Unveiling the hard X-ray emission of NGC 1068, a possible high-energy neutrino source

By Antoine Foisseau¹, Alexis Coleiro¹, Floriane Cangemi¹, Andrea Goldwurm² and Cyril Lachaud¹

¹: Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France
 ²: Université Paris Cité, CNRS, CEA, Astroparticule et Cosmologie, F-75013 Paris, France

2024/12/11 - Cosmic rays and neutrinos in the multi-messenger era

Origin of high-energy cosmic rays (HECRs) NGC 1068 as the most probable source of high-energy neutrinos

High-energy charged particles \rightarrow deflected by $B \rightarrow$ hard to follow Particles (p) interacts with other particles (p, γ) through hadronic processes in the relativistic jets of several sources (AGNs).

$p + p \rightarrow \pi^{0} + p + p$ $p + p \rightarrow \pi^{+} + n + p$ $p + \gamma \rightarrow p + \pi^{0}$ $p + \gamma \rightarrow n + \pi^{+}$ $n + \gamma \rightarrow \pi^{-} + \pi^{+} + n$	$\pi^{0} \rightarrow 2\gamma$ $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \longrightarrow$ $\pi^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu}$	$\nu = \text{neutral p}$ $\overrightarrow{B} \rightarrow \text{detect}$
$p + \gamma \rightarrow \pi^- + \pi^+ + p$, μ	

particles \rightarrow unaffected by ed(IceCube, KM3NeT)

Emitters of ν = emitters of HECRs \Rightarrow following ν can help knowing the emitters of HECRs

Origin of high-energy cosmic rays (HECRs) NGC 1068 as the most probable source of high-energy neutrinos

High-energy charged particles \rightarrow deflected by $B \rightarrow$ hard to follow Particles (p) interacts with other particles (p, γ) through hadronic processes in the relativistic jets of several sources (AGNs).

 \Rightarrow NGC 1068 is the most probable source of emitting neutrinos with a significant neutrinos excess at the confidence level of 4.2σ . \Rightarrow One way to confirm this is to search for the presence of hadronic processes in the SED of NGC 1068.

Emitters of ν = emitters of

Seyfert 2 AGN \Rightarrow viewed edge-on i.e. : $\theta_{inc} \approx 90$ deg

 \rightarrow Emission in the high energy domain is not dominated by the jet

Usually we suppose that hadronic processes occur in the jet and create gamma-rays and neutrinos in the same amount : $F_{\gamma} \approx F_{\nu} \Rightarrow L_{\gamma} \approx L_{\nu}$

Seyfert 2 AGN \Rightarrow viewed edge-on i.e. : $\theta_{inc} \approx 90$ deg

 \rightarrow Emission in the high energy domain is not dominated by the jet

Usually we suppose that hadronic processes occur in the jet and create gamma-rays and neutrinos in the same amount : $F_{\gamma} \approx F_{\nu} \Rightarrow L_{\gamma} \approx L_{\nu}$

But what we observe :

 $L_{\gamma} = 1.6 \times 10^{41} erg/s \text{ (0.1-100 GeV) (Ajello et al, APJ, 2020 / Abdollahi et al, APJ, 2020)}$ $L_{\nu} = (2.9 \pm 1.1) \times 10^{42} erg/s \text{ (1.5-15 TeV) (IceCube Collaboration, Science 2020)}$

Higher than the upper limits reported in gamma-ray above 200 GeV

 γ -ray absorption in the GeV-TeV

Seyfert 2 AGN \Rightarrow viewed edge-on i.e. : $\theta_{inc} \approx 90$ deg

 \rightarrow Emission in the high energy domain is not dominated by the jet

Usually we suppose that hadronic processes occur in the jet and create gamma-rays and neutrinos in the same amount : $F_{\gamma} \approx F_{\nu} \Rightarrow L_{\gamma} \approx L_{\nu}$

But what we observe :

 $L_{\gamma} = 1.6 \times 10^{41} erg/s$ (0.1-100 GeV) (Ajello et al, APJ, 2020 / Abdollahi et al, APJ, 2020) $\dot{L}_{\mu} = (2.9 \pm 1.1) \times 10^{42} erg/s$ (1.5-15 TeV) (IceCube Collaboration, Science 2020)

Higher than the upper limits reported in gamma-ray above 200 GeV

Gamma-ray absorption highlight the fact that those processes should occur in a region opaque to gamma-rays.

