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Stellar feedback

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

supernova Cassiopeia A

X-ray: NASA/CXC/SAQ; Optical: NASA/STScl;
Infrared: NASA/JPL-Caltech/Steward/Krause

=

AIP

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies



Introduction Puzzles in galaxy formation
Cosmic rays and waves
Cosmic ray transport

Stellar feedback through galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA
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Stellar feedback through galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

@ critical for understanding the

physics of galaxy formation
super wind in M82 — may explain puzzle of low
NASA/JPL-Caltech/STScl/CXC/UofA star conversion efficiency in
dwarf galaxies
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Stellar feedback: processes

@ thermal pressure provided by
supernovae or active galactic
nuclei?

by massive stars
and quasars?

@ pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA
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Galactic cosmic ray spectrum
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Galactic cosmic ray spectrum
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spans more than 33 decades in
flux and 12 decades in energy

“knee” indicates characteristic
maximum energy of galactic
accelerators

CRs beyond the “ankle” have
extra-galactic origin

energy density of cosmic rays,
magnetic fields, and turbulence

in the interstellar gas all similar

=- important feedback agent —

AIP
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Review on cosmic ray feedback

Astron Astrophys Rev (2023)31:4
https://doi.org/10.1007/500159-023-00149-2

REVIEW ARTICLE

‘)

Check for
Updates

Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration,
transport, observables, and dynamical impact of cosmic rays

Mateusz Ruszkowski' - Christoph Pfrommer?
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Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy: gyro-orbit of GeV CR:
1
Iyal ~ 104 C = pL ~ -6 ~ —
0al p Ior eB.o 107° pc ) AU
= need to develop a fluid theory for a collisionless,
non-Maxwellian component! _E
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019) TAIP
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP
@ electric fields vanish in the Alfvén wave frame: V x E = —%%

@ work out Lorentz forces on CRs in wave frame: F. = qicB
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

@ work out Lorentz forces on CRs in wave frame: F, = qicB
@ Lorentz force depends on relative phase of CR gyro orbit and wave: —=

@ sketch: decelerating Lorentz force along CR orbit — p; decreases
@ phase shift by 180°: accelerating Lorentz force — p; increases AIP
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ only electric fields can provide work on charged particles and
change their energy
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP
@ only electric fields can provide work on charged particles and
change their energy

@ in Alfvén wave frame, where E = 0, CR energy is conserved:
p? = pﬁ + p? = const. so that decreasing py causes p_ to increase
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ only electric fields can provide work on charged particles and
change their energy

@ in Alfvén wave frame, where E = 0, CR energy is conserved:
p? = pﬁ + p? = const. so that decreasing py causes p_ to increase

=

@ this increases the CR pitch angle cosine = cos6 = % . %
AIP
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

_p.c
LH =TI qB
=N
@ gyro resonance: w—Kv =nQ= n% E

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency ~ AIP
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

_p.c
LH =TI qB
=N
@ gyro resonance: w—Kv =nQ= n% ﬁ

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency ~ AIP
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Cosmic ray streaming and diffusion

@ CR Streaming lnstablllty. Kulsrud & Pearce 1969

@ if vor > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas
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Cosmic ray streaming and diffusion

@ CR Streaming lnstablllty. Kulsrud & Pearce 1969

@ if vor > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves
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Cosmic ray streaming and diffusion

@ CR Streaming lnstablllty. Kulsrud & Pearce 1969

@ if vor > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling — CR stream with waves E

strong wave damping: less waves to scatter — CR diffusion prevails
AIP
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Modes of CR propagation
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Modes of CR propagation
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Modes of CR propagation

Puzzles in galaxy formation

Cosmic rays and waves
Cosmic ray transport

advection diffusion streaming 0
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Cosmic rays in galaxies Cosmic ray driven winds
Mass and energy loading factors

Cosmic ray transport in galaxies

@ CR transport in galaxies
demands modeling
non-linear Landau damping
(in warm/hot phase) and
ion-neutral damping (in disk)

this requires resolving the
multi-phase structure of the
ISM

development of CRISP
framework (

Thomas+ 2024)

HST mock image of CRISPy Milky Way Thomas+ (in prep.)

