Cosmic ray feedback and magnetic dynamos in galaxy formation

Christoph Pfrommer¹

in collaboration with

PhD students: Jlassi¹, Lemmerz¹, Tevlin¹, Weber¹, Whittingham¹, Chiu², Sike²
Postdocs: Berlok³, Girichidis⁴, Kwak¹, Ley¹, Meenakshi¹, Perrone¹, Shalaby¹, Sparre^{5,1}, **Thomas**¹, **Werhahn**⁶
Faculty: Pakmor⁶, Puchwein¹, Weinberger¹, Ruszkowski², Springel⁶, Enßlin⁶
¹AIP, ²U of Michigan, ³NBI, ⁴U of Heidelberg, ⁵U of Potsdam, ⁶MPA *Cosmic Rays and Neutrinos in the Multi-Messenger Era*, Paris, Dec 2024

DQC.

Cosmic rays in galaxies Galactic magnetic dynamo Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Puzzles in galaxy formation

Cosmic rays in galaxies Galactic magnetic dynamo Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Puzzles in galaxy formation

Cosmic rays in galaxies Galactic magnetic dynamo Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Puzzles in galaxy formation

Cosmic rays in galaxies Galactic magnetic dynamo Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Stellar feedback

supernova Cassiopeia A

X-ray: NASA/CXC/SAO; Optical: NASA/STScl; Infrared: NASA/JPL-Caltech/Steward/Krause • galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Stellar feedback through galactic winds

super wind in M82 NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Stellar feedback through galactic winds

super wind in M82 NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds
- critical for understanding the physics of galaxy formation
 → may explain puzzle of low star conversion efficiency in dwarf galaxies

Cosmic rays in galaxies Galactic magnetic dynamo Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Stellar feedback: processes

super wind in M82 NASA/JPL-Caltech/STScI/CXC/UofA

- thermal pressure provided by supernovae or active galactic nuclei?
- radiation pressure and photoionization by massive stars and quasars?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?

Cosmic rays in galaxies Galactic magnetic dynamo Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin

Cosmic rays in galaxies Galactic magnetic dynamo Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin
- energy density of cosmic rays, magnetic fields, and turbulence in the interstellar gas all similar ⇒ important feedback agent

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Review on cosmic ray feedback

Astron Astrophys Rev (2023) 31:4 https://doi.org/10.1007/s00159-023-00149-2

REVIEW ARTICLE

Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration, transport, observables, and dynamical impact of cosmic rays

Mateusz Ruszkowski^{1,3} · Christoph Pfrommer²

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

gyro-orbit of GeV CR:

$$r_{\rm gal} \sim 10^4 \ {
m pc} \qquad r_{\rm cr} = rac{p_{\perp}}{e \, B_{\rm uG}} \sim 10^{-6} \ {
m pc} \sim rac{1}{4} \, {
m AU}$$

\Rightarrow need to develop a fluid theory for a collisionless, non-Maxwellian component!

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

★ Ξ > ★ Ξ >

A D > A B >

Puzzles in galaxy formation Cosmic rays and waves

Interactions of CRs and magnetic fields

sketch: Jacob & CP

< ∃⇒

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Interactions of CRs and magnetic fields

• electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c} rac{\partial {m B}}{\partial t}$

< ∃⇒

Puzzles in galaxy formation Cosmic rays and waves

Interactions of CRs and magnetic fields

- electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c} rac{\partial {m B}}{\partial t}$
- work out Lorentz forces on CRs in wave frame: $F_{L} = q \frac{\mathbf{v} \times \mathbf{B}}{C}$

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Interactions of CRs and magnetic fields

- electric fields vanish in the Alfvén wave frame: $\nabla \times E = -\frac{1}{c} \frac{\partial B}{\partial t}$
- work out Lorentz forces on CRs in wave frame: $F_{L} = q \frac{V \times B}{C}$
- Lorentz force depends on relative phase of CR gyro orbit and wave:
 - sketch: decelerating Lorentz force along CR orbit $\rightarrow \rho_{\parallel}$ decreases
 - phase shift by 180°: accelerating Lorentz force $ightarrow p_{\parallel}$ increases