 \Rightarrow we need an other description of the connection with the neutrinos

Seyfert 2 AGN \Rightarrow viewed edge-on i.e. : $\theta_{inc} \approx 90$ deg

 \rightarrow Emission in the high energy domain is not dominated by the jet

Usually we suppose that hadronic processes occur in the jet and create gamma-rays and neutrinos in the same amount : $F_{\gamma} \approx F_{\nu} \Rightarrow L_{\gamma} \approx L_{\nu}$

But what we observe :

 $L_{\gamma} = 1.6 \times 10^{41} erg/s \text{ (0.1-100 GeV) (Ajello et al, APJ, 2020 / Abdollahi et al, APJ, 2020)}$ $L_{\nu} = (2.9 \pm 1.1) \times 10^{42} erg/s \text{ (1.5-15 TeV) (IceCube Collaboration, Science 2020)}$

Higher than the upper limits reported in gamma-ray above 200 GeV

Gamma-ray absorption highlight the fact that those processes should occur in a region opaque to gamma-rays.

 \Rightarrow we need an other description of the connection with the neutrinos

Hard X-ray study of NGC 1068

Goal of our study ?

- this work has already been done in the past (without INTEGRAL data) : Bauer et al, APJ, 2015

- fit a model to have a good description of the primary X-ray emission $\rightarrow L_{X,prim}$

- compare $L_{X,prim}$ to L_{ν}

- Update with the most recent data Marinucci et al, MNRAS, 2016 those works Zaino et al, MNRAS, 2020
- see if INTEGRAL data allow us to have detections at hundred of keV \rightarrow probe the spectrum at energies higher than 195 keV

Hard X-ray study of NGC 1068

Goal of our study ?

- this work has already been done in the past (without INTEGRAL data): Bauer et al, APJ, 2015

- fit a model to have a good description of the primary X-ray emission $\rightarrow L_{X,prim}$

- compare $L_{X,prim}$ to L_{ν}

INSTRUMENT	PERIOD	EXPOSURE TIME	EXPOSURE TIME (Bauer)	E T
INTEGRAL-IBIS	2003-2022	1.57 Ms	_	
INTEGRAL-SPI	2003-2022	1.46 Ms	_	
NuSTAR FPMA/ FPMB	2012-2024	493.25 ks / 491.7 ks	123.9 ks / 123.7 ks	20
SWIFT-BAT	2004-2018	157 months	70 months)
XMM-Newton	2000	70.36 ks	70.36 ks	

 \Rightarrow data can be stacked because :

1) NGC 1068 doesn't show any strong variability in the X-ray domain

2) the IceCube study was integrated in time.

- Update with the most recent data Marinucci et al, MNRAS, 2016 those works Zaino et al, MNRAS, 2020
- see if INTEGRAL data allow us to have detections at hundred of keV \rightarrow probe the spectrum at energies higher than 195 keV

EXPOSURE TIME (Zaino)		
_		
6.8 ks / 206.2 ks		
No BAT XRT : 5.7 ks		

Hard X-ray study of NGC 1068

Goal of our study?