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies



Multi-phase ISM
Cosmic rays in galaxies Cosmic ray driven winds
Mass and energy loading factors

Multi-phase ISM modeling
CRISP framework

Cosmic Rays and InterStellar Physics

A CR « 3(oJ: Feedback

~

Thomas, CP, Pakmor (2024)
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Cosmic rays in galaxies Cosmic ray driven winds
Mass and energy loading factors

Multi-phase ISM modeling

CRISP framework o) Feedback
Cosmic Rays and InterStellar Physics i, T (%
A o

Full H — H, — He chemistry

sets ionization degree

K Chemistry

First ionization stages of C — O — Si

low temperature cooling

Photoelectric heating by dust

Thomas, CP, Pakmor (2024)
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Multi-phase ISM modeling

CRISP framework A CR

Cosmic Rays and InterStellar Physics

Improved SNe treatment (manifestly isotropic)

and stellar winds

Feedback

~

FUV NUV OPT radiation fields (reverse ray tracing)

absorbed by dust — impacting A Chemistry

Metal enrichment

Thomas, CP, Pakmor (2024)

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies
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Multi-phase ISM modeling

CRISP framework @ Feedback

Cosmic Rays and InterStellar Physics

g

- S

Novel CR hydrodynamics Follow Ecr

coarse graining plasma physics and Ucr

CR ionization Self-consistently
impacting £l Chemistry evolve Kcr

CR microphysics

Thomas, CP, Pakmor (2024)
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Multi-phase ISM modeling
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Multi-phase ISM modeling

Cosmic rays barely affect the ISM because ion-neutral damping erases Alfvén waves
CRMHD - 5" J77 ooy ™% ] DR T al” S * 4 MHD
i P it . 10210 10% /

Y [Hem™?

Thomas, CP, Pakmor (2024) 4 ' e ' (v Vol

Vi 1 -
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Simulated Milky Way: surface density

Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains

Ilem=2
10 10%° 10*' 10%

CRMHD MHD
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Simulated Milky Way: surface density

Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains

Ilem=2
10 10%° 10*' 10%

CRMHD MHD
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Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter

CRMHD 10 10° 10 MHD
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Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter

CRMHD 10 10° 10 MHD
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Multi-phase ISM modeling

Cosmic rays make galactic winds much denser

CRMHD [— ] MHD
101 102 10*! 10%
3 [Hem™?)

5 kpe

Thomas, CP, Pakmor (2024)
Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies
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Cosmic ray driven wind: mechanism

CRMHD MHD
= Pram R < 5 kpe R < 5 kpe
galactic centre galactic centre
Tnag
10t 104
T
g
o
m
2103 103
e
2
g
5102 1 10?
10! 10t
-75 -5 =25 0 25 50 75 -75 -5 =25 0 25 50 75

Thomas, CP, Pakmor (2024)

@ CR pressure gradient dominates over thermal and ram pressure
gradient and drives outflow: F
AIP

|V Per + VPy| > p|VO|

Christoph Pfrommer Cosmic rays

0s in galaxies
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Cosmic rays in galaxies

Mass and energy loading factors

hY
= CRHD
==+ MHD

0.2 0.4 0.6 0.8
time ¢ [Gyr]

0.0

Thomas, CP, Pakmor (2024) AIP

0s in galaxies

Cosmic rays
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Mass and energy loading factors

hY
= CRHD

$20%

0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]

Ly

SFR M

Thomas, CP, Pakmor (2024) AIP
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Vulti-phase ISM

Cosmic rays in galaxies Cosmic ray driven winds
Mass and energy loading factors

Mass and energy loading factors
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Vulti-phase ISM
Cosmic ray driven winds
Mass and energy loading factors

Mass and energy loading factors
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Multi-phase ISM
Cosmic ray driven winds
Mass and energy loading factors

Mass and energy loading facto
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Vulti-phase ISM

Cosmic ray driven winds
Mass and energy loading factors

Mass and energy loading factors
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Vulti-phase ISM