Puzzles in galaxy formation Cosmic rays and waves

Interactions of CRs and magnetic fields

sketch: Jacob & CP

 only electric fields can provide work on charged particles and change their energy

∃⇒

Puzzles in galaxy formation Cosmic rays and waves

Interactions of CRs and magnetic fields

sketch: Jacob & CP

- only electric fields can provide work on charged particles and change their energy
- in Alfvén wave frame, where E = 0, CR energy is conserved: $p^2 = p_{\parallel}^2 + p_{\perp}^2 = \text{const. so that decreasing } p_{\parallel} \text{ causes } p_{\perp} \text{ to increase}$

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Interactions of CRs and magnetic fields

sketch: Jacob & CP

- only electric fields can provide work on charged particles and change their energy
- in Alfvén wave frame, where E = 0, CR energy is conserved: $p^2 = p_{\parallel}^2 + p_{\perp}^2 = \text{const. so that decreasing } p_{\parallel} \text{ causes } p_{\perp} \text{ to increase}$

• this increases the CR pitch angle cosine $\mu = \cos \theta = \frac{B}{|B|} \cdot \frac{p}{|D|}$

Puzzles in galaxy formation Cosmic rays and waves

Interactions of CRs and magnetic fields

sketch: Jacob & CP

AIP

• CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel} = r_{\rm g} = \frac{p_{\perp}c}{qB}$$

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Interactions of CRs and magnetic fields

sketch: Jacob & CP

• CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel} = r_{g} = rac{p_{\perp}c}{qB}$$

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega = n \frac{qB}{\gamma m_{l} c}$

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency

Puzzles in galaxy formation Cosmic rays and waves

Interactions of CRs and magnetic fields

• CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel} = r_{\rm g} = \frac{p_{\perp}c}{qB}$$

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega = n \frac{qB}{\gamma m_i c}$

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Cosmic ray streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Cosmic ray streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Cosmic ray streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

イロト イ理ト イヨト イヨト

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling \rightarrow CR stream with waves strong wave damping: less waves to scatter \rightarrow CR diffusion prevails

Cosmic rays in galaxies Galactic magnetic dynamo Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Modes of CR propagation

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Modes of CR propagation

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies

Puzzles in galaxy formation Cosmic rays and waves Cosmic ray transport

Modes of CR propagation

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Cosmic ray transport in galaxies

- CR transport in galaxies demands modeling non-linear Landau damping (in warm/hot phase) and ion-neutral damping (in disk)
- this requires resolving the multi-phase structure of the ISM
- development of CRISP framework (Cosmic Rays and InterStellar Physics, Thomas+ 2024)

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Multi-phase ISM modeling

CRISP framework

CR G ISM

Thomas, CP, Pakmor (2024)

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Multi-phase ISM modeling

CRISP framework

CR

Full $H - H_2 - He$ chemistry sets ionization degree

First ionization stages of C - O - Si low temperature cooling

Photoelectric heating by dust

Thomas, CP, Pakmor (2024)

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Multi-phase ISM modeling

Improved SNe treatment (manifestly isotropic) and stellar winds

FUV NUV OPT radiation fields (reverse ray tracing)

absorbed by dust — impacting 📙 Chemistry

Metal enrichment

Thomas, CP, Pakmor (2024)

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Multi-phase ISM modeling

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Multi-phase ISM modeling

Christoph Pfrommer

Cosmic rays and magnetic dynamos in galaxies
Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Multi-phase ISM modeling

Cosmic rays barely affect the ISM because ion-neutral damping erases Alfvén waves

Christoph Pfrommer

Cosmic rays and magnetic dynamos in galaxies

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Simulated Milky Way: surface density

Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Simulated Milky Way: surface density

Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Multi-phase ISM modeling

Cosmic rays make galactic winds much denser

CRMHD

Thomas, CP, Pakmor (2024)

Christoph Pfrommer

5 kpc

MHD

Cosmic rays and magnetic dynamos in galaxies

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factor

Cosmic ray driven wind: mechanism

 CR pressure gradient dominates over thermal and ram pressure gradient and drives outflow:

$$| \boldsymbol{\nabla} \boldsymbol{P}_{\mathsf{cr}} + \boldsymbol{\nabla} \boldsymbol{P}_{\mathsf{th}} | >
ho | \boldsymbol{\nabla} \Phi$$

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Mass and energy loading factors

AIP

э

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Mass and energy loading factors

AIP

э

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Mass and energy loading factors

AIP

ъ

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Mass and energy loading factors

AIP

ъ

Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Mass and energy loading factors

Introduction Cosmic rays in galaxies Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Mass and energy loading factors

Introduction Cosmic rays in galaxies Multi-phase ISM Cosmic ray driven winds Mass and energy loading factors

Mass and energy loading factors

Turbulent small-scale dynamo FIR–radio correlation Conclusions

Origin and growth of magnetic fields

The general picture:

• **Origin.** Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery

< ∃⇒

Turbulent small-scale dynamo FIR-radio correlation Conclusions

Origin and growth of magnetic fields

The general picture:

- **Origin.** Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating) dynamo is an MHD process, in which the kinetic (turbulent) energy is converted into magnetic energy: the mechanism relies on magnetic fields to become stronger when the field lines are stretched

Turbulent small-scale dynamo FIR-radio correlation Conclusions

Origin and growth of magnetic fields

The general picture:

- **Origin.** Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating) dynamo is an MHD process, in which the kinetic (turbulent) energy is converted into magnetic energy: the mechanism relies on magnetic fields to become stronger when the field lines are stretched
- Saturation. Field growth stops at a sizeable fraction of the turbulent energy when magnetic forces become strong enough to resist the stretching and folding motions

Turbulent small-scale dynamo FIR–radio correlation Conclusions

Galactic magnetic dynamo

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)

Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far-infrared-radio correlation

MHD + cosmic ray advection + diffusion: $\{10^{10}, 10^{11}, 3 \times 10^{11}, 10^{12}\} M_{\odot}$

Turbulent small-scale dynamo FIR-radio correlation

Time evolution of SFR and energy densities

- cosmic ray (CR) pressure feedback suppresses SFR more in smaller galaxies
- energy budget in disks is dominated by CR pressure
- magnetic growth faster in Milky Way galaxies than in dwarfs

Turbulent small-scale dynamo FIR–radio correlation

Identifying different growth phases

• 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)

Turbulent small-scale dynamo FIR–radio correlation Conclusions

Identifying different growth phases

- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{dyn} \sim (G\rho)^{-1/2}$

Turbulent small-scale dynamo FIR–radio correlation Conclusions

Identifying different growth phases

- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{dyn} \sim (G\rho)^{-1/2}$
- 3rd phase: growth migrates to lower ρ on larger scales $\propto \rho^{-1/3}$

Turbulent small-scale dynamo FIR–radio correlation

Studying growth rate with numerical resolution

CP+ (2022)

 faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for N ≥ 10⁶

Turbulent small-scale dynamo FIR–radio correlation

Studying growth rate with numerical resolution

- faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for N ≥ 10⁶
- 1st phase: adiabatic growth (independent of resolution)