- this work has already been done in the past (without INTEGRAL data) : Bauer et al, APJ, 2015

- fit a model to have a good description of the primary X-ray emission $\rightarrow L_{X,prim}$

- compare $L_{X,prim}$ to L_{ν}

INSTRUMENT	PERIOD	EXPOSURE TIME	EXPOSURE TIME (Bauer)	E T
INTEGRAL-IBIS	2003-2022	1.57 Ms	_	
INTEGRAL-SPI	2003-2022	1.46 Ms	_	
NuSTAR FPMA/ FPMB	2012-2024	493.25 ks / 491.7 ks	123.9 ks / 123.7 ks	20
SWIFT-BAT	2004-2018	157 months	70 months)
XMM-Newton	2000	70.36 ks	70.36 ks	

 \Rightarrow data can be stacked because :

1) NGC 1068 doesn't show any strong variability in the X-ray domain

2) the IceCube study was integrated in time.

- Update with the most recent data Marinucci et al, MNRAS, 2016 those works Zaino et al, MNRAS, 2020
- see if INTEGRAL data allow us to have detections at hundred of keV \rightarrow probe the spectrum at energies higher than 195 keV

X-ray model

Model:

- Double reflection emission which are then reprocessed in the l.o.s

- Primary X-ray emission from the corona
- Emission from the host galaxy (XBRs, ULXs etc..)

Source is viewed edge on i.e. $\theta_{inc} \approx 90 \text{ deg} \rightarrow X$ -ray primary emission passes through the torus \rightarrow highly absorbed in the soft X-ray

Typical SED of Compton thick Seyfert 2 galaxy. Credit: Ricci 2011, PhD thesis

Results

Spectrum cover the range [3;195] keV \rightarrow INTEGRAL doesn't allows us to have detection beyond 200 keV.

 \Rightarrow we can't investigate the presence of a cutoff around the MeV

PARAMETER	MY STUDY	ZAINO+20
Γ	$2.07^{+0.02}_{-0.03}$	$2.10\substack{+0.01 \\ -0.01}$
$E_c(keV)$	$120.1^{+21.5}_{-17.0}$	128
$K(ph/cm^2/s/keV)$	$4.4^{+2.6}_{-1.6} \times 10^{-2}$	$0.5^{+0.5}_{-0.2}$
$N_H(cm^{-2})$	$3.38^{+0.40}_{-0.37} \times 10^{24}$	$5.9^{+1.0}_{-0.8} \times 10^{24}$
χ_r^2	1.27	1.07

- $E_c = 120.1^{+21.5}_{-17.0} \text{ keV} \rightarrow \text{consistent with a leptonic scenario.}$

 Hard to investigate the presence of the hadronic processes because our spectrum does not extend beyond 200 keV.
 → primary X-ray emission will dominate at higher energy.

Results

 $L_{X,prim} = 2.7^{+2.4}_{-1.2} \times 10^{42} \text{ erg/s (15-55 keV)}$ $L_{\nu} = 2.1^{+0.7}_{-1.2} \times 10^{43} \text{ erg/s (0.3-100 TeV)}$ (IceCube Collaboration, Science 2020)

$$\Rightarrow L_{X,prim} = 0.13^{+0.44}_{-0.05} L_{\nu}$$

We correct the value presented in Kun+24 for NGC 1068. \Rightarrow Doing the same analysis with the other sources ?

Conclusion

- Updated the precedent X-ray spectra of NGC 1068 in adding new data (NuSTAR, BAT, **IBIS and SPI**) \Rightarrow spectrum covering the range **3-195 keV**
- INTEGRAL-IBIS/SPI don't allow to have detection above 200 keV.
- Spectrum is dominated by the reflections (as expected)
- X-ray emission of the corona is still consistent with a leptonic

• However :

1 - primary X-ray emission seems to dominate at hundreds of keV (more than 200 keV) **2** - $L_{X,prim} = 0.13^{+0.44}_{-0.05} L_{\nu}$

 \Rightarrow we can't reject the hypothesis of hadronic processes in the close environment of the black hole \Rightarrow data at higher energies could help to investigate the presence of an other cutoff as expected in some models.

Estimations for IBIS : With 2 Ms more we would have detections up to ~300 keV

c scenario
$$\rightarrow E_c = 120.1^{+21.5}_{-17.0} \text{ keV}$$

