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Stellar feedback

supernova Cassiopeia A
X-ray: NASA/CXC/SAO; Optical: NASA/STScI;
Infrared: NASA/JPL-Caltech/Steward/Krause

galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

star formation and supernovae
drive gas out of galaxies by
galactic super winds

critical for understanding the
physics of galaxy formation
→ may explain puzzle of low
star conversion efficiency in
dwarf galaxies
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Stellar feedback: processes

super wind in M82
NASA/JPL-Caltech/STScI/CXC/UofA

thermal pressure provided by
supernovae or active galactic
nuclei?

radiation pressure and
photoionization by massive stars
and quasars?

pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?
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Galactic cosmic ray spectrum

data compiled by Swordy

spans more than 33 decades in
flux and 12 decades in energy

“knee” indicates characteristic
maximum energy of galactic
accelerators

CRs beyond the “ankle” have
extra-galactic origin

energy density of cosmic rays,
magnetic fields, and turbulence
in the interstellar gas all similar
⇒ important feedback agent
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Review on cosmic ray feedback
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Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ∼ 104 pc

gyro-orbit of GeV CR:

rcr =
p⊥

e BµG
∼ 10−6 pc ∼ 1

4
AU

⇒ need to develop a fluid theory for a collisionless,
non-Maxwellian component!
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)
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electric fields vanish in the Alfvén wave frame: ∇× E = − 1
c

∂B
∂t

work out Lorentz forces on CRs in wave frame: FL = q v × B
c

Lorentz force depends on relative phase of CR gyro orbit and wave:

sketch: decelerating Lorentz force along CR orbit → p∥ decreases
phase shift by 180◦: accelerating Lorentz force → p∥ increases
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only electric fields can provide work on charged particles and
change their energy

in Alfvén wave frame, where E = 0, CR energy is conserved:
p2 = p2

∥ + p2
⊥ = const. so that decreasing p∥ causes p⊥ to increase

this increases the CR pitch angle cosine µ = cos θ = B
|B| ·

p
|p|
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CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

L∥ = rg =
p⊥c
qB

gyro resonance: ω − k∥v∥ = nΩ = n qB
γmic

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency
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Cosmic ray streaming and diffusion

CR streaming instability: Kulsrud & Pearce 1969

if vcr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ va

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling → CR stream with waves
strong wave damping: less waves to scatter → CR diffusion prevails
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Modes of CR propagation
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Cosmic ray transport in galaxies

HST mock image of CRISPy Milky Way Thomas+ (in prep.)

CR transport in galaxies
demands modeling
non-linear Landau damping
(in warm/hot phase) and
ion-neutral damping (in disk)

this requires resolving the
multi-phase structure of the
ISM

development of CRISP
framework (Cosmic Rays
and InterStellar Physics,
Thomas+ 2024)
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Multi-phase ISM modeling

Thomas, CP, Pakmor (2024)
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Cosmic rays barely affect the ISM because ion-neutral damping erases Alfvén waves

Thomas, CP, Pakmor (2024)
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Multi-phase ISM modeling
Cosmic rays make galactic winds much denser

Thomas, CP, Pakmor (2024)
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Cosmic ray driven wind: mechanism

CR pressure gradient dominates over thermal and ram pressure
gradient and drives outflow:

|∇Pcr +∇Pth| > ρ|∇Φ|
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Origin and growth of magnetic fields

The general picture:
Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery

Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which
the kinetic (turbulent) energy is
converted into magnetic energy: the
mechanism relies on magnetic fields to
become stronger when the field lines are
stretched

Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions
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Galactic magnetic dynamo

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)
Simulating radio synchrotron emission in star-forming galaxies: small-scale
magnetic dynamo and the origin of the far-infrared–radio correlation

MHD + cosmic ray advection + diffusion:
{

1010, 1011, 3 × 1011, 1012} M⊙
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Time evolution of SFR and energy densities
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cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

energy budget in disks is dominated by CR pressure

magnetic growth faster in Milky Way galaxies than in dwarfs
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1st phase: adiabatic growth with B ∝ ρ2/3 (isotropic collapse)

2nd phase: additional growth at high density ρ with small
dynamical times tdyn ∼ (Gρ)−1/2

3rd phase: growth migrates to lower ρ on larger scales ∝ ρ−1/3
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Studying growth rate with numerical resolution
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faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N ≳ 106

1st phase: adiabatic growth (independent of resolution)
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Γ = V
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Exponential field growth in kinematic regime
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corrugated accretion shock dissipates kinetic energy from
gravitational infall, injects vorticity that decays into turbulence,
and drives a small-scale dynamo
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Dynamo saturation on small scales while λB increases
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supersonic velocity shear between the rotationally supported
cool disk and hotter CGM: excitation of Kelvin-Helmholtz body
modes that interact and drive a small-scale dynamo
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Kinetic and magnetic power spectra
Fluctuating small-scale dynamo in different analysis regions
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EB(k) superposition of form factor and turbulent spectrum

pure turbulent spectrum outside steep central B profile

Christoph Pfrommer Cosmic rays and magnetic dynamos in galaxies



Introduction
Cosmic rays in galaxies

Galactic magnetic dynamo

Turbulent small-scale dynamo
FIR–radio correlation
Conclusions

Non-thermal emission in star-forming galaxies
previous theoretical modeling:

one-zone steady-state models
(Lacki+ 2010, 2011, Yoast-Hull+ 2013)

1D transport models (Heesen+ 2016)

static Milky Way models
(Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

run MHD-CR simulations of galaxies at
different halos masses and SFRs
model steady-state CRs: protons,
primary and secondary electrons
model all radiative processes from radio
to gamma rays
gamma rays: understand pion decay
and leptonic inverse Compton emission
radio: understand magnetic dynamo,
primary and secondary electrons

Bell (2003)

Ajello+ (2020)
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Steady-state cosmic ray spectra
solve the steady-state equation in every cell for each CR population:

N(E)

τesc
− d

dE
[N(E)b(E)] = Q(E)

protons: Coulomb, hadronic and escape losses (re-normalized to εcr)

electrons: Coulomb, bremsstr., IC, synchrotron and escape losses

primaries (re-normalized using Kep = 0.02)
secondaries

steady state assumption is fulfilled in disk and in regions dominating the
non-thermal emission but not at low densities, at SNRs and in outflows
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Simulated radio emission: 1012 M⊙ halo
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Simulated radio emission: 1011 M⊙ halo
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Far infra-red – radio correlation
Universal conversion: star formation → cosmic rays → radio
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Conclusions for cosmic ray physics in galaxies
CR feedback in galaxy formation:

CR feedback barely impacts ISM or star formation because of
strong ion-neutral damping in disk, which weakens CR coupling

CR feedback drives powerful galactic winds

CR feedback increases mass and energy loading factors by 4

Galactic magnetic dynamo and radio emission:

gravitational collapse drives fluctuating small-scale dynamo
⇒ magnetic field growth

magnetic fields saturate close to equipartition in Milky Way
centers and sub-equipartition at larger radii and in dwarfs

global LFIR − Lradio reproduced for galaxies with saturated
magnetic fields, scatter due to viewing angle and CR transport
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