A search for neutron fluxes from Galactic candidate sources using data from the Pierre Auger Observatory

1Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany, 2Observatorio Pierre Auger, Malargüe, Argentina

UH niversität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

1

"Cosmic Rays in the Multi-Messenger Era" Conference - Paris, December 9-13, 2024

Why study neutral particles in cosmic rays?

Since neutral particles are not deflected by magnetic fields, their arrival directions point directly to their sources.

It is not possible to distinguish between an air shower initiated by a proton or a neutron.

We would identify a neutron flux through an excess of

cosmic ray events around a given direction

Estimating the probability density

We assign a weight representing the probability density of an event coming from the direction of the target:

How can we identify a neutron flux?

By summing all the weights in the data set, we obtain the cosmic ray density at the position of the target: N

$$
\rho_{\rm obs} = \sum_i w_i
$$

Scrambling technique

We sampled 2 events:

Event 1: UTC

Event 2: θ , σ

An azimuth angle from a uniform distribution between 0 and 2π

We can compare the observed CR density with the CR density obtained from an isotropic distribution:

$\rho_{\rm scr}$

The *p*-value is the fraction of the 10,000 simulated data sets with a CR density greater than the observed value.

Events recorded by the Surface Detector (SD) between January 1, 2004 and December 31, 2022 (1,500 m array) m August 1, 2008 and December 21, 2022 (750 m m array)

5

Target sets

12 target sets resulting in a total of **888** sources with a declination up to **45°**.

Of those, **166** are within a distance ≤ 1 kpc and have a declination up to **20°**.

- **Millisecond Pulsars**
- γ-ray Pulsars
- **•** Low Mass X-ray Binaries
- High Mass X-ray Binaries
- γ TeV emitters Pulsar Wind Nebulae
- γ TeV emitters Other

- γ TeV emitters UNIDentified
- **Microquasars**
- **Magnetars**
- **● LHAASO PeVatrons**
- **● Crab Nebula**
- **Galactic Center**

Results

$$
p^* = 1 - (1 - p) @ \longrightarrow \text{Number of targets in a target set}
$$

Combined analysis

Summary and conclusions

We performed a targeted search for point sources of neutrons in the EeV range.

We did not find any clear evidence of a neutron flux.

We established upper limits for the neutron flux.

Our analysis do not constrain short outbursts. In the future, we plan to search for correlations with transient events.

9

Upper Limit on the neutron flux

The upper limit on the number of neutrons is the number N that satisfies:

 $f_N < (1 - CL) f_0$

fraction of simulated datasets in which the density at the target is less than the observed density after adding N events

Directional exposure

expected CR density (obtained from simulations) ω_{dir} intensity

Confidence level: 95%

Combined analysis

If the objects in a class are emitting neutrons, the combined *p*-value will be more significant than the individual *p*-values.

The product of the *p*-values:

$$
\Big\|\, \Pi_0 = p_1 \cdot p_2 \cdot p_3 \cdots p_M \,\Big\| \, {\rightarrow} \, M \, \hbox{targets in a target set}
$$

The combined *p*-value:

$$
\mathcal{P}(\Pi \leq \Pi_0) = \Pi_0 \sum_{k=0}^{M-1} \frac{(-\ln \Pi_0)^k}{k!} = 1 - \text{Poisson}(M, -\ln \Pi_0)
$$

We can add a weight for each target proportional to its electromagnetic flux, its exposure, and its flux attenuation factor due to neutron decay.