Cosmic ray driven winds
Mass and energy loading factors

Mass and energy loading factors

Ly

SFR M

= CRHD
+ MHD

10°

thermal
— 1\'i||1‘| i('

— CR

0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]
4X = outflow
inflow
\ N
\ £
W
L
1/
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
time ¢ [Gyr] time ¢ [Gyr]
Thomas, CP, Pakmor (2024) AIP

Cosmic rays al

magnetic dynamos in galaxies



Turbulent small-scale dynamo
FIR—radio correlation
Galactic magnetic dynamo Conclusions

Origin and growth of magnetic fields

The general picture:

@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery
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Turbulent small-scale dynamo
FIR—radio correlation
Galactic magnetic dynamo Conclusions

Origin and growth of magnetic fields

The general picture:

@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase . ’

- stretch
transition in the early universe or 2. by
the Biermann battery

@ Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which Tmerge
the kinetic (turbulent) energy is

converted into magnetic energy: the

mechanism relies on magnetic fields to D<‘ )
become stronger when the field lines are fold

stretched N

=

AIP
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Turbulent small-scale dynamo
FIR—radio correlation
Galactic magnetic dynamo Conclusions

Origin and growth of magnetic fields

The general picture:

@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase m
transition in the early universe or 2. by
the Biermann battery
@ Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which Tmerge twistl
the kinetic (turbulent) energy is

become stronger when the field lines are
stretched

@ Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions

converted into magnetic energy: the
mechanism relies on magnetic fields to D<‘ )
fold

=

AIP
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Turbulent small-scale dynamo
FIR—radio correlation
Galactic magnetic dynamo Conclusions

Galactic magnetic dynamo

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)
Simulating radio synchrotron emission in star-forming galaxies: small-scale
magnetic dynamo and the origin of the far-infrared—radio correlation

MHD + cosmic ray advection + diffusion: {10'°,10"",3 x 10"",10"?} Mg AIP

B

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies
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FIR—radio correlation
Galactic magnetic dynamo Conclusions

Time evolution of SFR and energy densities

T T T T
10 A --+ CRadv — M =10"M, ]
— CRdiff Mo = 10" Mo
Magy = 10" M, )

T T -

s éb .....

= g
]0:” = — (sn) — Mo =10"M; 7§
1077 - (&) Moy = 10" Mo 3
10720 - s (eB) — Mg = 10"M; 4

I I I I I 102! £ I I I I I
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 20 25 3.0
time [Gyr] time [Gyr]

CP+ (2022)

@ cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

I}
@ magnetic growth faster in Milky Way galaxies than in dwarfs -
AIP

Cosmic rays s in galaxies
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FIR—radio correlation
Galactic magnetic dynamo Conclusions

|dentifying different growth phases
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CP+ (2022)

@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)

a

AIP

Cosmic rays magnetic dynamos in galaxies



Turbulent small-scale dynamo
FIR—radio correlation
Galactic magnetic dynamo Conclusions

|dentifying different growth phases
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@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)
@ 2" phase: with small
dynamical times tyyn ~ (Gp)~'/2 _E
AIP
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|dentifying different growth phases
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@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)

@ 2" phase: with small
dynamical times tyyn ~ (Gp)~'/2 _E

@ 3 phase: growth migrates to lower p on larger scales o« p~'/2 D
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108

@ 1% phase: adiabatic growth (independent of resolution)
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108

@ 1% phase: adiabatic growth (independent of resolution)
@ 2" phase:
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Exponential field growth in kinematic regime
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x [kpe] x [kpe] x [kpe] CP+ (2022)
@ corrugated accretion shock dissipates kinetic energy from E
gravitational infall, injects vorticity that decays into turbulence, =
and drives a small-scale dynamo AIP
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Dynamo saturation on small scales while A\g increases
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@ supersonic velocity shear between the rotationally supported E

cool disk and hotter CGM: excitation of Kelvin-Helmholtz body = =

modes that interact and drive a small-scale dynamo AIP
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Kinetic and magnetic power spectra

Fluctuating small-scale dynamo in different analysis regions
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@ Ep(k) superposition of form factor and turbulent spectrum E
@ pure turbulent spectrum outside steep central B profile AIP
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Non-thermal emission in star-forming galaxies

