CRS EXTRAGALACTIC 10⁻¹⁶ CRS 10⁻²¹ Ankle (1 particle per km² – year) 10⁻²⁶ 10[°] 10¹² 10¹⁵ 10¹⁸ 10²¹ Energy [eV] 12 orders of magnitude! CRs conference DUBOS Coline

も 09/12/2024 - 17h40

2 Context

CONTEXT

CONTEXT

GAMMA RAYS Point to their sources **GALACTIC SOURCES** + not absorbed in our Galaxy SNRs, PSRs, stellar clusters + created by leptonic and hadronic mechanisms Qep, CNO, Fe Earth air shower **COSMIC RAYS** © IceCube/WIPAC (modified) Charged particles, deflected by magnetic fields

🄖 09/12/2024 - 17h40

CRs conference

DUBOS Coline

HADRONIC PROCESS FOR GAMMA-RAYS proton-proton interaction -Neutral pion decay process

I - When models meet data

MWL ANALYSIS OF THE Y SPECTRUM OF 2 SNRS

GAMMA-RAY SKY

SNR HAWC J2227+610

The γ-ray supernova G106.3+2.7 MAGIC collaboration 2022

The γ-ray supernova remnant RX J1713.7-3946 F. Aharonian et al. 2018

09/12/2024 - 17h40

CRs conference

DUBOS Coline

RX J1713.7-3946 SNR

MWL ANALYSIS OF THE γ SPECTRUM OF 2 SNRS

GAMMA-RAY SKY

FERMI-LAT / VERITAS / LHAASO / HAWC TELESCOPE SNR HAWC J2227+610

09/12/2024 - 17h40

The γ-ray supernova G106.3+2.7 MAGIC collaboration 2022

The γ-ray supernova remnant RX J1713.7-3946 F. Aharonian et al. 2018

CRs conference

DUBOS Coline

Multiwavelength analysis of Galactic Supernova Remnants

P. Sharma, Z. Ou, C. Henry-Cadrot, C. Dubos and T. Suomijärvi (JCAP 2023)

SCAN ME

FERMI / H.E.S.S. TELESCOPERX J1713.7-3946SNR

HEAVY CR PION DECAY MODELLING

 γ_{π} Gammapy - Naima

- **N_H**: number density of the target protons **A**_m: amplitude of the proton distribution
- **E**_A: reference energy

a: proton spectral index **Ec**: proton cut-off energy **β**: cut-off exponent Spectral parameters fixed by the MWL analysis

Photon flux emitted from CR distribution $F(E) = f.\sigma.N_{H}.A_{m}.(E/E_{O}).e^{-\alpha - (E/Z.E_{c}/A)^{\beta}}$

I - When models meet data 4

CRs conference

DUBOS Coline

II - WHEN CTAO SIMULATIONS MEET MODELS γ_{π} Gammapy-Naima

🚺 09/12/2024 - 17h40

CRs conference

DUBOS Coline

Air Shower

When **CTAO** simulations meet models

II - WHEN CTAO SIMULATIONS MEET MODELS γ_{π} Gammapy - Naima

North site Canary Island

How to perform CTAO simulations of y spectrum with Gammapy?

 Instrument Response Function (IRF): prod5 v0.1 Monte Carlo simulations of the γ-ray shower
→ zenith angle / observation time: 50h / South site (14 MSTs + 37 SSTs)

- Consideration of the background: **1D On-Off analysis**

- Radiative models: pion decay considering CRs of:

 \longrightarrow protons only

- \longrightarrow CNO with 1 PeV CR composition
- \longrightarrow CNO with a type II SN composition
- \longrightarrow Fe with a type II SN composition

🔖 09/12/2024 - 17h40

gamma ray interacts with the atmosphere

CRs conference

DUBOS Coline

Air Shower

II - WHEN CTAO SIMULATIONS MEET MODELS

🔖 09/12/2024 - 17h40

CRs conference

DUBOS Coline

II - When **CTAO** simulations meet models 8

<u>Can we separate the studied models</u>?

Data fitting: if Log-Likelihood test $\Delta TS > 29 (5\sigma)$ (2 free parameters) => the models are distinguished

Can we separate the studied models?

Data fitting: if Log-Likelihood test $\Delta TS > 29 (5\sigma)$ (2 free parameters) => the models are distinguished

<u>Can we separate the studied models</u>?

Data fitting: if Log-Likelihood test $\Delta TS > 25 (5\sigma)$ (1 free parameter) => the models are distinguished

CTAO simulations of **HAWC J2227+610** (A_m is free during the fit)

🍾 09/12/2024 - 17h40

CRs conference

DUBOS Coline

CONCLUSION

<u>Why study CRs with CTAO</u>?

CTAO offers indirect means of **pinpointing the CR source** using gamma-rays. Actually, charged CRs are deviated by Galactic magnetic fields and lose the knowledge of their original direction.

<u>What will CTAO bring to the knowledge of CRs?</u>

CTAO will increase the sensitivity to the spectral shape of γ -rays. In addition to a MWL analysis, this will allow us to **distinguish protons from heavy CRs and thus investigate the origin of very high energy CRs**.

<u>Where can we find this work</u>?

09/12/2024 - 17h40

DUBOS Coline

CRs conference

CTAO could investigate the **origin of the particle distribution shape**, which may result from **heavy nuclei** or various **acceleration scenarios**.

CONCLUSION

And the other sources?

Stellar clusters are also candidates for the origin of very high energy CRs. We are performing **MWL analysis** on these sources as well.

Westerlund II

🄖 09/12/2024 - 17h40

CRs conference

DUBOS Coline

APPENDIX CONTRIBUTION OF ELECTRONS THROUGH THE INVERSE COMPTON PROCESS

RX J1713.7-3946

🄖 09/12/2024 - 17h40

CRs conference

DUBOS Coline

HADRONIC PROCESS FOR GAMMA-RAYS proton-proton interaction -Neutral pion decay process Accelerated nuclei Interstellar proton SNR