Turbulent small-scale dynamo FIR–radio correlation

Studying growth rate with numerical resolution

- faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for N ≥ 10⁶
- 1st phase: adiabatic growth (independent of resolution)
- 2nd phase: small-scale dynamo with resolution-dep. growth rate

$$\Gamma = \frac{\mathscr{Y}}{\mathscr{L}} \operatorname{Re}_{\operatorname{num}}^{1/2}, \quad \operatorname{Re}_{\operatorname{num}} = \frac{\mathscr{L}\mathscr{Y}}{\nu_{\operatorname{num}}} = \frac{3\mathscr{L}\mathscr{Y}}{d_{\operatorname{cell}}\nu_{\operatorname{th}}}$$

Turbulent small-scale dynamo FIR–radio correlation

Exponential field growth in kinematic regime

 corrugated accretion shock dissipates kinetic energy from gravitational infall, injects vorticity that decays into turbulence, and drives a small-scale dynamo

Turbulent small-scale dynamo FIR–radio correlation Conclusions

Dynamo saturation on small scales while λ_B increases

 supersonic velocity shear between the rotationally supported cool disk and hotter CGM: excitation of Kelvin-Helmholtz body modes that interact and drive a small-scale dynamo

Turbulent small-scale dynamo FIR–radio correlation Conclusions

Kinetic and magnetic power spectra

Fluctuating small-scale dynamo in different analysis regions

- $E_B(k)$ superposition of form factor and turbulent spectrum
- pure turbulent spectrum outside steep central B profile

Turbulent small-scale dynamo FIR-radio correlation

Non-thermal emission in star-forming galaxies

• previous theoretical modeling:

- one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
- 1D transport models (Heesen+ 2016)
- static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

Turbulent small-scale dynamo FIR-radio correlation

Non-thermal emission in star-forming galaxies

• previous theoretical modeling:

- one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
- 1D transport models (Heesen+ 2016)
- static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

- run MHD-CR simulations of galaxies at different halos masses and SFRs
- model steady-state CRs: protons, primary and secondary electrons
- model all radiative processes from radio to gamma rays
- gamma rays: understand pion decay and leptonic inverse Compton emission
- radio: understand magnetic dynamo, primary and secondary electrons

AIP

Introduction Turbulent small-scale dynamo Cosmic rays in galaxies FIR-radio correlation Galactic magnetic dynamo Conclusions

Steady-state cosmic ray spectra

• solve the steady-state equation in every cell for each CR population:

$$rac{\mathsf{N}(\mathsf{E})}{ au_{
m esc}} - rac{\mathrm{d}}{\mathrm{d}\mathsf{E}}\left[\mathsf{N}(\mathsf{E})\mathsf{b}(\mathsf{E})
ight] = \mathsf{Q}(\mathsf{E})$$

- protons: Coulomb, hadronic and escape losses (re-normalized to ε_{cr})
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using K_{ep} = 0.02)
 - secondaries

(< ∃) < ∃)</p>

< < >> < </>

Introduction Turbulent small-scale dynamo Cosmic rays in galaxies FIR-radio correlation Galactic magnetic dynamo Conclusions

Steady-state cosmic ray spectra

• solve the steady-state equation in every cell for each CR population:

$$rac{\mathsf{N}(\mathsf{E})}{ au_{
m esc}} - rac{\mathrm{d}}{\mathrm{d}\mathsf{E}}\left[\mathsf{N}(\mathsf{E})\mathsf{b}(\mathsf{E})
ight] = \mathsf{Q}(\mathsf{E})$$

- protons: Coulomb, hadronic and escape losses (re-normalized to ε_{cr})
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using K_{ep} = 0.02)
 - secondaries
- steady state assumption is fulfilled in disk and in regions dominating the non-thermal emission but not at low densities, at SNRs and in outflows

Christoph Pfrommer

Cosmic rays and magnetic dynamos in galaxies

Introduction Turbo Cosmic rays in galaxies FIR-Galactic magnetic dynamo Cond

Turbulent small-scale dynamo FIR-radio correlation

Simulated radio emission: $10^{12} \, M_{\odot}$ halo

CP+ (2022)