@ previous theoretical modeling: M

X
24
@ one-zone steady-state models
(Lacki+ 2010, 2011, Yoast-Hull+ 2013) ~ 23
Qo (Heesen+ 2016) I
. . 22
e static Milky Way models 3
(Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014) 5 ,,
g 20
190 /" Bell (2008)
7 8 9 10 1 12
10910 (Lrr/Lo)
43 T T
42-
41-
40~

L, lergs]

Detected
Undetected
Com

# Bona-fide SFGs |
b Candidates7Gs |
367 8 9 10 11 12 13

=

Ajello+ (2020) AIP
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Non-thermal emission in star-forming galaxies

@ previous theoretical modeling: e

T T T
@ one-zone steady-state models “
(Lacki+ 2010, 2011, Yoast-Hull+ 2013) ~ 23
] (Heesen+ 2016) g
e static Milky Way models 3
(Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014) 5 ,,
@ our theoretical modeling: $ 5
@ run MHD-CR simulations of galaxies at ob L2 Bell (2005)
different halos masses and SFRs 7 T
° protons, 10910 (Lre/Lo)
primary and secondary electrons B B B R e
@ model all radiative processes from radio 7 ]
to gamma rays a0

@ gamma rays: understand pion decay 23
and leptonic inverse Compton emission = o —
@ radio: understand magnetic dynamo, T § it | E
67 8 9 10 11 12 13

rimary and secondary electrons P —
P y y Ajello+ (2020) AIP
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Steady-state cosmic ray spectra

@ solve the steady-state equation in every cell for each CR population:
N(E d
MEY < nEpE) = aE)
(] Coulomb, hadronic and escape losses (re-normalized to e¢r)
@ electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
@ primaries (re-normalized using Kep = 0.02)
@ secondaries

=

AIP
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Steady-state cosmic ray spectra

@ solve the steady-state equation in every cell for each CR population:
N(E d
MEY < nEpE) = aE)
() Coulomb, hadronic and escape losses (re-normalized to ecr)
@ electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
@ primaries (re-normalized using Kep = 0.02)
@ secondaries

@ steady state assumption is fulfilled in disk and in regions dominating the
non-thermal emission but not at low densities, at SNRs and in outflows

1.0 7 T T
B weighted with ecr

08|

10— 1O
weighted with weighted with
By, emission By emission

06|

=

AIP

-3 -2 -1 0 1 2 3 3 2 1 0 1 2 3 -3 -2 -1 0 1 2 3
Tog(rer /7un) log(rcr /) togrer/ray Werhahn+ (202ta)
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Simulated radio emission: 10'2 M, halo

fe(10 GeV) Icm" GeV~™ I \/}F [ 1.4 GHz Im]y rcmin’zl

10714 10713 10712 1072 107! 10° 10! 107 102 107" 100 10" 102 10}
Moo = 1012 M, anisotropic CR diffusion
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CP+ (2022)
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Simulated radio emission: 10" M., halo
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CP+ (2022)
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Far infra-red — radio correlation

Universal conversion: star formation — cosmic rays — radio
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Conclusions for cosmic ray physics in galaxies

CR feedback in galaxy formation:

@ CR feedback barely impacts ISM or star formation because of
strong ion-neutral damping in disk, which weakens CR coupling

@ CR feedback increases mass and energy loading factors by 4

=

AIP
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Conclusions for cosmic ray physics in galaxies

CR feedback in galaxy formation:

@ CR feedback barely impacts ISM or star formation because of
strong ion-neutral damping in disk, which weakens CR coupling

@ CR feedback increases mass and energy loading factors by 4

Galactic magnetic dynamo and radio emission:

@ gravitational collapse drives fluctuating small-scale dynamo
= magnetic field growth

@ magnetic fields saturate close to equipartition in Milky Way
centers and sub-equipartition at larger radii and in dwarfs

@ global Lrg — Lragio reproduced for galaxies with saturated
magnetic fields, scatter due to viewing angle and CR transport

=

AIP
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