Measurement of Cosmic Ray spectra with the DAMPE space mission

Francesca Alemanno* on behalf of the DAMPE collaboration INFN-Lecce

*email: francesca.alemanno@le.infn.it

Cosmic Rays and Neutrinos in the Multi-Messenger Era, APC Laboratory (Paris), 9-13/12/2024

Study of CR spectra

 10^{2}

 10^{12}

Indirect detection up $\sim 10^{20}$ eV

Direct CR detection:

- Precise measurement of particle energy and charge
- Covering the low-energy part of the spectrum

Research Goals and Open Questions

Energy [GeV]

- Precise measurements of CR spectra and mass composition
 Detection of spectral structures (hardenings/softenings)
- Understand CR acceleration and propagation mechanisms

Indirect CR detection:

- Possibility to reach the highest energies
- Difficult to make composition studies with small systematics

CR and Nu in the MM era, 9-13/12/24

The DAMPE space mission

The DArk Matter Particle Explorer (DAMPE) is a satellite-based experiment

DAMPE was successfully launched on **December 17th 2015** from the Jiuquan Satellite Launch Center

The DAMPE collaboration involves several institutes in China and Europe

The main objectives of the DAMPE mission are: • Study of galactic

- cosmic-ray physics
- Dark matter searches
 - High-energy
 - gamma-ray astronomy

CR and Nu in the MM era, 9-13/12/24

Detector structure

4

CR data collected

DAMPE collects ~5 million CR events per day

Energy range: 5 GeV – 10 TeV e/γ 50 GeV – 0.5 PeV protons and nuclei

CR and Nu in the MM era, 9-13/12/24

Particle selection and identification

Plots from F. Gargano @MG15 ROME 2018

Electron-positron spectrum

EVIDENCE OF A BREAK AT ~ 0.9 TeV with 6.6 σ significance

Excellent agreement with standard particle ID

Identification of nuclei

) Plane-Y

Plane-X

×Χ

• First detection of a softening at 34.4+6.7-9.8 TeV with significance of \sim 4.3 σ

• Suggesting a charge dependent feature

and He – updates p

A. Tykhonov et al. Astropart. Phys. (2023)

A. Ruina et al. pos.sissa.it/444/170/ (2023)

CR and Nu in the MM era, 9-13/12/24

F. Alemanno

CR spectra with DAMPE

10⁴

10⁵

11

General agreement with DAMPE proton and helium independent analyses
 Evidence of the combined proton and helium softening at 28.8±4.5 TeV with 6.6 σ significance
 Extension to high energy (-0.5 PeV) and comparison with ground-based experiments
 Hint of new spectral hardening at ~150 TeV

B/C & B/O

- Detection of a spectral hardening at ~ 100 GeV/n
 - \rightarrow Indication of change in the CR diffusion coefficient?
- Significance ~5.6 σ in B/C
- Significance $\sim 6.9 \sigma$ in B/O

C, N, O

CR and Nu in the MM era, 9-13/12/24

INFN

F. Alemanno

CR spectra with DAMPE **14**

Secondaries: Li, Be, B

Ne, Mg, Si, Fe

CR and Nu in the MM era, 9-13/12/24

All particle

Measurement over ~ 4 energy decades

Composition-weighted:

- Instrument acceptance
- Energy response matrix

Different composition models considered:

- <u>Recchia-Gabici (RG)</u>
- Hoerandel (poly-gonato)
- HAWC model
- Zatsepin-Sokolskaya (ZS)

Systematics evaluation in progress

Hadronic cross sections

DAMPE Collab., arXiv:2408.17224v1

DARK MATTE

Cross section measurement in 2 decades of energy (center-of-mass) p-BGO compared with p-Pb at colliders: ~67% of BGO is bismuth He-BGO first probe of helium-ion cross sections up to ~100 GeV

82	83
Pb	Bi

- The DArk Matter Particle Explorer, was launched in December 2015 and it is smoothly taking data since then
 - Direct detection of a break at ~ 1 TeV in the electrons and positrons spectrum
 - Detection of a softening at ~14 TeV in the proton spectrum
- First detection of a softening in the helium spectrum at \sim 34 TeV, suggesting a Z dependence
- Measurement of the p+He spectrum showing the hint of a second hardening above 100 TeV, while connecting space-based and ground-based experiments
 - B/C and B/O flux ratios show a break at \sim 100 GeV/n
 - Ongoing works on both primaries (C, O, Ne, Mg, Si, Fe) and secondaries (Li, Be, B) showing the presence of a hardening
 - First probe of inelastic cross section up to 10 TeV

BACKUP

Electron IDentification

All-electron spectrum

SLIDES TAKEN FROM ICRC 2021 - Li Xiang for DAMPE

Contamination

CR and Nu in the MM era, 9-13/12/24

Proton spectrum

PHYSICAL REVIEW LETTERS 129, 101102 (2022)

Editors' Suggestion

September 1, 2022

Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with the Calorimetric Electron Telescope on the International Space Station

CR and Nu in the MM era, 9-13/12/24

CR and Nu in the MM era, 9-13/12/24

Study of light (p+He) CR component: motivations

D+He

EAS-TOP+MACRO

ARGO YBJ+WFCT HAWC 2022 KASCADE QGSJet

KASCADE SIBYL ATIC-02 CREAM

Nucleon

Measuring light elements in space (i.e. proton + helium spectrum) gives the **possibility to compare** results between

CR and Nu in the MM era, 9-13/12/24

INFN

F. Alemanno

BEFORE DAMPE

p+He spectrum

Contamination

Uncertainty