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies

AIP

500

Introduction Galactic magnetic dynamo

Turbulent small-scale dynamo FIR-radio correlation

Simulated radio emission: 10¹¹ M_o halo

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies AIP

Turbulent small-scale dynamo FIR–radio correlation

Far infra-red - radio correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Introduction Turbulent small-scale dynamo Cosmic rays in galaxies FIR-radio correlation Galactic magnetic dynamo Conclusions

Conclusions for cosmic ray physics in galaxies

CR feedback in galaxy formation:

- CR feedback barely impacts ISM or star formation because of strong ion-neutral damping in disk, which weakens CR coupling
- CR feedback drives powerful galactic winds
- CR feedback increases mass and energy loading factors by 4

< 17 ▶
Introduction Turbulent small-scale dynamo Galactic magnetic dynamo Conclusions

Conclusions for cosmic ray physics in galaxies

CR feedback in galaxy formation:

- CR feedback barely impacts ISM or star formation because of strong ion-neutral damping in disk, which weakens CR coupling
- CR feedback drives powerful galactic winds
- CR feedback increases mass and energy loading factors by 4

Galactic magnetic dynamo and radio emission:

- gravitational collapse drives fluctuating small-scale dynamo \Rightarrow magnetic field growth
- magnetic fields saturate close to equipartition in Milky Way centers and sub-equipartition at larger radii and in dwarfs
- global $L_{\text{FIR}} L_{\text{radio}}$ reproduced for galaxies with saturated magnetic fields, scatter due to viewing angle and CR transport

イロト イポト イヨト イヨト

Introduction Cosmic rays in galaxies Galactic magnetic dynamo Turbulent small-scale dynamo FIR–radio correlation Conclusions

PICOGAL: From Flasma Kinetics to COsmological GALaxy Formation

AIP

Christoph Pfrommer

Cosmic rays and magnetic dynamos in galaxies

Introduction Cosmic rays in galaxies Galactic magnetic dynamo Turbulent small-scale dynamo FIR–radio correlation Conclusions

Literature for the talk – 1

CR hydrodynamics and CR transport:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017, MNRAS, 465, 4500.
- Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS, 485, 2977.
- Thomas, Pfrommer, Pakmor, A finite volume method for two-moment cosmic-ray hydrodynamics on a moving mesh, 2021, MNRAS, 503, 2242.
- Thomas, Pfrommer, Enßlin, Probing Cosmic Ray Transport with Radio Synchrotron Harps in the Galactic Center, 2020, ApJL, 890, L18.

CR feedback in galaxy formation:

- Ruszkowski, Pfrommer, *Cosmic ray feedback in galaxies and galaxy clusters,* 2023, Astron Astrophys Rev, 31, 4.
- Thomas, Pfrommer, Pakmor, Cosmic ray-driven galactic winds: transport modes of cosmic rays and Alfvén-wave dark regions, 2023, MNRAS, 521, 3023.
- Thomas, Pfrommer, Pakmor, Why are thermally- and cosmic ray-driven galactic winds fundamentally different? 2024, A&A, submitted.

イロト イポト イヨト イヨト

Introduction Cosmic rays in galaxies Galactic magnetic dynamo Turbulent small-scale dynamo FIR–radio correlation Conclusions

Literature for the talk -2

Galactic magnetic dynamo and radio emission:

- Pfrommer, Werhahn, Pakmor, Girichidis, Simpson, Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far infrared-radio correlation, 2022, MNRAS, 515, 4229.
- Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, *Cosmic rays and non-thermal emission in simulated galaxies. I. Electron and proton spectra explain Voyager-1 data*, 2021a, MNRAS 505, 3273.
- Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation, 2021b, MNRAS, 505, 3295.
- Werhahn, Pfrommer, Girichidis, Cosmic rays and non-thermal emission in simulated galaxies. III. probing cosmic ray calorimetry with radio spectra and the FIR-radio correlation, 2021c, MNRAS, 508, 4072.

イロト イポト イヨト イヨト