

Neutrino - y-ray - UHECR connection Foteini Oikonomou

Image Credit: Daniel Chang for Quanta Magazine

Centre for Advanced Study

High-energy messengers

High-energy messengers

Neutrinos: Stacking limits

Energy [GeV]

UHECRS

Combined fit with a population of non-identical sources

 $\frac{\mathrm{d}N}{\mathrm{d}E_{\mathrm{max}}} \propto E_{\mathrm{max}}^{-\beta_{\mathrm{pop}}}$

Toy example with power-law distributed maximum energy

D. Ehlert, FO, M. Unger, PRD 107 (2023) 10

|0|

A curious maximum rigidity distribution

A curious maximum rigidity distribution

14

 $\chi^2_{
m min}$

 χ^{7}_{c}

$$L \gtrsim L_B \sim \frac{U_B \cdot \text{Volume}}{t} \sim B^2 R^2 \Gamma^4 c$$

$$L_{\rm min} \sim 10^{44.5} \text{ erg/s} \cdot \Gamma^2 \cdot \left(\frac{E}{100 \text{ EeV}}\right)^2$$

$$E_{\text{max}} \sim 100 \text{ EeV} \cdot \frac{1}{\Gamma} \cdot \left(\frac{L}{10^{45.5} \text{ erg/s}}\right)^{1/2}$$

Lovelace 1976, Waxman 1995, 2001, Blandford 2000, Lemoine & Waxman 2009, Farrar & Gruzinov 2009

Common origin?

Jetted AGN?

Jetted AGN?

Kimura+ 2018, Eichmann+ 2022, Zhang+ 2024

Starbursts?

Starbursts?

Starbursts?

Energy [GeV]

GRBs?

GRBs?

High UHECR luminosity: $L_{\rm UHECR}/L_{\gamma} \sim 100$

See also Globus+ 2015, Zhang+ 2018, Biehl+ 2018, Boncioli+ 2018, Rudolph+ 2019, Zhang+ 2024

Non-jetted AGN?

Linda Baronchelli 2020 20

X-ray absorbers in AGN

UHECR acceleration in UFOs?

Peretti, Lamastra, Saturni, Ahlers, Blasi, Morlino & Cristofari 2023

 $R_{\rm IR} \sim 1 \ {\rm pc} \cdot \left(\frac{L_{\rm disk}}{10^{45} \ {\rm erg/s}}\right)^{1/2}$

UHECR nuclei in UFOs? Spectrum at acceleration

Ultra-high-energy cosmic rays from ultra-fast outflows of active galactic nuclei

Domenik Ehlert¹, Foteini Oikonomou¹, Enrico Peretti²] Institutt for fysikk, Norwegian University of Science and Technology, Trondheim, Norway Jniversité Paris Cité, CNRS, Astroparticule et Cosmologie, Paris, France

D. Ehlert, FO, E. Peretti, to appear in MNRAS, arXiv:<u>2411.05667</u>

UHECR nuclei in UFOs? Escaping spectrum

IR torus

Extreme ultra-fast outflows Spectrum at acceleration [~10% of our sample] D. Ehlert, FO, E. Peretti, to appear in MNRAS, arXiv:<u>2411.05667</u> He Ν Si Fe р

Extreme UFOs: Intermittent sources at the highest energies Spectrum at escape [~5% of our sample]

IR torus

D. Ehlert, FO, E. Peretti, arXiv:<u>2411.05667</u>

26

Galactic-Extragalactic Transition

UFO population: Diffuse neutrino flux

Active Galactic Nuclei

Summary

$\nu - \gamma$ -UHECR common origin? Possible for AGN — otherwise several source populations

Origin of "Component B" AGN UFOs can fill the transition region testable with neutrinos

The sources are complex.. e.g. Starburst activity correlated with transients and AGN activity!

32

32

UFO population: Point-source fluxes

UFO population: Magnetic Horizon

Low EGMF ($\leq 10^{-12} \text{ nG}$)

Max EGMF (10⁻¹¹ nG, λ = 1 Mpc)

UFO population: Magnetic Horizon

Max EGMF (10^{-11} nG, $\lambda = 1$ Mpc)

1	8 1	9	20
$\log_{10}(E/eV)$			

UFOs: What limits the maximum energy

37

D. Ehlert, FO, E. Peretti, arXiv:<u>2411.05667</u>

37

A curious maximum rigidity distribution

D. Ehlert, FO, M. Unger, PRD 107 (2023) 10

39

A comment on hard spectra

Acceleration process

Shock acceleration with synchrotron losses Zirakashvili & Aharonian 2006

Relativistic turbulence Comisso, Farrar, Muzio 2024

Interactions/confinement in the sources

Globus, Allard, Mochkowitch, Parizot 2014 Unger, Farrar, Anchordoqui 2014

Extragalactic magnetic horizon

Pierre Auger Coll JCAP 07 094 2024